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Symbolic Dynamics and Tilings of Rd
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Abstract. Aperiodic tilings of Euclidean space can profitably be studied from
the point of view of dynamical systems theory. This study takes place via a
kind of dynamical system called a tiling dynamical system.

1. Introduction

In this chapter we study tilings of Euclidean space from the point of view of dy-
namical systems theory, and in particular, symbolic dynamics. Our goal is to show
that these two subjects share many common themes and that they can make useful
contributions to each other. The tilings we study are tilings of Rd by translations
of a finite number of basic tile types called “prototiles”. A good general reference
on tilings is [GS87]. The link between tilings and dynamics will be established
using a kind of dynamical system called a tiling dynamical system, first described
by Dan Rudolph [Rud88], [Rud89]. The parts of the theory we concentrate on
here are the parts most closely related to symbolic dynamics. Interestingly, these
also tend to be the parts related to the theory of quasicrystals.

A quasicrystal is a solid which, like a crystal, has a regular enough atomic struc-
ture to produce sharp spots in its X-ray diffraction patterns, but unlike a crystal,
has an aperiodic atomic structure. Because of this aperiodicity, quasicrystals can
have “symmetries” forbidden to ordinary crystals, and these can be observed in
their X-ray diffraction patterns. The first quasicrystals were discovered in 1984 by
physicists at NIST (see [SBGC84]) who observed a diffraction pattern with 5-fold
rotational symmetry. For a good mathematical introduction to quasicrystals see
[Sen95].

The theory of quasicrystals is tied up with some earlier work on tiling problems
in mathematical logic ([Wan61], [Brg66]). Central to this circle of ideas is the
concept of an aperiodic set of prototiles. One of the most interesting aperiodic sets,
which anticipated the discovery of quasicrystals, is the set of Penrose tiles, discov-
ered in the early 1970s by Roger Penrose [Pen74]. Penrose tilings play a central
role in the theory of tiling dynamical systems because they lie at the crossroad of
the three main methods for constructing examples: local matching rules, tiling sub-
stitutions, and the projection method. As we will see, the tiling spaces constructed
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by these methods are analogous to three well known types of symbolic dynamical
systems: finite type shifts, substitution systems and Sturmian systems.

The connection between tilings and symbolic dynamics goes beyond the analo-
gies discussed above. Since tilings are (typically) multi-dimensional, tiling dynamics
is part of the theory of multi-dimensional dynamical systems. We will show below
that one can embed the entire theory of Zd symbolic dynamics (the subject of Doug
Lind’s chapter in this volume) into the theory of tiling dynamical systems. It turns
out that much of the complication inherent in multi-dimensional symbolic dynamics
(what Lind calls “the swamp of undecidability”) is closely related to the existence
of aperiodic prototile sets.

Finally, one can view tiling dynamical systems as a new type of symbolic dy-
namical system. Since tilings are geometric objects, the groups that act naturally
on them are continuous rather than discrete (i.e., Rd versus Zd). Because of this,
one needs to define a new kind of compact metric space to replace the shift spaces
studied in classical symbolic dynamics. We call this space a tiling space. Even in
the one dimensional case (i.e., for flows) tiling spaces provide a new point of view.

In the first part of this chapter we carefully set up the basic theory of tiling
dynamical systems and give complete proofs of the main results. In later sections,
we switch to survey mode, giving references to access the relevant literature. Of
course there are many topics we can not cover in such a short chapter.

These notes are based on a AMS Short Course presented by the author at the
2002 Joint Mathematics Meeting in San Diego, California. The author wishes to
thank Tsuda College in Tokyo, Japan and the University of Utrecht, The Nether-
lands, where earlier versions of this course were presented. My thanks to the Natalie
Priebe Frank and Cliff Hansen for carefully reading the manuscript and making
several helpful suggestions. My thanks also to the referee who suggested several
substantial improvements.

2. Basic definitions in tiling theory

2.1. Tiles and tilings. A set D ⊆ Rd, d ≥ 1, is called a tile if it is com-
pact and equal to the closure of its interior. We will always assume that tiles are
homeomorphic to topological balls, although in some situations it is useful to allow
disconnected tiles. Tiles in R are closed intervals. Tiles in R2 are often polygons,
but fractal tiles also occur frequently in examples.

A tiling1 x of Rd is a collection of tiles that pack Rd (any two tiles have pairwise
disjoint interiors) and that cover Rd (their union is Rd). Two tiles D1, D2 are
equivalent, denoted D1 ∼ D2, if one is a translation of the other. Equivalence class
representatives are called prototiles.

Definition 2.1. Let T be a finite set of inequivalent prototiles in Rd. Let XT
be the set of all tilings of Rd by translations of the prototiles in T . We refer to XT
as a full tiling space.

Broadly speaking, geometry is concerned with properties of objects that are
invariant under congruence. Similarly, dynamics is generally concerned with group
actions. In this chapter, we will be interested in how groups of rigid motions act on

1We use the lower case notation x for a tiling because we want to think of x as a point in a
tiling space X.
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sets of tilings. Because of this, we will distinguish between congruent tilings in XT
that sit differently in Rd. Of central interest will be the action of Rd by translation.

Definition 2.2. For t ∈ Rd and x ∈ XT let T tx ∈ XT be the tiling of Rd in
which each tile D ∈ x has been shifted by the vector −t, that is T tx = {D − t :
D ∈ x}. We denote this translation action of Rd on XT by T .

The primary reason for studying T is that it is related to the long range order
properties of the tilings in XT . While such properties are geometric in nature, we
will gain access to them through dynamical systems theory.

2.2. Local finiteness. Let T be a set of prototiles. A T -patch y is a finite
subset y ⊆ x of a tiling x ∈ XT such that the union of tiles in y is connected. This
union is called the support of y and written supp(y). The notion of equivalence
extends to patches, and a set of equivalence class representatives of patches is
denoted by T ∗. The subset of patches of n tiles, called the n-patches, is denoted
by T (n) ⊆ T ∗.

We will impose one additional condition, called the local finiteness condition,
on all tiling spaces XT .

Definition 2.3. A tiling space XT has finite local complexity if T (2) is finite.

Equivalently, T (n) is finite for each n. Sometimes the geometry of the tiles
themselves will impose the local finiteness condition, but we usually need to add
it as an extra assumption. From now on, whenever we write T , T ∗ or XT , it will
always implicitly include a choice of a finite T (2). When working with polygonal
prototiles in R2, a common way to achieve local finiteness to assume that all tiles
meet edge-to-edge.

Example 2.4. Consider the set S consisting of a single 1× 1 square prototile.
Without any local finiteness condition, fault lines exist in the tilings x ∈ XS with
a continuum of possible displacements. Imposition of the edge-to-edge condition
means that every x ∈ XS is a translation of a single periodic tiling. See Figure 1.

t(a) (b) (c)

Figure 1. (a) Part of an edge-to-edge square tiling. (b) A square
tiling with a fault having displacement t. (c) Local finiteness can
always be forced geometrically by cutting “keys” on the edges of
tiles.

Example 2.5. We get more interesting square tiling examples by taking Sn,
n > 1, to be the set of 1 × 1 square prototiles marked with “colors” 1, 2, . . . , n. To
do this we also need to modify our notion of equivalence so that differently colored
squares are not considered to be equivalent.
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Now consider the subset X0 ⊆ XSn
consisting of all tilings whose vertices lie

on the lattice Zd ⊆ Rd and let T0 be the restriction of the Rd shift action T to the
subgroup Zd. It is clear that X0 is T0-invariant.

We will see later how this example links tilings to discrete symbolic dynamics.

Example 2.6. Fix n ≥ 4. Let s = n for n odd, and s = 2n for n even. For
0 ≤ k < n let vk = (cos(2πk/s), sin(2πk/s)) ∈ R2, i.e., vk is a sth root of unity,

viewed as a vector in R2. Let Rn denote the set of all

(
n
2

)
rhombi with translations

of the vectors vk as sides. Define XRn
to be the corresponding edge-to-edge tiling

space. Two examples of x ∈ XR5 (one with markings) are shown in Figures 3 and
10.

2.3. The tiling topology. As we now show, finite local complexity tiling
spaces have particularly nice topological properties. The tiling topology is based
on a simple idea: two tilings are close if after a small translation they agree on a
large ball around the origin (see [Rad99], [Rob96b], [Rud88], [Sol97]). However,
the details turn out to be a little subtle.

Given K ⊆ Rd compact and x ∈ XT , let x[[K]] denote set of all sub-patches
x′ ⊆ x such that K ⊆ supp(x′). The smallest such patch is denoted x[K]. For
r > 0 let Br = {t ∈ Rd : ||t|| < r}, where || · || denotes the Euclidean norm on Rd.

Lemma 2.7. For x, y ∈ XT define

(2.1) d(x, y) = inf
(
{
√

2/2} ∪ {0 < r <
√

2/2 : ∃x′ ∈ x[[B1/r]],

y′ ∈ y[[B1/r]], with T tx′ = y′ for some ||t|| ≤ r}
)
.

Then d defines a metric on XT .

We call d the tiling metric.

Proof. We prove only the triangle inequality. Let 0 < d(x, y) = a′ ≤ d(y, z) =

b′ with a′ + b′ <
√

2/2. Let 0 < ε <
√

2/2 − (a′ + b′) and put a = a′ + ε/2 and
b = b′ + ε/2. Then there are x′ ∈ x[[B1/a]], y′ ∈ y[[B1/a]], y′′ ∈ y[[B1/b]] and

z′′ ∈ z[[B1/b]], and also t, s ∈ Rd with ||t|| ≤ a and ||s|| ≤ b, such that T tx′ = y′

and T−sz′′ = y′′.
Let y0 = y′ ∩ y′′, x0 = T−ty0 ⊆ x′ and z0 = T sy0 ⊆ z′. Then

(2.2) T−(t+s)z0 = x0 where ||t + s|| ≤ a + b.

Letting c = a + b, then since 0 < a ≤ b <
√

2/2,

0 ≤ 1

c
=

1

a + b
≤ 1

b
− a,

and it follows that B1/c ⊆ (B1/b + t). Now y′, y′′ ∈ y[[B1/b]] so x0 ∈ x[[B1/b + t]] ⊆
x[[B1/c]].

Combining this with (2.2), we have d(x, z) ≤ a+ b = d(x, y)+d(y, z)+ ε, where
ε > 0 is arbitrarily small. The triangle inequality follows.

�

Lemma 2.8. The tiling metric d is complete.
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Proof. Consider a Cauchy sequence xn of tilings. Assume d(xn+1, xn) > 0
and let sn = d(xn+1, xn) + 2−n. By passing to a subsequence, we may assume
sn is decreasing and

∑∞
n=1 sn < ∞. it follows from (2.1) that for each n there

exists tn ∈ Rd with ||tn|| ≤ sn and x′
n ∈ xn[[B1/sn

]] such that T tnx′
n ⊆ x′

n+1. Put

rn =
∑∞

k=n tk. Then

T rnx′
n = T rn+1T tnx′

n ⊆ T rn+1x′
n+1.

This implies that T rnx′
n is an increasing sequence of patches, so we can define a

tiling x = ∪nT rnx′
n. Finally, d(x, xn) ≤ max(||rn||, sn) → 0. �

Theorem 2.9. (Rudolph [Rud89]) Suppose XT is a finite local complexity
tiling space. Then XT is compact in the tiling metric d. Moreover, the action T of
Rd by translation is on XT is continuous.

Exercise 1. The proof of compactness amounts to the observation that the
local finiteness condition is equivalent to XT being totally bounded (see [Mun75]).
Fill in the details of this proof and also prove the continuity of T .

Exercise 2. Prove the following converse to Theorem 2.9: a translation in-
variant set X of tilings which is compact in the tiling metric (2.1) must have finite
local complexity.

