

Piotr Ludwik Grabowski ©

EMERITUS PROFESSOR OF

THE AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Kraków, Poland

pgrab@agh.edu.pl

grabeagn.euu.pr

AFA Seminar, 11th and 25th January, 15th November 2023.

Last opening or modification: November 9, 2023 at 14:28

Abstract

This presentation contains a survey of selected papers on admissibility of observation operators as well as some new criteria ensuring admissibility.

The results are illustrated by some comparative examples.

1 Introduction

The contents of this section has been presented previously, see also (Grabowski, 2021, Sections 2 and the beginning of Section 3) or (Grabowski, 2022, pp. 350-370).

Consider a class of control systems with observation governed by

the model in factor form

$$\begin{cases} \dot{x}(t) = \mathcal{A} \left[x(t) + \mathcal{D} u(t) \right] \\ x(0) = x_0 \\ y(t) = \mathcal{C} x(t) \end{cases}$$
, (1.1)

where the linear *state operator* $\mathcal{A} : (D(\mathcal{A}) \subset H) \longrightarrow H$ acts on a Hilbert *state space* H with scalar product $\langle \cdot, \cdot \rangle_H$ and is invertible with $\mathcal{A}^{-1} \in \mathbf{L}(H)$.

 $C : (D(C) \subset H) \longrightarrow Y$ is an *observation (output) operator*, such that $D(A) \subset D(C)$ and $H := CA^{-1} \in L(H, Y)^a$. Here Y denotes an *output space* which is a Hilbert space with scalar product $\langle \cdot, \cdot \rangle_Y$.

 $\mathcal{D} \in \mathbf{L}(\mathbf{U},\mathbf{H})$ with range $R(\mathcal{D}) \subset D(\mathcal{C})$, $\mathcal{CD} \in \mathbf{L}(\mathbf{U},\mathbf{Y})$ is a *factor control operator* and U stands for a space of controls which is also a

^aSince \mathcal{A} is boundedly invertible the norms $||\mathcal{A}x||_{\mathrm{H}}$, $||x||_{\mathrm{H}} + ||\mathcal{A}x||_{\mathrm{H}}$ are equivalent, whence without loss of generality: $\mathcal{C} = H\mathcal{A}$, $H \in \mathbf{L}(\mathrm{H}, \mathrm{Y})$.

Hilbert space with scalar product $\langle \cdot, \cdot \rangle_U$.

The function

$$G(s) = \mathcal{C}\mathcal{A}(sI - \mathcal{A})^{-1}\mathcal{D} = s\mathcal{C}(sI - \mathcal{A})^{-1}\mathcal{D} - \mathcal{C}\mathcal{D}, \quad s \in \rho(\mathcal{A})$$

is call the *transfer function* of the system (1.1).

1.1 Semigroups and state operators

Definition 1.1. A family $\{S(t)\}_{t\geq 0} \subset L(H)$ is a C₀-semigroup on H if (i) S(0) = I, $S(t + \tau) = S(t)S(\tau)$ for $t, \tau \geq 0$ and (ii) $S(t)x_0 \rightarrow x_0$ as $t \rightarrow 0$ for every $x_0 \in H$.

 ${S(t)}_{t\geq 0}$ is *uniformly bounded* if there exist $M \geq 1$ such that

$$\|S(t)x_0\|_{\mathcal{H}} \le M \qquad \forall t \ge 0. \tag{1.2}$$

 ${S(t)}_{t\geq 0}$ is asymptotically stable (**AS**) if $||S(t)x_0||_{H} \longrightarrow 0$ as $t \to \infty$,

 $x_0 \in H.$

 ${S(t)}_{t\geq 0}$ is *exponentially stable* (**EXS**) if there exist $M \geq 1$, $\alpha > 0$ such that

$$\|S(t)\|_{\mathbf{L}(\mathbf{H})} \le M e^{-\alpha t} \qquad \forall t \ge 0.$$
(1.3)

The *generator* of a C₀ semigroup $\{S(t)\}_{t\geq 0}$ is defined by

$$\mathcal{A}x_{0} = \lim_{h \to 0} \frac{1}{h} [S(h)x_{0} - x_{0}],$$
$$D(\mathcal{A}) = \{x_{0} \in \mathbf{H} : \exists \lim_{h \to 0} \frac{1}{h} [S(h)x_{0} - x_{0}]\}.$$

