CNRS-PAN Mathematics Summer Institute, Cracow 1
- 7 July, 2013
In collaboration with the Faculty of Applied Mathematics,
AGH University of Science and Technology, Institute of
Mathematics, Polish Academy of Sciences, CNRS, Imperial College
London, IMP Université Paul Sabatier Toulouse, Warsaw Center of Mathematical
Sciences, and
ANR project STAB.
Organized by: Dominique Bakry (Toulouse), Szymon Peszat
(Cracow), and Bogusław Zegarliński (London).
The meeting will review recent results in the area of discrete and
continuous probability/stochastics intertwined with related
problems and methods of mathematical analysis. Besides a number of
presentation by international participants, the meeting will
include two 6 hrs mini-courses (suitable for PhD students and
young researchers).
The venue is the Faculty of Applied Mathematics AGH University of
Science and Technology, Al. Mickiewicza 30, connector A3-A4,
room 304 for morning sessions and room 103 for afternoon sesions,
see:
the localization in the campus.
Previous and related
activities:
Minicourses:
- Charles Bordenave
(Toulouse): Spectrum of random graphs
Abstract: Following
Benjamini/Schramm and Aldous/Lyons, we will introduce the
unimodular and sofic graphs which are the natural limits of finite
graph sequences with uniformly bounded degrees. For these graphs, we
will define a proper notion of spectrum and study its properties. We
will put the emphasis on the study of the regularity of the spectrum.
Our main examples will be the spectral measure of supercritical
percolation on the square grid and on the hypercube and of Erdos-Renyi
graphs. If time allows, we will also discuss some connections with
random matrices.
- Djalil Chafaï
(Universite Paris-Est Marne-la-Vallee): Topics in random matrices
and potential theory
List of participants:
- D. Bakry (Toulouse)
- C. Bordenave (Toulouse)
- W. Bednorz (Warsaw)
- R. Bogucki (Warsaw)
- D. Buraczewsk (Wrocław)
- K. Ciosmak (Warsaw)
- D. Chafaï (Paris)
- T. Chojecki (Lublin)
- I. Gentil (Lyon)
- B. Huou (Toulouse)
- A. Joulin (Toulouse)
- M. Kamińska (Warsaw)
- T. Komorowski (Warsaw/Lublin)
- R. Latała (Warsaw)
- C. Léonard (Paris)
- X. Liu (London)
- M. Majka (Cracow)
- E. Marciniak (Cracow)
- L. Miclo (Toulouse)
- P. Monmarché (Toulouse)
- P. Nayar (Warsaw)
- S. Peszat (Cracow)
- K. Pietruska-Pałuba (Warsaw)
- P. Przybyłowicz (Cracow)
- M. Strzelecki (Warsaw)
- T. Szarek (Gdańsk)
- T. Tkocz (Warwick)
- J. Trybuła (Cracow)
- M. Wasilewski (Warsaw)
- H. Wojewódka (Gdańsk)
- B. Zegarlinski (London)
- F. Zak (London)
For more information contact S. Peszat, e-mail
napeszat[AT]cyf-kr.edu.pl
Tentative Program:
Sunday 30 June Arrival day
Monday 1 July
- 10.00 - 10.40 A. Joulin:
Intertwinings between Markov processes.
- 10.45 - 11.25
W. Bednorz: On the suprema of Bernoulli Processes.
- 11.30 - 12.00 D. Buraczewski:
On solutions of linear stochastic equations in the critical case.
- 14.30 - 16.30 C. Bordenave:
minicourse
- 16.30 - 16.50 T&C
- 16.50 - 17.35 C. Léonard:
Dynamics of entropic interpolations.
Tuesday 2 July
- 10.00 - 10.45
K. Pietruska-Pałuba: Integrated density of states for Poisson
perturbations of Markov processes on the Sierpinski gasket.
- 11.00 - 11.30 P. Monmarché:
hypocoercive relaxation to equilibrium for kinetic models.
- 11.30 - 12.00 P. Nayar:
Hopefully new L_1 Sobolev-type inequality.
- 15.00 - 17.00 C. Bordenave:
minicourse
- 17.00 - 17.20 T&C
- 17.20 - 17.50
P. Przybyłowicz:
Optimal approximation of scalar SDEs with time-irregular coefficients (asymptotic setting).
- 18.30 - 20.30 History of Science
Evening, Aula Jagiellońska, Collegium Maius
Wednesday 3 July
- 9.30 - 11.30 D. Chafaï:
minicourse
- 12.00 - 20.30 Excursion
Thursday 4 July
- 9.30 - 11.30 C. Bordenave:
minicourse
- 11.30 - 11.50 T&C
- 11.50 - 12.30 H. Wojewódka:
Exponential rate of convergence for some Markov operators.
- 15.00 - 17.00 D. Chafaï:
minicourse
- 17.00 - 17.20 T&C
- 19.00 - Conference Dinner
(Restaurant Nova, Estery 18)
Friday 5 July
- 9.30 - 11.30 D. Chafaï:
minicourse
- 11.30 - 11.50 T&C
- 11.50 - 12.20 T. Tkocz:
Tensor products of random unitary matrices.