3. Tiling dynamical systems

3.1. Tiling spaces as symbolic dynamical systems. Throughout this
chapter, a dynamical system will be a pair (X, T ) where X is a compact metric
space (the phase space) and T is a continuous action of a group, usually (but not
always) Rd. The study of the topological properties of dynamical systems is called
topological dynamics. The study of the “statistical properties” of dynamical systems
is called ergodic theory. An excellent introduction to both topological dynamics and
ergodic theory is Walters2 [Wal82].

Symbolic dynamics studies a special kind of dynamical system called a symbolic
dynamical system. The classical set-up is 1-dimensional, but we describe here the
general d-dimensional case (see also the chapter by D. Lind). For the group we take

Zd, and we let Xn = {1, . . . , n}Z
d

, n > 1, with the product topology. Letting T
be the shift action of Zd on Xn, we obtain a dynamical system (Xn, T ) called the
d-dimensional full shift on n symbols. In some ways this example itself is too simple
to be interesting, but it has very complicated subsets. A Zd-symbolic dynamical
system is defined to be a pair (X, T ) where X is a closed T -invariant subset X ⊆ Xn

called a shift space3 (see [LM95] and [Que87]).

Definition 3.1. Let XT be a full d-dimensional tiling space and let T denote
the translation action of Rd. A tiling space X is a closed T -invariant subset X ⊆ XT .
We call the pair (X, T ) a tiling dynamical system.

Now we can precisely state our way of thinking of tiling dynamical systems as
a new type of symbolic dynamical system. We think of the prototiles D ∈ T as the
symbols. The full tiling space XT corresponds to the full shift, and more general
tiling spaces correspond to more general shift spaces. Like the product topology,

2Even though this book concentrates almost exclusively on Z actions, the theory goes through
with very little effort to actions of Z

d and R
d.

3A shift space is also sometimes called a subshift.
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the tiling topology is compact and metric, and in both cases closeness corresponds
to a good match near the origin. However, in the the case of tilings there is the
possibility of a small translation, and since we want this to be continuous, the
topology needs to be defined accordingly.

Remark 3.2. The theory of tiling dynamical systems contains the theory of Zd

symbolic dynamics. One can show that the space X0 constructed in Example 2.5
is homeomorphic to the symbolic full shift, and that T0 implements the shift action
on X0.

3.2. Finite type. Let XT be a full tiling space and let F ⊆ T ∗. Let X\F ⊆
XT be the set of all tilings x ∈ XT such that no patch y in x is equivalent to any
patch in F . We call such a set F a set of forbidden patches.

One can show that for any F ⊆ T ∗, the set X\F is a tiling space (i.e., it is
closed and T -invariant). Moreover, it is clear that every tiling space X ⊆ XT is
defined by a set F of forbidden patches. However, the set F is not unique!

Exercise 3. Prove the three statements in the previous paragraph. Hint: See
[LM95].

In symbolic dynamics, the most important kind of shift space is a finite type
shift. The following definition introduces the corresponding idea in tiling theory.

Definition 3.3. A tiling space X ⊆ XT is called a finite type tiling space if
there exists a finite F ⊆ T ∗ so that X = X\F

The most common case is F ⊆ T (2). This is called a local matching rule. It
is convenient to formulate this case in terms of the allowed 2-patches rather than
forbidden ones. To accomplish this, we put Q = T , let Q(2) = T (2)\F , and write
XQ for X\F . Note that imposing a local matching rule really just amounts to
strengthening the local finiteness condition. Thus a full tiling space is a kind of
finite type tiling space.

Example 3.4. (The Penrose tiles) Consider the marked version P (shown in
Figure 2) of the prototiles R5. The set P(2) (which defines the matching rules)

Figure 2. The Penrose tiles. The protoset P consists of the two
marked tiles shown, and all rotations so that edges have have angles
2πn/10. In particular, card(P) = 20

.

imposes the requirement that the markings on any pair of adjacent tiles must match.
(As we will see below, markings are often used for this purpose). We call P , together
with the matching rules, the Penrose tiles. Tilings x ∈ XP are called Penrose
tilings. Part of a Penrose tiling is shown in Figure 3.
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Figure 3. A part of a Penrose tiling.

3.3. The Tiling Problem. Suppose we are given a set T of prototiles and a
set F ⊆ T ∗ of forbidden patches. Consider the following problem:

Tiling Problem. Is X\F 6= ∅?
We begin with a positive result, a version of which appeared in [Wan61] (see

[GS87] for a proof).

Extension Theorem. Let T be a collection of prototiles with a local finiteness
condition T (2) and let F ⊆ T ∗ be a set of forbidden patches. Define T + ⊆ T ∗ to
be the set of patches that do not contain any forbidden sub-patches. Then X\F 6= ∅
if and only for each r > 0 there is a patch y ∈ T + with Br + t ⊆ supp(y) for some
t ∈ Rd.

The trouble with the Extension Theorem is that it is not constructive. To
conclude that X\F is nonempty one needs to see infinitely many patches in T +.

This difficulty can be appreciated if one tries to tile the plane manually with
Penrose tiles. There are a lot of “dead ends”: patches in y ∈ P+ that do not belong
to P∗. How can we know that P+ doesn’t have some largest patch y? Later, we
will give a proof that XP 6= ∅, but that proof will require a new idea.

The question of whether the Tiling Problem is decidable was raised by Wang
[Wan61] for the case of marked square tiles Sn, together with a local matching
rule. These are now known as Wang tiles.
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When d = 1 there is an easy algorithm to answer the Tiling Problem: First we
draw a graph G with vertex set T and directed edges T (2), and let A be the m×m
adjacency matrix for G, where m = card(T ). The entries of Ak give the number
of paths of length k in G. If Am+1 6= 0 (i.e., not identically zero) then Ak 6= 0 for
any k > m, and we conclude XQ 6= ∅.

Definition 3.5. A tiling x of Rd is called a periodic tiling if its translation
group Γx = {t ∈ Rd : T tx = x} is a lattice: that is a subgroup of Rd with d linear
independent generators. A tiling x is called aperiodic if Γx = {0}.

In the case d = 1 one can easily show that if XT 6= ∅ then there is a periodic
tiling x ∈ XT . Wang conjectured [Wan61] that the same holds for d > 1.

Wang’s Conjecture.

(1) There is an algorithm to decide the tiling problem.
(2) Whenever XT 6= ∅, there exists a periodic tiling x ∈ XT .

Wang proved that (2) implies (1). The argument goes as follows:
First suppose XT 6= ∅. Then there exists a periodic x ∈ XT . For each n ∈ N,

list all tiling patches y ∈ T + with Bn ⊆ supp(y) and Bn+1 6⊆ supp(y). We will
eventually see a complete period of x. In this case the algorithm will stop and
answer “yes”.

Now suppose XT = ∅. Then it follows from the Extension Theorem that we
will eventually find n ∈ N so that no y ∈ T + has support containing Bn. In this
case the algorithm will stop and answer “no”.

But Wang’s conjecture turns out to be false! For d ≥ 2 Berger [Brg66] showed
that the tiling problem is, in fact, undecidable. His solution included the construc-
tion of an example of a 2-dimensional finite type tiling space XQ containing no
periodic tilings.

Definition 3.6.

(1) A nonempty tiling space X is called an aperiodic tiling space if it contains
no periodic tilings (i.e., every x ∈ X is an aperiodic tiling).

(2) A prototile set Q with local matching rule Q(2) is called an aperiodic
prototile set if XQ is an aperiodic tiling space.4

Berger’s original aperiodic prototile set Q satisfies card(Q) > 50, 000 (see
[GS87]). Later, Raphael Robinson [rRob71] found a simple example with card(Q) =
32 (a picture of these tiles appears in Lind’s chapter of this volume).

3.4. Counting prototiles and the “einstein” problems. The problem of
finding small aperiodic sets of prototiles has been a popular one (see [GS87] for the
history up to 1987). The exact formulation depends on how one counts prototiles.
With our notion of equivalence (translation but not more general congruences),
the Penrose tiles P consist of 20 prototiles. Counting this way, the current best
example in R2 is a set K of Wang tiles due to Kari and Culik ([Kar96], [Cul96])
with card(K) = 13. This example is particularly interesting because it is not related
to any other known examples.

4In some literature, the term “aperiodic tiling” is reserved for tilings x ∈ XQ, where Q is an
aperiodic prototile set.
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It is perhaps more natural to allow congruence classes of prototiles to count
only once (i.e., to allow rotations of the prototiles). With this system of counting
there are just 2 Penrose tiles, and for R2 this is the best result so far.

The question of whether there exists an aperiodic prototile set consisting of a
single tile has been named the “einstein problem” by Ludwig Danzer. For d = 3
an example of an einstein was discovered by Schmitt and Conway (see [Sen95]).
However, it tiles in a way that is, in a certain sense, very weakly aperiodic.

There are some partial results on the 2-dimensional einstein problem as well.
For any prototile set T = {D}, where D is a topological disk, whenever XT 6= ∅
there exists a periodic tiling x ∈ XT ([Ken92], [Ken93], [GBN89]). In other
words, there is no einstein up to translation.

4. Substitution tiling spaces

4.1. Perfect decompositions. Let L ∈ Gl(d, R) be an expansive linear trans-
formation of Rd. Expansive means that every eigenvalue of L lies outside the unit
circle. The case L = λM , where M is an isometry and λ > 1 is called a similarity.

A perfect decomposition (or just a decomposition) is a mapping C : T → L−1T ∗

that (up to equivalence) satisfies the perfect overlap condition

(4.1) supp(C(D)) = supp(D),

In a slight abuse of language, a decomposition is called self-similar if L is a
similarity; in the general case it is called a self-affine decomposition.

The mapping S = LC is called a perfect self-similar or self-affine tiling substi-
tution5 on T .

In the case d = 1 there is no difference between a self-similar and a self-affine
substitution, and any tiling substitution can be written S = λC, where λ is a
positive real number. In the self-similar case when d = 2, we can identify R2 with
C. By replacing S with S2 we can assume L orientation preserving. Then we can
regard L as multiplication by λ ∈ C, with |λ| > 1, so that S = λC.

Example 4.1. (Polyomino decompositions) The chair decomposition Cc on
the set C of four chair prototiles is obtained by taking the decomposition pictured
in Figure 4(a) and its four rotations. The table decomposition Ct, Figure 4(b), is

(a) (b) (c)

Figure 4. (a) The chair, (b) the table and (c) the 3-dimensional table.

defined on the protoset D2 of two “dimers” in the plane. The 3-dimensional table,
Figure 4(c), is defined on the set D3 of 6 dimers in R3. The asymmetry of this

5This is also sometimes called an inflation mapping.



10 E. ARTHUR ROBINSON, JR.

example makes it necessary to keep track of the prototiles’ orientations. Many
other polyomino examples are easily devised.

In all cases shown in Figure 4, L is a similarity with M = Id and λ = 2. A

non-self-similar polyomino decomposition with L =

(
2 0
0 3

)
is shown in Figure 5.

Figure 5. The folding table: a non-self-similar version of the ta-
ble. Here we show the decomposition of LD2 into D2.

Example 4.2 (Raphael Robinson’s triangular Penrose tilings). This is a non-

polyomino self-similar decomposition C1 with λ = (1/2)(1 +
√

5) on a set P1 of 40
marked triangular prototiles. Two of the prototiles are shown in Figure 6(a). The
decomposition C1 is shown in Figure 6(b). Let XP1 denote the finite type tiling

(a) (b)

Figure 6. The triangular Penrose tilings: The protoset P1 con-
sists of a finite set of rotations of the two tiles shown that is closed
under decomposition.

space corresponding to the usual matching rule that the arrows on adjacent edges
must match. We will show below how to use the tiling substitution S1 = λC1. to
prove that XP1 6= ∅.

Example 4.3 (The pinwheel tilings). The self-similar decomposition shown in
Figure 7 has been studied extensively by Radin (see [Rad94]). Up to rotation and
reflection it has a single prototile. In the decomposition, one copy of the prototile
is rotated by an angle θ = arctan 1

2 , so that θ
2π is irrational. Such a rotation

has infinite order and hence there is no finite prototile set invariant under this
decomposition. We can get around this difficulty by modifying the definition of
equivalence and the tiling metric d to allow rotations as well as translations.

The next two examples don’t quite satisfy (4.1), but can nevertheless easily be
accommodated. We refer to them as imperfect decompositions and the correspond-
ing substitutions as imperfect tiling substitutions (see Definition 5.25).

Example 4.4. (The Penrose decomposition). This decomposition applies to
the marked prototile set P of Example 3.4. Since C(D) ⊇ D, this is an imperfect
decomposition.
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θ

Figure 7. The pinwheel decomposition: One prototile is irra-
tionally rotated relative to the others.

Figure 8. The imperfect decomposition of the rhombic Penrose tilings.

Example 4.5. (The binary tiling decomposition). The decomposition shown
in Figure 9 is from [GL92]. A patch of a tiling x in the corresponding substitution

Figure 9. The imperfect “binary” tiling decomposition Cb is self-
similar. In the corresponding tiling substitution Sb = λMCb the
similarity L = λM includes a rotation M by 2π/40. Note, however,
that C2

b (T ) ⊆ L−2T , so there is a version of S2
b with no rotation.

tiling space is shown in Figure 10. A perfect version of this decomposition is shown
in Figure 13.

4.2. Properties of tiling substitutions.

Definition 4.6. Let S = LC be a tiling substitution on T where XT has finite
local complexity. We say S satisfies the 2-patch closure property if S(T (2)) ⊆ T ∗.

From now on, unless we say otherwise, we will assume every tiling substitution
S satisfies the 2-patch closure property. The reason6 for this assumption is that a

6The need for such an assumption was pointed out to the author by Natalie Priebe Frank.
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Figure 10. A patch of binary tiling.

tiling substitution S : T → T ∗ (satisfying 2-patch closure) can be extended to a
mapping S : XT → XT . This mapping performs the decomposition C, viewed as a
mapping C : XT → XL−1T , and then applies the linear expansion L to the entire
tiling. Note that C satisfies translation invariance

(4.2) T tC = CT t for all t ∈ Rd.

Exercise 4. Show that both C and S are continuous in the tiling topology
and that S satisfies T LtS = ST t.

We call a tiling substitution S = LC invertible if it is 1:1. In this case S has
a continuous inverse S−1 = L−1C−1 on S(XT ). Then C−1 is a continuous and
translation invariant mapping, which is called a composition.

Let us denote T = {D1, . . . , Dn}. We define the structure matrix A of the tiling
substitution S = LC to be n × n matrix with entries Ai,j equal to the number of
prototiles equivalent to Di that occur in S(Dj). A tiling substitution is called
primitive if Ak > 0 for some k > 0.

4.3. Substitution tiling spaces. Let S be a tiling substitution on T . Take
D ∈ T and define a sequence of patches xk inductively: x1 = {D}, and xk =
S(xk−1), k > 1. Since we assume S satisfies the 2-patch closure property, it follows
that xk ∈ T ∗ for all k.

The patches xk are used to define a tiling space as follows. First we define
a set FS of forbidden patches by stipulating that y ∈ T ∗ is forbidden if it is not
a sub-patch of xk for any k. The tiling space XS = XFS

⊆ XT is called the
substitution tiling space corresponding to S. The dynamical system (XS , T ) is
called a substitution tiling dynamical system.
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Figure 11. The patches xk, k = 1, 2, 3, for the chair tiling sub-
stitution (Figure 4(a)), and a patch of chair tiling.

Lemma 4.7. Let XS ⊆ XT be the substitution tiling space corresponding to a
primitive tiling substitution S on T . Then XS 6= ∅ and XS is independent of the
initial tile D ∈ T . Moreover S(XS) ⊆ XS.

Proof. First we observe that xk ∈ T + for all k, since by the definition of
FS, no patch xk contains any forbidden sub-patches. We also note that since L is
expansive, diam(supp(xk)) → ∞. Thus given r > 0, there exists t ∈ Rd so that
Br = t ⊆ supp(xk) for k sufficiently large. It follows from the Extension Theorem
that XS = XFS

6= ∅. The independence of XS from the choice of D follows from
primitivity. The S-invariance is clear. �

Corollary 4.8. Let P be the set of marked rhombic Penrose tiles shown in
Figure 2, and let P1 be the marked triangular Penrose tiles shown in Figure 6. Then
the corresponding finite type tiling spaces XP and XP1 are nonempty, i.e., Penrose
tilings exist.

Proof. For the two tiling substitutions, S from Figure 8 and the substitution
S1 from Figure 6, the corresponding substitution tiling spaces satisfy XP ⊇ XS 6= ∅
and XP1 ⊇ XS1 6= ∅. �

This is essentially Penrose’s argument, although he did not couch it in dynami-
cal terms. We conclude with a result that characterizes exactly which tilings belong
to a substitution tiling space.

Proposition 4.9. Let XS ⊆ XT be a substitution tiling space for a primitive
tiling substitution S. Let x ∈ XT . Then x ∈ XS if and only if there is an infinite
sequence xn ∈ XS so that Snxn = x (i.e., x has infinitely many S-preimages).

Exercise 5. Prove Proposition 4.9.

Corollary 4.10. For Penrose tilings, the finite type tiling spaces are the same
as the substitution tiling spaces: XP = XS and XP1 = XS1 .

Proof. By Proposition 4.9 and Corollary 4.8 it suffices to show S−1 and S−1
1

exist on XP and XP1 respectively. This is easy to see by inspection for XP1 .
Although it is a little harder to see for XP , it is also true in that case.

Alternatively, this result for XP also follows from XP1 using Example 5.20
below. �
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5. Applications of topological dynamics

5.1. Repetitivity and minimality. Tilings x constructed from aperiodic
sets Q of prototiles, as well as substitution tilings, tend to have the following curious
property.

Definition 5.1. A tiling x is called repetitive if for any patch y in x there is
an r > 0 such that for any t ∈ Rd there is a translation T sy of y in x such that
supp(T sy) ⊆ Br + t.

In other words, a copy of y occurs “nearby” any given location t in x. Since
all periodic tilings are repetitive, we think of repetitivity as a generalization of
periodicity.

Let (X, T ) be a dynamical system. Let U ⊆ X be open and let x ∈ X . Define
the return set of x to U to be

(5.1) R(x, U) = {t ∈ Rd : T tx ∈ U}.
A set R ⊆ Rd is called relatively dense if there is an r > 0 such that every r-ball in
Rd intersects R.

Definition 5.2. A point x ∈ X is almost periodic if R(x, U) is relatively dense
for every open U ⊆ X with R(x, U) 6= ∅.

For a tiling space X ⊆ XT , let y ∈ T ∗ and let R = supp(y). Define X(y) =
{x ∈ X : x[R] = y}. For ε > 0 define the cylinder set

Uy,ε = T BεX(y) = {T tx : x ∈ X(y), t ∈ Bε}.
Clearly Uy,ε is open.

Without loss of generality, we can assume by translating that the support of
each patch y ∈ T ∗ contains the largest possible ball Br around the origin. It follows
that the cylinder sets {Uy,εn

: y ∈ T ∗, εn → 0} form a basis for the tiling topology
on X . In Definition 5.2, it suffices to check only the sets U belonging to this basis.
Thus we have the following.

Proposition 5.3. Let (X, T ) be a tiling dynamical system. Then a tiling x ∈ X
is repetitive if and only if it is an almost periodic point7.

A dynamical system (X, T ) is called minimal if there are no proper closed T -
invariant subsets of X . For a point x ∈ X we define its orbit by O(x) = {T tx : t ∈
Rd}, and its orbit closure O(x) ⊆ X to be the closure of O(x) in X .

Gottschalk’s Theorem. ([Got44]) A dynamical system (O(x), T ) is mini-
mal if and only if x is almost periodic.

It follows from the minimality of the dynamical system (O(x), T ) that O(y) =

O(x) for all y ∈ O(x). In this case it follows from Gottschalk’s Theorem that y is
almost periodic too.

Definition 5.4. Two repetitive tilings x, y are said to be locally isomorphic if
O(x) = O(y).

7Because of this, the author previously used the term “almost periodic tiling” to mean a
repetitive tiling.
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Geometrically, two locally isomorphic tilings x and y have exactly the same
patches. Dynamically, local isomorphism means x and y belong to the same minimal
tiling dynamical system.

A dynamical system (X, T ) is transitive if there is a single orbit: O(x) = X
for all x ∈ X . This is a special case of minimality. A tiling x is periodic if and
only if O(x) = O(x). In this case (T, O(x)) is transitive, and O(x) = Rd/Γx is a
d-dimensional torus (e.g., XS = Zd/Rd).

We say a tiling is properly repetitive if it is repetitive but not periodic. An
easy application of Zorn’s lemma shows that every dynamical system (X, T ) has a
minimal T -invariant subset Y ⊆ X . It follows that every tiling space contains a
repetitive tiling (this argument appears in[RW92]). Of course in general this tiling
may be periodic, but if we know X is an aperiodic tiling space, then it must contain
a properly repetitive tiling.

Exercise 6. Starting with the Penrose tiles P , construct a new example of an
aperiodic prototile set P ′ such that not every tiling x ∈ XP′ is repetitive.

A dynamical system (X, T ) is called topologically transitive if there exists x ∈ X

such that O(x) = X . Clearly transitive implies minimal which implies topologically
transitive. In each case the converse is false. Exercise 7 shows that (XSn

, T ) is
topologically transitive but not minimal. Later we will show that the Penrose tiling
dynamical system (XP , T ) is minimal but not transitive. A minimal dynamical
system which is not transitive is called properly minimal.

Exercise 7. Show that the tiling dynamical system (XSn
, T ) is topologically

transitive but not minimal. What can you say about (XRn
, T )? (See Examples 2.5

and 2.6.)

Remark 5.5. When x periodic, O(x) is a torus, i.e., a connected manifold.
It turns out that this is an exceptional situation. One can show that if (X, T ) is
aperiodic and topologically transitive, then for each patch y, X(y) is homeomorphic
to a Cantor set. Since for ε sufficiently small, Uy,ε = T BεX(y) is homeomorphic to
Bε × X(y), every point x ∈ X has a neighborhood homeomorphic to a product of
Rd and a Cantor set. Such a space is called a lamination. In particular, a tiling
space X is almost never connected.

5.2. The repetitivity of substitution tilings.

Proposition 5.6. Let XS be the substitution tiling space corresponding to an
invertible primitive tiling substitution S. Then any XS is an aperiodic tiling space
.

Proof. Suppose T t0x = x for some t0 6= 0. Since C is invertible, (4.2) implies

(5.2) T t0C−nx = C−nx

for all n ≥ 1. Choose n so large that T t0 int(LnD) ∩ int(LnD) 6= ∅ for all D ∈ T .
Since for some D ∈ T , LnD ∈ x, this contradicts (5.2). �

Remark 5.7. In Proposition 5.6, invertibility is also necessary [Sol98].

The following generalizes a well known result for discrete substitution dynam-
ical systems (see [Que87]).
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Theorem 5.8. Let XS be a substitution tiling space corresponding to an prim-
itive tiling substitution S. Then any x ∈ XS is repetitive. Moreover, any x, y ∈ XS

are locally isomorphic. In particular, (XS , T ) is minimal.

Corollary 5.9. The tiling space XS corresponding to invertible primitive
tiling substitution S consists of properly repetitive tilings.

Proof. This follows from Gottschalk’s Theorem, Theorem 5.6 and Theorem 5.8.
�

Proof of Theorem 5.8. Assume without loss of generality A > 0 (otherwise
replace S with Sk). Let x ∈ X and let y be a patch in x. Fix D0 ∈ T and choose
k so large that y is a patch in Sk−1({D0}). Then y is a patch in Sk({D}) for all
D ∈ T .

Since x ∈ X it follows from Proposition 4.9 that there exists xk ∈ X so that
Skxk = x. Let x′

k = Lkxk ∈ XLkT . Note that Ckx′
k = x.

Let s be the largest diameter of LkD ∈ LkT and let r = 2s. It follows from
the triangle inequality that for any D′ ∼ LkD, if t ∈ D′ then D′ ⊆ Br + t.

Thus any r-ball Br + t in Rd contains a tile D′ ∈ x′
k, and the patch Ck({D′})

in x, which has support D′, contains a sub-patch that is a copy of y. �

5.3. Self-affine tilings. Let S = LC be a tiling substitution on T . A tiling
x0 ∈ XT is called a self-affine tiling with expansion map L if Sx0 = x0. When
L is a similarity, x0 is called a self-similar tiling. Self-affine tilings play the same
role in the theory of substitution tiling dynamical systems that fixed points play
in the theory of discrete substitutions. In particular, self-affine tilings provide a
alternative definition for substitution tiling spaces.

Theorem 5.10. If S is a primitive tiling substitution then there exists k > 0
and x0 ∈ XS such that Skx0 = x0.

Proof. First, we assume without loss of generality that A > 0, since otherwise
we can replace S with Sk so that Ak > 0. Fixing D1 ∈ T , there is a translation of
L−1(D1) in C(D1). By taking additional powers of S, if necessary, we can assure
that L−1(D1) ⊆ int(supp(D)). Similarly, there is a sequence Dk of tiles equivalent
to D1 so that for all k > 0, L−1(Dk) ∈ C(Dk−1) and L−1(Dk) ⊆ int(supp(Dk−1)) ⊆
int(D1). Since L is expanding, there exists a unique c ∈ int(D1) satisfying

c ∈
∞⋃

k=1

L−kDk.

The point c is called a control point.
Let D0 = D1 − c. This is a tile with a control point at the origin. Define the

sequence xk = Sk({D0}) and use this sequence to construct the substitution tiling
space XS . Because of the location of the control point, we have that xk−1 is a
sub-patch of xk for all k, and xk = Sxk−1.

Let x0 = ∪k≥1xk, and note that x0 is a tiling of Rd by the choice of an interior
control point. By Proposition 4.9 we have x0 ∈ XS , and also Sx0 = x0. �

It follows from Gottschalk’s Theorem and Theorem 5.8 that for any tiling sub-
stitution S, O(x) = XS for any x ∈ XS . By Theorem 5.10 it follows that there
exists a self-affine tiling x0 ∈ XS, (i.e., Skx0 = x0). Thus for any tiling substitu-

tion S there exists a self-affine tiling x0 such that XS = O(x0). This hints at the
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alternative definition of XS mentioned above. However, as the next example shows
it is not completely straightforward.

Example 5.11. Let S be the table substitution and let y1 be the patch con-
sisting of two rows of two horizontal table tiles, arranged in a 4× 2 rectangle. Note
that y1 ∈ F , the set of forbidden patches for table tilings. Put yn = S2(n−1)y1, so
that yn ⊆ yn+1. Then y0 = ∪k≥1yk satisfies S2y0 = y0. However y0 6∈ XS since it
contains the patch y1 ⊆ y0 and y1 ∈ F .

One can show that the patch y1 in the occurs only at the origin in y0, but
nowhere else. In particular, the self-similar tiling y0 is not repetitive.

The following result shows the correct way to define a substitution tiling space
in terms of self-affine tilings.

Proposition 5.12. Let S = LC be a primitive tiling substitution and let x0 ∈
XT be repetitive and satisfy Skx0 = x0 for some k ≥ 1. Then XS = O(x0).

Remark 5.13. Suppose we start with a tiling substitution S that we do not
assume a priori satisfies the 2-patch closure property, but that satisfies Skx0 = x0

for some x0 ∈ XT . It then follows that S does satisfy 2-patch closure. Once this
is known, we can use Proposition 5.12 to define XS provided we can verify that x0

is repetitive. This may be easier in practice than verifying that S satisfies 2-patch
closure.

Next, we consider the question of what linear maps L can occur as the expansion
map for a self-affine tiling.

Let S = λC be a primitive tiling substitution for d = 1, and let Sx0 = x0 be
a self-similar tiling of R. If A is the structure matrix for S, then it is easy to see
that λ must be the Perron-Frobenius eigenvalue of A: the unique real eigenvalue of
largest modulus (see Section 6.3 below).

Example 5.14. A discrete substitution σ is a mapping from a finite alphabet
A = {1, . . . , n} to the set of all non-trivial finite words in the alphabet. For a
concrete example, see (8.2) in Section 8.6 below (see also [Que87]).

We define the structure matrix A of σ to be the n×n matrix such that the entry
Ai,j is the number of times the letter i occurs in σ(j). Assuming A is primitive, we
let λ > 0 and a = (a1, . . . , an) > 0 be its Perron-Frobenius eigenvalue and eigen-
vector. Given a primitive non-negative integer matrix A, it is easy to manufacture
a substitution σ with structure matrix A (i.e., this amounts to choosing orders for
letters in the words corresponding the columns of A).

Now let T = {[0, ai] : i = 1, . . . , n} be a set of prototiles in R and for conve-
nience, identify T with A by identifying [0, ai] with i. Define a tiling substitution
S in such a way that S([0, aj]) is the partition of λ · [0, aj] into translates of the
intervals corresponding to i1, i2, . . . , imj

, in order, where σ(j) = i1i2 . . . imj
. It

follows that S is a tiling substitution for d = 1 with expansion λ. Thus we can
construct the corresponding substitution tiling dynamical system (XS , T ), and by
Theorem 5.10 there exists a self-similar tiling x0 ∈ XS with Skx0 = x0 for some k.

Those numbers λ that can be obtained as Perron-Frobenius eigenvalues of a
primitive non-negative integer matrix where classified by Doug Lind [Lin84], who
called them Perron numbers. They consist of all positive real algebraic integers λ
such that any Galois conjugate λ′ of λ satisfies |λ′| < λ. Modulo some technicalities,
we have essentially proved the following observation of Thurston.
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Proposition 5.15. (Thurston, [Thu89]) A positive real number λ is the expan-
sion for a self-similar tiling of R (or equivalently a 1-dimensional tiling substitution)
if and only if it is a Perron number.

A similar result holds for d = 2 in the the self-similar case.

Theorem 5.16. (Thurston [Thu89], Kenyon [Ken96]) Given λ ∈ C there is a
primitive 2-dimensional self-similar tiling substitution S = λC and a self similar-
tiling x0 ∈ XS with expansion λ if and only if λ is a complex Perron number:
an algebraic integer λ such that any Galois conjugate λ′ of λ, except possibly the
complex conjugate λ, satisfies |λ′| < |λ|.

We call an expansion L ∈ Gl(d, R) a Perron expansion if its eigenvalues Λ =
{λ1, . . . , λd}, written with multiplicity, satisfy the condition that for every λ ∈ Λ
with multiplicity k, if λ′ is a Galois conjugate of λ with |λ′| > |λ|, then λ′ ∈ Λ with
multiplicity k′ ≥ k. This idea generalizes both real and complex Perron numbers
viewed as expansions of R and C ∼= R2 respectively.

Theorem 5.17. (Kenyon, [Ken90]) If a diagonalizable linear map L ∈ Gl(d, R)
is the expansion for a primitive self-similar tiling substitution S = LC, and Sx0 =
x0 for some x0 ∈ XS, then L is a Perron expansion.

Kenyon [Ken90] claims that the converse is also true.

5.4. Local mappings. Local mappings play much the same role in tiling dy-
namical systems that sliding block codes play in symbolic dynamics. The following
version of the definition comes from [PS01].

Definition 5.18. A continuous mapping between tiling spaces Q : X → Y is
called a local mapping if there is an r > 0 so that for all x ∈ X , Q(x)[{0}] depends
only on x[Br ]. We say Q(x) is locally derivable from x. If Q is invertible, we say
x and Q(x) are mutually locally derivable.

Exercise 8. Show that a local mapping is continuous and T -equivariant (i.e.,
T tQx = QT tx). Moreover, if a local mapping is invertible then its inverse is also a
local mapping. Thus a composition mapping is local.

Now consider two dynamical systems (X, T ) and (Y, T ). A surjective continuous
mapping Q : X → Y so that T tQ = QT t for all t ∈ Rd is called a factor mapping,
and (Y, T ) is called a factor of (X, T ). An invertible factor mapping Q is called
a topological conjugacy. In this case the two dynamical systems are said to be
topologically conjugate.

Lemma 5.19. If Q : X → Y is a surjective local mapping between tiling spaces
then it is a factor mapping between tiling dynamical systems. If Q is invertible then
it is a topological conjugacy.

Example 5.20. (Equivalence of different Penrose tilings). Let XP denote
rhombic Penrose tilings and let let XP1 be the triangular Penrose tilings. Fig-
ure 12 shows how these two types of tilings are mutually locally derivable. Similar
invertible local mappings connect these examples to several other famous types of
Penrose tilings not discussed here (e.g., the “kites and darts” tilings and Penrose’s
original “pentagon” tilings: see [GS87]). It follows that all the various correspond-
ing Penrose tiling dynamical systems are topologically conjugate.
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Figure 12. The local equivalence between rhombic Penrose tilings
and triangular Penrose tilings.

Definition 5.21. A factor mapping Q : X → Y is almost 1:1 if there is a point
y0 ∈ Y so that cardQ−1({y0}) = 1.

The name of this kind of factor comes from the fact that if (Y, T ) is topologically
transitive, then {y ∈ Y : card(Q−1(y)) = 1} is a dense Gδ set.

Now suppose T# is a marked version of a prototile set T (e.g., in the way P is
a marked version of R5). Then the local mapping F that erases or “forgets” the
markings is an example of a local mapping.

Theorem 5.22. (Goodman-Strauss [G-S98]) Suppose (XS , T ) is a self-similar
substitution tiling dynamical system with XS ⊆ XT , for 2-dimensional set T of
prototiles with finite local complexity. Then there exists a marking T# of T , and a

local matching rule T (2)
# such that the forgetful mapping F : XT#

→ XT satisfies

F (XT#
) = XS, and F : XT#

→ XS is almost 1:1.

In most cases this mapping is not invertible (i.e., is not a topological conjugacy).
In the terminology of symbolic dynamics, a non finite type factor of a finite type
tiling dynamical system should be called strictly sofic. It follows that a substitution
tiling space is always sofic and usually strictly sofic. An exception is the following.
Let F : P → R5 be the mapping that erases the arrows defining the Penrose
matching rules. The tilings X = F (XP) ⊆ XR5 are called the unmarked Penrose
tilings.

Theorem 5.23. (de Bruijn [dB81]) The marked Penrose tilings are mutually
locally derivable with the unmarked Penrose tilings.

It is interesting to compare these examples to the the situation for 1-dimensional
symbolic dynamics. In that case, the intersection between substitution dynamical
systems and sofic shifts (or shifts of finite type) consists only of purely periodic
examples.

Remark 5.24. Even though the finite type property is not closed under fac-
torization, it is closed under topological conjugacy. See [RS01] for a proof.

To illustrate one further application of local mappings, we return to the idea
of an imperfect tiling substitution.

Definition 5.25. An imperfect tiling substitution is a mapping S = LC :
XT → XT where L ∈ Gl(d, Z) is expansive and C : XT → XL−1T is a local
mapping. For emphasis, the corresponding tiling dynamical system XS ⊆ XT is
called an imperfect substitution tiling dynamical system .

Note that Examples 4.4 and 4.5 both satisfy this. An imperfect substitution
is invertible if C is an invertible local mapping and it is also possible extend the
notion of primitivity to this case.
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........

Figure 13. Iterating the boundary in the binary tiling decompo-
sition to obtain a perfect decomposition with a fractal boundary.

Theorem 5.26. (Priebe and Solomyak [PS01]) Suppose XS ⊆ XT is a imper-
fect substitution tiling dynamical system with d = 2. Then there is new prototile
set T ′ and a perfect substitution S′ on T ′ so that the substitution tiling dynamical
system XS′ ⊆ XT ′ and XS are topologically conjugate via a local mapping (i.e.,
corresponding tilings are mutually locally derivable).

This theorem is proved using a construction called “iterating the boundary”
which often results in producing fractal tiles. In Figure 13 this idea is illustrated
in the case of the binary tiling system of Example 4.5

Remark 5.27. One way in which tiling dynamical systems differ from discrete
symbolic dynamical systems is the following. The Curtis-Lyndon-Hedlund Theo-
rem [Hed69] says that any factor mapping between discrete symbolic dynamical
systems is implemented by a sliding block code. In tiling dynamical systems the
equivalent question is whether every topological conjugacy is implemented by a
local mapping. i.e., is the converse to Lemma 5.19 true? A negative answer was
provided by Petersen [Pet99] and Radin and Sadun [RS01].

5.5. Incongruent tilings. In the case that x is a periodic tiling one has

O(x) = O(x). In other words there is a single orbit. It follows that, up to translation
or congruence, there is just a single tiling.

Theorem 5.28. If x is a properly repetitive tiling then the number of orbits
in O(x) is uncountable. There are uncountably many incongruent tilings in a local
isomorphism class.

This follows directly form the next lemma, which illustrates the power of simple
topological ideas in this subject.

Proposition 5.29. Suppose (X, T ) is a minimal dynamical system with T an
action of Rd. Let Ω ⊆ X be such that X can be expressed as a disjoint union of
orbits X = ∪x∈ΩO(x). Then either card(Ω) = 1 or card(Ω) > ℵ0.

Proof. If Ω is finite then card(Ω) = 1 since (X, T ) is minimal. Thus we
suppose Ω is infinite.

For x ∈ Ω, write x in terms of its tiles x = {D1, D2, . . . }. Let Vi(x) = {T tx :
0 ∈ T tDi}. Then O(x) = ∪∞

i=1Vi(x) is a countable decomposition of O(x) into
nowhere dense sets (i.e., they have an empty interior). Thus X =

⋃
x∈Ω

⋃∞
i=1 Vi(x).



TILINGS 21

But since X is a compact metric space, it follows from the Baire Category Theorem
(see [Mun75]) that X is not a countable union of nowhere dense sets. This implies
Ω is uncountable. �

Corollary 5.30. (Penrose) In any Penrose tiling space X there are uncount-
ably many incongruent Penrose tilings.

5.6. Quasicrystallography. Let M(d) denote the set of all rigid motions of
Rd (i.e., the set of congruence transformations). Let O(d) be the subgroup of M(d)
fixing the origin. Denote the subgroup of translations in M(d) by Rd.

Suppose x is a periodic tiling. The following ideas are basic to mathematical
crystallography (see [Sen95]). The space group or symmetry group of x is defined
Gx = {M ∈ M(d) : Mx = x}. The translation group Γx is a normal subgroup, and
the quotient Hx = Gx/Γx, called the point group is isomorphic to a finite subgroup
of O(n). The Crystallographic Restriction is the theorem which says that in any
dimension d, there are only finitely many possibilities for Hx. In particular, for
d = 2 no M ∈ Hx can have order 5.

Now we sketch the outlines of a theory of quasicrystallography (see [Rob96b]
for more details). For a tiling x ∈ X define Gx,X = {M ∈ M(d) : Mx ∈ X}.

Lemma 5.31. [Rob96b] If (X, T ) is minimal then Gx,X = Gy,X for all x, y ∈
X.

Exercise 9. Prove lemma 5.31.

In the minimal case, we write GX . It follows that GX is a closed subgroup of
M(d) containing Rd as a normal subgroup. We call GX the quasisymmetry group
and we call the quotient HX = GX/Rd the quasicrystallographic point group. The
algebraic situation is simpler than in the case of symmetry groups. One always has
that GX is a semi-direct product of Rd and HX . In particular, HX is isomorphic
to a closed subgroup of O(d).

Proposition 5.32. For the Penrose tiling space XP , HXP = D10 (the dihedral
group of order 20). For the Pinwheel tiling space X, HX = O(2). Thus HX contains
the circle T as a subgroup.

In fact, one can construct examples X so that HX contains any finite order
rotation. It follows that there is no Crystallographic Restriction for quasicrystals.

6. Applications of ergodic theory

6.1. Measures. Let (X, T ) be a dynamical system. In this section we discuss
the set M(X) of Borel probability measures in X .

Without going into a lot of details (see for example [Wal82]) we mention that a
measure µ ∈ M(X) is a function that assigns a number 0 < µ(E) < 1 to a Borel set
E ⊂ X . One way to interpret µ is as a “probability law” in which µ(E) measures
the probability that a randomly chosen point x ∈ X belongs to E. Borel sets can
be complicated, but include all open sets, closed sets, and most of the other sets
that typically arise in practice. We will assume all sets mentioned are Borel sets.

The integral of a function with respect to a measure µ is denoted
∫

X f(x) dµ.
If we think of f as a random variable on X , then the integral is its expectation.

Of particular interest to us will be T -invariant measures. These are the mea-
sures that satisfy µ(T tE) = µ(E) or f(T tx) dµ =

∫
X f(x) dµ for all t ∈ Rd. We
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denote the set of all invariant measures by M(X, T ). One can show that always
M(X, T ) 6= ∅.

An important feature of measure theory is that a measure µ is completely
determined by its values on a collection of sets smaller than the collection of Borel
sets. For a tiling dynamical system (X, T ), a measure µ ∈ M(X, T ) is determined
by its values on cylinder sets. One can show that there is a function µ0 : T ∗ → R

such that

(6.1) µ(Uy,ε) = µ0(y)Vol(B1)ε
d,

for ε sufficiently small. This generalizes a similar and well known result that holds
for discrete symbolic dynamical systems.

6.2. Unique ergodicity. An invariant measure is said to be ergodic if T tE =
E for all t ∈ Rd implies µ(E) = 0 or µ(E) = 1 (note the similarity to the idea of
minimality). A dynamical system is called uniquely ergodic if M(X, T ) = {µ}. In
this case µ is always an ergodic measure.

Theorem 6.1. If S is a primitive tiling substitution then the corresponding
tiling dynamical system (XS , T ) is uniquely ergodic.

A similar result is well known in the case of discrete substitution systems (see
[Que87]). We will prove Theorem 6.1 below. Later we will also discuss a dif-
ferent kind of uniquely ergodic tiling dynamical system, but first we discuss the
consequences of unique ergodicity.

Uniquely ergodic dynamical systems satisfy the following especially strong ver-
sion of the Ergodic Theorem.

Theorem 6.2. If a dynamical system (X, T ) is uniquely ergodic then for all
complex valued continuous functions f on X

(6.2) lim
t→∞

1

Vol(Bt)

∫

Bt

f(T tx) dt =

∫

X

f(x)dµ,

where the expression on the left, viewed as a function of x, converges uniformly to
the integral the right (a constant). Conversely, if for all continuous f and for all
x, the limit in (6.2) exists, then (X, T ) is uniquely ergodic.

Now let us assume (X, T ) is a minimal uniquely ergodic tiling dynamical system.
Let x ∈ X be a tiling and let y ∈ T ∗ be a patch that occurs in x. We know that
the occurrences of y are relatively dense, but suppose we want a more quantitative
description of this repetitivity. For simplicity we assume, as above, that supp(y)
contains a maximal ball around the origin. Let P (x, y) = {t ∈ Rd : T ty ⊆ x}. Note
that this is a subset of R(x, Uy,ε). Recall that the characteristic function of a set
U is

χU (x) =

{
1 if x ∈ U ,

0 if x 6∈ U .

We have in particular
∫

X
χU (x)dµ = µ(U). It turns out that even though char-

acteristic functions of cylinder sets are not continuous, Theorem 6.2 still holds for
them.
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Corollary 6.3. A tiling dynamical system (X, T ) is uniquely ergodic if and
only if for any x ∈ X and any y ∈ T ∗ the following limit exists:

(6.3) lim
t→∞

1

Vol(Bt)
card(Bt ∩ P (x, y)).

If (X, T ) is uniquely ergodic, then the value of limit (6.3) is µ0(y).

This result explains the combinatorial and geometric meaning of the unique
invariant measure in the uniquely ergodic case: it determines the frequency of all
the different tiling patches y in all the tilings x ∈ X .

In fact, a similar result holds under the weaker assumption that µ ∈ M(X, T ) is
just ergodic. We say x is generic for µ if (6.3) holds. That is, every patch has a well
defined frequency. It follows from the Birkhoff Ergodic Theorem (see [Wal82]) that
µ a.e. x ∈ X is generic. If (X, T ) is not uniquely ergodic, different tilings will be
generic for different ergodic measures. This will result in different patch frequencies
for different tilings. Moreover, by Corollary 6.3 there will always be some tilings
x ∈ X so that the limit (6.3) diverges. In these tilings, certain patches will not
have well defined frequencies.

6.3. Perron Frobenius theory. In this section we present the main part of
the proof of Theorem 6.2. We use a well known argument (see [Que87]) based on
the Perron-Frobenius Theorem to show that in a substitution tiling space, every
prototile occurs in every tiling with a well defined density. Unfortunately this is not
quite enough to prove Theorem 6.2. In the next section we show how to generalize
the idea of a higher block code from symbolic dynamics to tiling spaces, and how
to use this idea to finish the argument.

Theorem 6.4 (Perron-Frobenius Theorem (see [Rue69])). Let A ≥ 0 be a
real square matrix with Ak > 0 for some k ≥ 1. Then there is a simple positive
eigenvalue ω > 0 with ω > |ω′| for all other eigenvalues ω′. Let a and b be the
eigenvectors corresponding to ω for A and AT . Then a,b > 0 and for any v ∈ Rd

(6.4) lim
n→∞

1

ωn
Anv = (b · v)a.

The eigenvalue ω > 0 and eigenvector a > 0 are called the Perron-Frobenius
eigenvalue and Perron-Frobenius eigenvector of A .

Corollary 6.5. let A be the structure matrix for a primitive tiling substitution
S = LC and let ω be the Perron-Frobenius eigenvalue of A. Then ω = det(L).

This is because both ω and det(L) measure how the substitution S expands
volumes.

Corollary 6.6. Let X be a primitive substitution tiling space. For Di ∈ T
let Dn

i = supp(SnDi). Then for any x ∈ X and Di, Dj ∈ T the limit

lim
n→∞

1

Vol(Dn
i )

card(Dn
i ∩ P (x, {Dj}))

exists.

Proof. Since ωn = det(Ln), we have Vol(Dn
i ) = ωnVol(Di). Write di =

Vol(Di). Let An
i,j be the i, jth entry of An. Note that An

i,j is the number of tiles
equivalent to Dj that occur in Sn({Di}), so

(6.5) An
i,j = card(Dn

i ∩ P (x, {Dj}))
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Since An
i,j = ei · (Anej), it follows from (6.4)

lim
n→∞

1

Vol(Dn
i )

card(Dn
i ∩ P (x, {Dj})) = d−1

i lim
n→∞

1

ωn
An

i,j

= d−1
i lim

n→∞
1

ωn
ei · (Anej)

= d−1
i ei ·

(
lim

n→∞
1

ωn
(Anej)

)

= d−1
i (b · ej)(ei · a)

=
aibj

dj
,

where a = (a1, . . . , ad) and b = (b1, . . . , bd). �

With a bit more care one can prove the following refinement of the above.

Corollary 6.7. Let X be a primitive substitution tiling space. Then for any
x ∈ X and D ∈ T the limit

(6.6) lim
r→∞

1

Vol(Br)
card(Br ∩ P (x, {D}))

exists.

6.4. Higher patch tiles. This section discusses a technical result needed to
complete the proof of Theorem 6.1.

Let (X, T ) be a tiling dynamical system X ⊆ XT . Fix r > 0 and let y1, y2, . . . , ym

be the equivalence classes of patches x[Br], x ∈ X . Let

Ei = {t ∈ Rd : x[Br + t] ∼ yi},
where we assume Ei has nonempty interior. Define a new tiling x′ by subdividing
each tile D ∈ x into the smaller tiles D ∩Ei, i = 1, . . . , m. Up to equivalence there
are only finitely prototiles in x′ for all x ∈ X and we denote this new prototile set by
Tr. Moreover, the mapping Hr : XT → XTr

is clearly an invertible decomposition
mapping. It is called higher patch mapping. This is similar to the idea of a higher
block code in symbolic dynamics (see [LM95], [Que87]).

Proposition 6.8. If S is a tiling substitution on XT then Sr = H−1
r SHr is a

tiling substitution on XTr
. If S is primitive then so is Sr.

Theorem 6.1 now follows by applying Proposition 6.8 and Corollary 6.7.

7. Mixing properties

7.1. Mixing and eigenvalues: the geometric interpretation. Let (X, T )
be a dynamical system and µ ∈ M(X, T ). A complex function f ∈ L2(X, µ) is called
an eigenfunction if there exists a corresponding eigenvalue w ∈ Rd such that

(7.1) f(T tx) = e2πi〈t,w〉f(x),

for µ a.e. x. Note that this “eigenvalue” is actually a vector! In Physics this might
be called a “wave vector.”

A constant function f is always an eigenfunction, corresponding to w = 0.
Ergodicity is equivalent to w = 0 being a simple eigenvalue. Moreover, in the
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ergodic case all the eigenvalues are simple, and the set Σ of eigenvalues is a countable
subgroup of Rd (see [Wal82]).

If the only eigenfunctions are constants, then T is said to be weakly mixing. The
opposite situation is called pure discrete spectrum; it occurs when the eigenfunctions
have a dense span in L2(X, µ). An eigenfunction f is continuous if it is equal µ a.e.
to a continuous function.

A dynamical system is called strongly mixing (or just mixing)if for any Borel
sets A and B

(7.2) lim
||t||→∞

µ(T tA ∩ B) = µ(A)µ(B).

A well known theorem (see [Wal82]) says that weak mixing is equivalent to (7.2)
holding except on a set of t of density zero (this set depends on A and B).

Now consider a tiling dynamical system (X, T ). As we will discuss below, the
eigenvalues are related to the the “diffraction” properties of tilings x ∈ X . Heuristi-
cally, such diffraction is caused by constructive reinforcement of waves reflecting off
atoms, usually thought of as being located at the vertices of a tiling. When a tiling
exhibits diffraction it can be interpreted as evidence that the tiling has some sort
of long range spatial order in the arrangement of its tiles. Periodic tilings always
diffract, but as we will see below, so do some properly repetitive tilings.

Conversely, if a tiling system satisfies a mixing property (i.e., a lack of diffrac-
tion) then it indicates that its tilings enjoy some sort of long-range spatial disorder.
Consider, for example, (7.2) applied to a pair of cylinder sets Uε,y1 and Uε,y2 in a
mixing tiling dynamical system (X, T ). For a randomly chosen x ∈ X and for t

sufficiently large, the probability of seeing y1 and T ty2, (up to an ε-translation),
is approximately ε2Vol(B1)

2µ0(y1)µ0(y2). Thus, the knowledge that y1 sits at one
place in x is approximately statistically independent of the knowledge that a copy
of y2 sits at any particular distant location.

7.2. Weakly mixing tiling spaces. There are two known mechanisms for
producing weakly mixing tiling dynamical systems. The first is related to the
algebraic properties of the eigenvalues of the expansion. It generalizes ideas from
the theory of discrete 1-dimensional substitutions.

Let D ∈ T and x ∈ XT . Define

Ξ(x) = {t ∈ Rd : ∃D1, D2 ∈ x, D2 = D1 − t}.
If (X, T ) is a properly minimal tiling dynamical system, then Ξ(x) is the same for
all tilings x ∈ X , and we write Ξ(X). In addition, Ξ(X) satisfies

(7.3) {t/||t|| : t ∈ Ξ(X), t 6= 0} = Sd−1 ⊆ Rd

(see [Sol97], Proof of Theorem 4.4). Note that this is the case when X = XS is a
primitive substitution tiling space.

Theorem 7.1. (Solomyak [Sol97]) A number w ∈ Rd is an eigenvalue for an
invertible primitive self-affine substitution tiling system (XS , T ) with S = LC if
and only if

(7.4) lim
n→∞

e2πi〈Ln
t,w〉 = 1

for all t ∈ Ξ(XS). Moreover, the eigenfunctions can always be chosen to be contin-
uous.
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This is a combination of Theorems 4.3 and 5.1 in [Sol97]. It generalizes a
similar result of Host [Hos86] for 1-dimensional discrete substitutions.

Remark 7.2. In certain non-weakly mixing cases Solomyak [Sol97] describes
some eigenvalues explicitly.

Our interest here is on weak mixing, and for this purpose the beauty of Theo-
rem 7.1 is that it reduces the question to number theory. A real algebraic integer
λ > 1 is called a Pisot number if all of its Galois conjugates λ′ satisfy |λ′| < 1.
Pisot’s Theorem says that a positive real algebraic number λ satisfying e2πiωλn → 1
for some for some ω ∈ R must be a Pisot number (see [Sal63]). A complex Pisot
number is a complex algebraic integer λ all of whose Galois conjugates λ′, except
its complex conjugate, satisfy |λ′| < 1. The following generalization of this idea is
due to Mauduit [Mau89].

Definition 7.3. A set Λ′ = {λ1, . . . , λd′} of distinct algebraic integers with
|λi| ≥ 1 is called a Pisot family if λ′ is Galois conjugate of some λ ∈ Λ′ with λ′ 6∈ Λ′,
then |λ′| < 1. Otherwise Λ′ is called non-Pisot.

A real Pisot number by itself is a Pisot family, as is a complex Pisot number
together with its complex conjugate. The next result generalizes Pisot’s Theorem.

Theorem 7.4. (Mauduit, [Mau89]) If Λ′ = {λ1, . . . , λd′} is set of distinct
algebraic numbers such that

lim
n→∞

e2πi
∑

d′

i=1 vi λn
i = 1

for some8 (v1, . . . , vd′) ∈ (C\{0})d′

, then Λ′ is a Pisot family.

A nonempty set Λ′ of distinct algebraic integers can be written as a disjoint
union

(7.5) Λ′ = Λ1 ∪ Λ2 ∪ · · · ∪ Λ`

where for each i there exists a monic irreducible polynomial pi ∈ Z[t] (the minimal
polynomial) such that pi(λ) = 0 for all λ ∈ Λi.

Definition 7.5. We say Λ′ is totally non-Pisot if each Λi in the decomposition
(7.5) is non-Pisot.

It is clear that a totally non-Pisot family Λ′ is non-Pisot, and moreover, any
nonempty subset Λ′′ ⊆ Λ′ is totally non-Pisot. We call an expansion L totally non-
Pisot if its set Λ′ of eigenvalues, written without multiplicity, is a totally non-Pisot
family.

Theorem 7.6. Suppose S = LC is a primitive invertible tiling substitution such
that the expansion L is diagonalizable and totally non-Pisot. Then the substitution
tiling system (XS , T ) is weakly mixing.

This is essentially due to Solomyak [Sol97], although our formulation is differ-
ent.

8Mauduit [Mau89] proves this for (R\{0})d
′
, but the proof works in the complex case.
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Proof. Let Λ′ = {λ1, . . . , λd′} be the eigenvalues of L, written without multi-

plicity. Then Λ′ is totally non-Pisot. Given t ∈ Rd express t =
∑d′

j=1 Pjt where Pj

is the projection to the eigenspace for λj , parallel to the all the other eigenspaces,

and tj = Pj t ∈ Cd. Then Lnt =
∑d′

j=1 λn
j tj .

Now suppose w 6= 0 is an eigenvalue for (XS , T ). Then by Theorem 7.1 we
have

(7.6) 1 = lim
n→∞

e2πi〈Ln
t,w〉 = lim

n→∞
e2πi

∑ d′

j=1 λn
j 〈tj ,w〉 = lim

n→∞
e2πi

∑ d′

j=1 λn
j 〈t,P∗

j w〉,

where 〈t,w〉 = t · w is the inner product on Cd, and P ∗
j is the complex-conjugate

transpose of Pj .
Let Λ′′(w) = {λj ∈ Λ′ : P ∗

j (w) 6= 0}, and note that Λ′′(w) 6= ∅ since L is

diagonalizable. By (7.3) there exists t ∈ Ξ(X) such that 〈t, P ∗
j w〉 6= 0 for all j

such that λj ∈ Λ′′(w). Applying (7.6), it follows from Theorem 7.4 that Λ′′(w) is
a Pisot family. But since Λ′′(w) ⊆ Λ′, this contradicts the fact that Λ′ is totally
non-Pisot �

Remark 7.7.

(1) Suppose d ≥ 1 and let S = λC be a self-similar tiling substitution with
λ ∈ R. If λ is not real Pisot then (XS , T ) is weakly mixing.

(2) Suppose d = 2 and S = λC, where λ ∈ C\R. If λ is not complex Pisot,
then (XS , T ) is weakly mixing.

(3) In both cases above, for d = 2, the converse is also true, [Sol97].

Corollary 7.8. The binary tiling dynamical system (XSb
, T ) is weakly mix-

ing.

Proof. We use the fact that C2
b (T ) ⊆ λ−2T ∗, λ ∈ R, so that S2

b = λC2
b . The

structure matrix for S2
b is A2, where A =

(
3 1
1 2

)
. Thus, the expansion λ for S2

b is

the Perron-Frobenius eigenvalue λ for A, which is not real Pisot. �

The reader should compare the disordered appearance of binary tilings to the
more regular appearance of the Penrose tilings. As we will see below, Penrose tiling
dynamical systems have pure discrete spectrum.

Remark 7.9. Let S = λC be a tiling substitution with d = 2 and λ ∈ R\C. We
show here that in order to establish that (XS , T ) is weakly mixing it is not sufficient
(i) that |λ| is not real Pisot, nor (ii) that |λ|2 = ω (where ω is the Perron-Frobenius
eigenvector for A) is not real Pisot.

For (i) consider p(t) = t4 + t2 − 1. This has complex Pisot root λ = i
√

τ ,

τ = 1+
√

5
2 , but |λ| =

√
τ is not real Pisot. For (ii) consider q(t) = t3 − t2 + 10t− 5.

This has a complex Pisot root λ, but ω = |λ|2 is a root of r(t) = t3−10t2 +5t−25,
and so is not real Pisot.

Finally, we observe that λ complex Pisot implies that λ is complex Perron.
Thus by Theorem 5.16, in each case above, there exists a tiling substitution S with
expansion λ. The fact that the corresponding substitution tiling system (XS , T ) is
not weakly mixing follows from Remark 7.7, part 3. My thanks to the referee for
providing these two examples (see also [Sol99]).

The second known mechanism responsible for producing weakly mixing tiling
dynamical systems involves quasisymmetry.
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Proposition 7.10. [Rob96b] The group of eigenvalues ΣX of a tiling dynam-
ical system is invariant under the action of the quasicrystallographic point group
HX .

Corollary 7.11. (Radin, [Rad94]) The pinwheel tiling dynamical system is
weakly mixing.

Proof. Let X be the pinwheel tiling space. Then T ⊆ HX . Since ΣX must
be discrete and T-invariant, it follows that ΣX = {0}. �

Remark 7.12. Since the almost 1:1 extension in Theorem 5.22 is always a
metric isomorphism, we can obtain examples (starting e.g. with the binary tilings)
of minimal uniquely ergodic finite type tiling spaces that are weakly mixing. On
the other hand, the next result shows that none of these examples can be strongly
mixing.

Theorem 7.13. (Solomyak, [Sol97]). No self-affine substitution tiling dynam-
ical system (X, T ) can be strongly mixing.

7.3. Diffraction. X-ray diffraction experiments provide a powerful method
for studying the microscopic structure of solids. In particular, quasicrystals were
discovered (see [SBGC84]) as a result of the observations of unusual diffraction
patterns.

Mathematically we model diffraction as follows. A Delone set is a uniformly
discrete and relatively dense subset of Rd (see [Sen95]). Starting with a tiling x,
we let z = v(x) be the Delone set of all its vertex points. We place an “atom” δt,
consisting of a unit atomic measure, at each vertex point t ∈ z. The corresponding
“solid” consists of the measure

(7.7) µx =
∑

t∈v(x)

δt.

The physical diffraction pattern corresponds mathematically to the locations Σ′
x

of the point masses in the Fourier transform µ̂x. There are many technicalities
involving how this is actually computed. For example, one should really compute
the transform of the autocorrelation measure, which is supported on the difference
set z − z of z. We will not discuss these issues here, but rather refer the reader to
[Hof97] for a nice overview. The main result in this area is the following.

Theorem 7.14 ([Dwo93], [Hof97]). Let (X, T ) be a uniquely ergodic tiling
space with eigenvalue set Σ. Then for any x ∈ X, Σ′

x ⊆ Σ.

Because of this result, physicists have been especially interested in tiling dynam-
ical systems with pure discrete spectrum. On the other hand, one would expect
a weakly mixing repetitive tiling (like the binary tiling) to have no spots in its
diffraction pattern. In spite of this, it still seems reasonable to regard this example
as a “quasicrystal”: as we will see in the next section, it has entropy zero.

7.4. Entropy.

Definition 7.15. Let (X, T ) be a tiling dynamical system. For n > 0 the
complexity c(n) of (X, T ) is the number of different equivalence classes of tilings
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x[Bn] for all x ∈ X . The topological entropy is defined as the exponential growth
rate in complexity:

(7.8) h(X) = lim
n→∞

1

nd
Vol(B1)

−1 ln(c(n)).

Nonzero entropy is, in some sense, the ultimate indication of disorder in a dy-
namical system. A tiling whose orbit closure is a positive-entropy tiling dynamical
system should probably be considered too disordered to be regarded as a quasicrys-
tal. Some of the full tiling shifts, discussed above, do have positive entropy. Since
they are topologically transitive, there are tilings among them with a positive en-
tropy orbit closure. However, as expected, most of the tiling dynamical systems
that arise in the study of quasicrystals do indeed have zero entropy.

Theorem 7.16. Suppose X is either (a) a substitution tiling space for a prim-
itive invertible tiling substitution, or (b) a finite type tiling space which is uniquely
ergodic. Then h(X) = 0.

Part (b) is due to Radin [Rad91] in the Zd case and generalized to the case of
tiling dynamical systems by Shieh [Sh]. Part (a) follows from the next theorem.

Theorem 7.17. [HR02] Let (XS , T ) be a substitution tiling space, where S =
LC is primitive and invertible. Suppose L has eigenvalues λ1, . . . , λd where |λd| ≤
|λi| for all i. Let

c =
log | det(L)|

log |λd|
=

log(|λ1| · · · · · |λd|)
log |λd|

.

Then the complexity satisfies

c(n) ≤ K · nc.

for some K > 0. In the self-similar case, |λ1| = · · · = |λd|, so c = d.

The proof follows the dissertation of Clifford Hansen ([Han00]), who studied
the case of discrete multi-dimensional substitutions. It is based on the following
consequence of local finiteness.

Lemma 7.18. Let XT be a finite local complexity tiling space. Given m ≥ 1
there exists a constant J = J(m) > 0 so that for all n sufficiently large

(7.9) #{x ∈ T (m) : x ⊆ y for some y ∈ T (n)} ≤ J · n.

Proof of Theorem 7.17. For Dj ∈ T and v = (1, 1, . . . , 1)t we have #(CpDj) =
(Apv)j , where A is the structure matrix for S. Since S is primitive, the Perron-
Frobenius Theorem implies

lim
p→∞

Apv

ωp
= (b · v)a

def
= r,

where ω > 0 and a,b > 0. Since also v > 0, we have r > 0. Thus there exists N so
that for all sufficiently large p,

(7.10) max
D∈T

#(CpD) ≤ N · ωp.

For p ≥ 0, call a patch y ∈ LpT ∗ a p-basic patch if for some D ∈ y, each
D′ ∈ y satisfies D′ ∩ D 6= ∅. We denote the p-basic patches, up to equivalence, by
yp
1 , . . . , yp

M , where M is independent of p. Then M ′ = max{#(yp
j ) : j = 1, . . . , M}

is also independent of p.
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For a p-basic patch yp
j , we have Cpyp

j ∈ T . Let

(7.11) Mp = max{#(Cpyp
j ) : j = 1, . . . , M}.

Since #(Cpyp
j ) ≤ M ′ · maxD∈T #(CpD), it follows from (7.10) that

(7.12) Mp ≤ M ′N · ωp.

Let δ = max{diam(D) : D ∈ T } and let ε be the maximum of all r > 0 such
that all D ∈ T satisfy Br ⊆ D − s for some s ∈ Rd.

Fix q ≥ (δ + 1)/ε. Then for all n ≥ 1, εqn ≥ n + δ. Define

pn =
log(qn)

log |λd|
.

It follows that

(7.13) ε|λd|pn = εqn ≥ n + δ.

By the choice of δ, Bn+δ ⊇ supp(x[Bn]) for all n > 0 and all x ∈ XS ⊆ XT .
Since S is invertible, one can define a super-tiling C−px ∈ XLpT for any p ≥ 1 and
x ∈ XS . It follows from (7.13) that LpBε ⊇ Bn+δ for all p ≥ pn. Thus for each
x ∈ XS , the patch (C−px)[Bn+δ] is a sub-patch of some p-basic patch T typ

j in the

super-tiling C−px. Hence,

x[Bn] ⊆ x[Bn+δ] = Cp(C−px[Bn+δ]) ⊆ T tCpyp
j .

Now we apply Lemma 7.18, (7.11) and (7.12) to conclude that

c(n) ≤ J · Mp ≤ JM ′N · ωp def
= K ′ · ωp

for all p ≥ pn once n is sufficiently large. In particular, we take n large enough that
(7.10) holds for p = pn. It follows that

c(n) ≤ K ′ωpn = K ′ω
log(qn)
log |λd|

= K ′e
log(ω) log(qn)

log |λd|

= K ′qc · nc

= K · nc,

where K = K ′qc = JM ′Nqc.
�

We conclude with two open problems.

• Can a uniquely ergodic finite type tiling space X be strongly mixing?
• Is there an example of a uniquely ergodic, finite type tiling space that not

an almost 1:1 extension of a substitution tiling space (or, more generally,
that is not a tiling space having some other type of hierarchical structure)?

8. Quasiperiodic tilings and models

In this section we describe the projection method, which is the third general
method (after local matching rules and tiling substitutions) for constructing aperi-
odic tilings. This method also provides an algebraic/geometric model for the tiling
spaces it produces. After describing the projection method, we briefly describe
some other geometric models.
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8.1. Kronecker dynamical systems. Let G be a compact abelian group,
written additively, with normalized Haar measure γ. Suppose there exists an in-
jective continuous homomorphism ι : Rd → G. The continuous γ-preserving Rd

action

(8.1) T tg = ι(t) + g

on G is called a Kronecker dynamical system. Every point in such a dynamical

system is almost periodic. Any coset W = ι(Rd)+g is T -invariant. It follows that,
up to topological conjugacy, (W, T ) is a minimal Kronecker system. Any minimal
Kronecker system is uniquely ergodic (see [Wal82]).

Remark 8.1. By an appropriate choice of ι one can ensure that (W, T ) is
properly minimal.

Every Kronecker system has pure discrete spectrum. The eigenfunctions are

the characters χ ∈ Ĝ of G. In particular, for χ ∈ Ĝ we have χ(ι(t)) ∈ R̂d = Rd,
so there exists w ∈ Rd such that χ(ι(t)) = eπi〈t,w〉, and the set Σ of eigenvalues of
(W, T ) is the set of all such w (see [Wal82] for details).

Two dynamical systems (X, T ) and (Y, T ), preserving measures µ and ν respec-
tively, are said to be metrically isomorphic (see [Wal82]) if there exist T -invariant
subsets X0 ⊆ X and Y0 ⊆ Y with µ(X0) = ν(Y0) = 1, and an invertible measure
preserving Borel mapping Q : X0 → Y0 so that QT = TQ. Metric isomorphism is
the primary notion of isomorphism studied in ergodic theory. If (X, T ) and (Y, S)
are uniquely ergodic then topological conjugacy implies metric isomorphism. Note
that any two metrically isomorphic ergodic dynamical systems must have the same
eigenvalues.

Halmos-von Neumann Theorem. (See [Wal82]) Any dynamical system
with pure discrete spectrum is metrically isomorphic to a Kronecker system. Every
countable subgroup Σ ⊆ Rd is the eigenvalue group for a Kronecker system with Rd

acting.

Remark 8.2. Every Kronecker system has entropy zero (see [Wal82]).

8.2. The projection method. A landmark in the theory of aperiodic tilings
is de Bruijn’s algebraic theory of Penrose tilings [dB81]. Originally, this theory
described Penrose tilings as being dual (in the sense of graph theory) to so-called
“grid” tilings. The generalization of this idea is called the grid method, and the
tilings it produces are called quasiperiodic tilings. There are two alternate equivalent
constructions of quasiperiodic tilings, mostly developed by physicists: the projection
method and the cut method (see [ODK88]). Here we discuss the projection method
because it is conceptually the simplest.

Let E‖ be a d-dimensional subspace of Rn and let ι : Rn → E‖ be an isometric
isomorphism. Let E⊥ be the perpendicular subspace, so that Rn = E‖ ⊕ E⊥.
Denote the projections to these two subspaces by π‖ and π⊥. Consider the integer
lattice Zn ⊆ Rn. Let W0 be the closure of ι(Rd) in Tn = Rn/Zn and let W0 + g,
g ∈ E⊥, be an arbitrary coset. The tiling systems we will construct is closely
related to the Kronecker system (W0, T ).

Let K ⊆ E⊥ be compact with a Lebesgue measure zero boundary and a
nonempty interior. Let SK = K + E‖. For s ∈ Rd let

zs = (ι−1π‖)(SK ∩ (Zn + s)) ⊆ Rd.
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Note that zs = zs′ if s − s′ ∈ Zd. Thus we can index using s ∈ Tn = Rn/Zn, and
this makes the mapping s 7→ zs 1:1.

The set zs is a Delone set. It is possible to topologize the collection of all
Delone sets (using something similar to a tiling metric) in such a way that the set
{zs : s ∈ Tn} is homeomorphic to Tn. We also have zT ts = T tzs, so in fact s 7→ zs

is a topological conjugacy.
We call s ∈ Tn regular if ∂(SK) ∩ (Zn + s) = ∅. Let Tn

0 denote the set of all
regular points in Tn, and note that Tn

0 has full Lebesgue measure. In many cases
it will turn out that the points in zs are the vertices of a tiling x of Rd. Let us now
specialize to such a situation.

Let d = 2 and consider the full tiling space XRn
, n ≥ 4, from Example 2.6.

Let K = π⊥(Q) where Q = {q ∈ Rn : 0 ≤ qi ≤ 1} is the unit cube. Let s be as in
Example 2.6, and let B be matrix having the vectors vk as rows. Define ι(t) = Bt.

Proposition 8.3 (de Bruijn, [dB81]). For each s ∈ Tn
0 there exists a tiling

x ∈ XRn
with v(x) = zs, i.e., x has the Delone set zs as its vertex points.

In addition, de Bruijn [dB81] showed that the non-regular points in Tn cor-
respond to more than one tiling (but always a finite number). Moreover, each of
these tilings can be obtained as a limit of the regular cases. This result can be
made into a statement about tiling dynamical systems as follows:

Theorem 8.4. [Rob96b] Let W = ι(R2) + g for g ∈ W⊥. For s ∈ W ∩ Tn
0

define x = H(s) ∈ XRn
to be the tiling with vertex set v(x) = zs. Then

X = H(W ∩ Tn
0 )

is a tiling space that is minimal and uniquely ergodic. Moreover, H−1 extends to
a continuous mapping P : X → W which is an almost 1:1 factor mapping and a
metric isomorphism.

In the case where ι is chosen so that (W, T ) is properly minimal, each tiling
x ∈ X will be aperiodic (i.e., properly repetitive). The tilings x ∈ X are called
quasiperiodic tilings and (X, T ) is called a quasiperiodic tiling dynamical system.

Corollary 8.5. Every quasiperiodic tiling dynamical system (X, T ) is prop-
erly minimal, uniquely ergodic and contains uncountably many incongruent tilings.
Moreover, it has an almost 1:1 Kronecker system factor (W, T ), to which it is met-
rically isomorphic. It thus has pure discrete spectrum and entropy zero.

It is possible to find explicitly the set Σ for these quasiperiodic tiling dynamical
systems (see [Rob96a]). In particular,

Σ = BtZn = {
n∑

j=1

njvj : nj ∈ N}.

When d = 2 and n = 2m we have ι(R2) = Tn. The case n = 4 gives a well
known example called the octagonal or Ammann-Beenker tilings. Like the Penrose
tilings, the Amman-Beenker tilings can also be generated by a local matching rule
and by a tiling substitution (see [Sen95] for details).

In the case that d = 2 and n = p is an odd prime, ι(R2) ∼= Tp−1. Here E⊥ is
the 1-dimensional subspace generated by (1, 1, . . . , 1), and Tn = W ⊕ W⊥ where
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Figure 14. A patch of Ammann-Beenker tiling.

W⊥ = E⊥/Z2 ∼= T. let us define ϕ : Tn → W⊥ by ϕ(s) = s1 + s2 + · · · + sn

mod 1. For 0 ≤ t ≤ 1, we define

Xn,t = H((W + ϕ−1(t)) ∩ Tn
0 ) ⊆ XRn

.

We can now state de Bruijn’s remarkable algebraic structure theorem for Penrose
tilings.

Theorem 8.6. (de Bruijn [dB81]) X5,0 is the precisely the set F (XP) of un-
marked Penrose tilings.

Corollary 8.7. [Rob96a] The Penrose tiling dynamical system (XP , T ) has
pure discrete spectrum, with an almost 1:1 Kronecker factor T on the 4-torus T4.
The eigenvalue group Σp is the subgroup of R2 is generated by the “5th roots of
unity” v0, . . . ,v4.

Remark 8.8. In a slight abuse of notation we write Σp = Z[e2πi/5] ⊆ R2.

The tilings on which the factor map P : X0,5 → T5 fails to be 1:1 are a well
known special class Penrose tilings. In particular, P is 2:1 on the Penrose tilings
that contain infinite worms, and P is 10:1 on the various cartwheel tilings. In
particular, P (x) = 0 for the cartwheel tilings x centered at the origin. See [GS87]
for the geometric description of these special Penrose tilings. Similar results hold
for all other classes of quasiperiodic tilings.

The cases X5,t for t 6= 0, are called generalized Penrose tilings. All the gen-
eralized Penrose tiling dynamical systems have pure discrete spectrum and they
all have the eigenvalue group Σ = Z[e2πi/5], which they share with the true Pen-
rose tilings. Thus, by the Halmos von Neumann Theorem, all the corresponding
tiling dynamical systems are metrically isomorphic. However, one can also show
(see [Rob96a], [Le97]) that in some cases they are not topologically conjugate.
This illustrates the interesting fact that ergodic theory and topological dynamics
sometimes provide different invariants when applied to tiling theory.
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Exercise 10. Show that the point groups satisfy HX5,t
= D10 only if t = 0 or

t = 1/2, and otherwise HX5,t
= D5.

Remark 8.9. A Sturmian shift dynamical system is a symbolic dynamical sys-
tem obtained by coding an irrational rotation on the circle using a partition into two
intervals (see [Ber00]). Consider the partition η of a quasiperiodic tiling space X
according to which prototile contains the origin. The factor mapping P : X → W
pushes η forward into a partition on W . We can recover the tilings by seeing how
this partition tiles the orbits of R2 in W . In this way, quasiperiodic tiling dynamical
systems generalize the idea of Sturmian systems.

8.3. Quasiperiodicity and the finite type property. An interesting gen-
eral question concerns the relation between quasiperiodic tilings and the finite type
property. Such questions were studied primarily by researchers interested in qua-
sicrystals. See [Le97] for a good survey with complete references. Here, we discuss
mainly the case of generalized Penrose tilings.

Theorem 8.10. [Le95] Let τ = 1+
√

5
2 .

(1) The tiling space X5,t is a finite type tiling space if and only if t ∈ Z[τ ].
(2) There exists a finite type tiling space XT#

by a marked version T# of the
tiles R5 so that the forgetful mapping F : XT#

→ X5,t is an almost 1:1
factor if and only if t ∈ Q(τ). If t ∈ Q(τ)\Z[τ ] then F is not a topological
conjugacy; such examples are strictly sofic.

Remark 8.11. One should compare this with Theorem 5.22.

Remark 8.12. In general, a necessary condition for a quasiperiodic tiling sys-
tem to be finite type or sofic is that the “slope” of E‖ must be algebraic (in a certain
precise sense). Thus sofic examples are very special (see [Le97]).

Remark 8.13. It seems to be still unknown exactly which quasiperiodic tiling
systems are substitution tiling systems, and vice versa.

8.4. Algebraic and geometric models. The subspace E⊥ in the definition
of quasiperiodic tiling dynamical systems can be replaced by an arbitrary locally
compact abelian group. In this case one obtains more general Delone sets called
model sets. Such sets can be studied without the benefit of tilings or even dynamical
systems theory. However, one can show that quite generally, the corresponding
tiling dynamical systems have almost 1:1 Kronecker factors, defined on more general
groups than tori. The chair tiling dynamical system can be obtained this way. (See
[BMS98] for a discussion of this point of view.)

Alternatively, one can ask, given a tiling dynamical system (X, T ), whether
there is a “classical” dynamical system that is its almost 1:1 factor. We refer to
such a factor as an algebraic/geometric model for the tiling system. For example
the Penrose tilings are modeled by T4. Here is another example.

Let G be the locally compact group whose dual Ĝ is the group Z[ 12 ] ⊕ Z[12 ] of

dyadic rational vectors in R2. By Halmos-von Neumann theory, there is a unique
minimal Kronecker R2 action T on G with Σ = Z[ 12 ]⊕Z[ 12 ] (this Kronecker system

is called the R2-adding machine in [Rob99]).

Theorem 8.14. [Rob99] The chair tiling dynamical system (XSc
, T ) has (G, T )

as an almost 1:1 factor. Thus it has pure discrete spectrum with Σ = Ĝ. The table



TILINGS 35

tiling dynamical system (XSt
, T ) has (G, T ) as an almost 4:1 factor. The table

system has precisely the same eigenvalues Σ as the chair, and thus is not weakly
mixing. However, the table tiling system also does not have pure discrete spectrum;
it has mixed spectrum.

Remark 8.15. The spectral properties of the table and chair were first com-
puted in [Sol97], where it was observed that the table system is similar to the well
known discrete Morse sequence substitution dynamical system (see [Que87]).

In the chair (or the table), the points where the factor mapping P fails either
to be 1:1 (or 4:1) can be completely classified (see [Rob99]). In particular, chair
tilings can have worms and cartwheels very similar to the ones that occur in Penrose
tilings. The proofs in [Rob99] are completely general and show that similar results
hold for all polyomino substitutions. In particular, there is an easy criterion for
pure discrete spectrum. This turns out to be equivalent to the idea of “coincidence”
in the theory of substitutions, and to the idea of “synchronizing” or “magic” words
in the theory of discrete 1-dimensional finite type shifts (see [Rob99]).

Remark 8.16. Solomyak [Sol97] defines a more general notion of coincidence,
and uses it to prove that some examples (e.g., chair tiling systems) have pure
discrete spectrum.

Models based on Kronecker systems won’t work for weakly mixing examples
because weak mixing implies the absence of nontrivial eigenvalues. Thus we ask,
what could a model for a weakly mixing tiling dynamical system possibly look like?

8.5. The dynamics of the substitution map and Markov partitions.

Before describing an example of a model for a weakly mixing tiling dynamical sys-
tem, we consider the dynamical properties of the action of an invertible substitution
mapping S acting on a tiling space XS .

Theorem 8.17. [Rob96a] The Penrose substitution S on the set XP of Pen-
rose tilings has the hyperbolic toral automorphism

A =




0 1 −1 0
1 0 0 −1
0 1 −1 −1
1 0 −1 −1




acting on T4 as is an almost 1:1 factor.

Similarly, one can show that the chair tiling dynamical system has a “hyper-
bolic” automorphism of G as an almost 1:1 factor. These examples illustrate that
tiling substitutions S tend to be hyperbolic.

In [AP98] it is shown that the action S of a tiling substitution on XS (i.e., the
dynamical system (XS , S)) is always a kind of generalized hyperbolic system called
a Smale space. If the substitution S is based on a perfect decomposition, then
then the tilings induce a partition on XS (according to which prototile occurs at
the origin). The perfect decomposition property implies this partition is a Markov
partition (see [Bow78]). Conversely, if a Smale space has a Markov partition whose
partition elements are connected, then the partition induces tilings on the stable
manifolds, and these tilings are self-affine.

Connectedness is needed because our definition of tilings requires connected
tiles. Unfortunately, it is unknown whether every hyperbolic toral automorphism
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has a Markov partition with connected partition elements. However, some partial
results appear in [FI98].

Remark 8.18. It is known that for all Markov partitions for hyperbolic toral
automorphisms of T3 (see [Bow78]) and for typical hyperbolic toral automorphisms
of Tn, n > 3, (see [Caw91]) the boundaries of partition elements must be fractal.
This implies that self-affine quasiperiodic tilings satisfying a perfect decomposition
will almost always have tiles with fractal boundaries.

8.6. A geometric model for a weakly mixing system. The example dis-
cussed in this section is based on a kind of hyperbolic dynamical system J called
a pseudo-Anosov diffeomorphism (see [FS79]). In this example, J is defined on a
surface M of genus 2. Pseudo-Anosov diffeomorphisms always have Markov parti-
tions, and we obtain self-similar tilings, as in the previous section, by intersecting
the Markov elements partition with the unstable manifolds for J . Since for almost
every point m ∈ M , the stable manifold through m is homeomorphic to R, this
example consists of 1-dimensional tilings. See [Fit98] or [FHR00] for details.

Consider the discrete substitution σ given by

1 → 1424

2 → 142424

3 → 14334(8.2)

4 → 1434.

The structure matrix for this substitution is

A =




1 1 1 1
1 2 0 0
0 0 2 1
2 3 2 2


 ,

which has the non-Pisot Perron-Frobenius eigenvalue λ = 1
4 (7+

√
5+

√
2
√

19 + 7
√

5).
Following example 5.14, we construct the corresponding 1-dimensional tiling sub-
stitution S with expansion λ. It follows from Theorem 7.6 that (XS , T ) is weakly
mixing.

Theorem 8.19. [FHR00] Let XS be the tiling space corresponding to the tiling
substitution S in described above. Then (XS , S) has an almost 1:1 factor that is a
pseudo-Anosov diffeomorphism (M, J) on a surface M of genus 2.

The corresponding tiling dynamical system (XS , T ) is metrically isomorphic
a unit speed flow along the unstable manifolds of (M, J). Since not all the sta-
ble manifolds are homeomorphic to R, this flow is not defined everywhere on M .
However, after removing a “singular set” of measure zero, one can show that this
flow is metrically isomorphic to a suspension of a self-inducing interval exchange
transformation of four intervals (see [FHR00]).

Remark 8.20. One can obtain a 2-dimensional weakly mixing example by
taking the Cartesian square. The geometric model for such an example is a 4-
manifold. By Theorem 5.22, this 2-dimensional tiling dynamical system has the
property that it is an almost 1:1 factor of a weakly mixing finite type tiling system.
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