Theorem 1.1 (Hille–Phillips–Yosida). A linear operator $\mathcal{A} : (D(\mathcal{A}) \subset H) \longrightarrow H$ generates C_0 –semigroup $\{S(t)\}_{t \ge 0}$ satisfying the growth estimate $\|S(t)\|_{L(H)} \le Me^{\omega t}$ for $t \ge 0$ and some $M \ge 1, \omega \in \mathbb{R}$ (by the principle of boundedness every C_0 –semigroups satisfies this estimate) iff \mathcal{A} is closed densely defined and its resolvent $(sI - A)^{-1}$ satisfies the estimate

$$\|(sI - \mathcal{A})^{-n}\|_{\mathbf{L}(\mathbf{H})} \le \frac{M}{(s - \omega)^n} \qquad \forall s > \omega, \quad \forall n \in \mathbb{N}$$

For a good sufficient generation criterion – see (Walker, 1980). **Theorem 1.2** (Walker). Let H be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle_{\text{H}}$. Assume that $\mathcal{A} : (D(\mathcal{A}) \subset \text{H}) \longrightarrow \text{H}$ is a linear operator for which the following conditions holds:

- (i) there exists $\lambda_0 > 0$ such that $\mathcal{R}(\lambda I \mathcal{A}) = H$ for $\lambda > \lambda_0$,
- (ii) there exist $\omega \in \mathbb{R}$ and an *equivalent* scalar product $\langle \cdot, \cdot \rangle_e$ in H such that \mathcal{A} is ω -dissipative with respect to $\langle \cdot, \cdot \rangle_e$, i.e.,

$$\langle \mathcal{A}x, x \rangle_e + \langle x, \mathcal{A}x \rangle_e \leq 2\omega \|x\|_e^2 \qquad \forall x \in D(\mathcal{A}).$$

Then A generates C_0 -semigroup $\{S(t)\}_{t\geq 0}$ on H satisfying the

estimate

 $\|S(t)x\|_{e} \le e^{\omega t} \|x\|_{e} \qquad \forall t \ge 0 \quad \forall x \in \mathbf{H}.$ (1.4)

Theorem 1.3 (Prüss-Huang-Weiss). A C₀ – semigroup generated by \mathcal{A} is **EXS** iff $s \mapsto (sI - \mathcal{A})^{-1}$ is in the Hardy class $\mathrm{H}^{\infty}(\mathbb{C}^+, \mathbf{L}(\mathrm{H})), \mathbb{C}^+ = \{s \in \mathbb{C} : \operatorname{Re} s > 0\}.$

In a Hilbert space H: \mathcal{A} generates a semigroup $\{S(t)\}_{t\geq 0}/\mathsf{EXS}$ iff \mathcal{A}^* generates semigroup $\{S^*(t)\}_{t\geq 0}/\mathsf{EXS}$. Then H and \mathcal{A} are called the *state space* and *state operators*, respectively.

The resolvent $s \mapsto (sI - A)^{-1}x_0$ is the *Laplace transform* of $t \mapsto S(t)x_0$. In particular, if $\{S(t)\}_{t\geq 0}$ is **EXS** then, by (1.3), the half-plane $\{s \in \mathbb{C} : \operatorname{Re} s > -\alpha\}$ is contained in $\rho(A)$ – the resolvent set of A which, in particular, implies that A is invertible with $A^{-1} \in \mathbf{L}(\mathbf{H})$.

Definition 1.2. Let $x_0 \in H$ and $u \in L^2(0, \infty; U)$. A continuous vector valued function $t \mapsto x(t) \in H$ is called a *weak solution* of (1.1)

if $x(0) = x_0$ and x satisfies (1.1) in a *weak sense*, i.e., the function $t \mapsto \langle x(t), w \rangle_H$ is absolutely continuous and for almost all $t \ge 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle x(t),w\rangle_{\mathrm{H}} = \langle x(t),\mathcal{A}^*w\rangle_{\mathrm{H}} + \langle \mathcal{D}u(t),\mathcal{A}^*w\rangle_{\mathrm{H}}, \quad w \in D(\mathcal{A}^*).$$

Theorem 1.4 (Ball). A linear operator \mathcal{A} generates a C₀–semigroup $\{S(t)\}_{t\geq 0}$ on H iff \mathcal{A} is closed densely defined and for each $x_0 \in H$ there exists a unique weak solution of (1.1) with $\mathcal{D} = 0$ and $\mathcal{C} = 0$.

It is known that if X is a Hilbert space then

$$\mathcal{L}_{\mathbf{X}}f = f', \quad D(\mathcal{L}_{\mathbf{X}}) = \mathbf{W}^{1,2}([0,\infty);\mathbf{X}) := \left\{ f \in \mathbf{L}^2(0,\infty;\mathbf{X}) : f' \in \mathbf{L}^2(0,\infty;\mathbf{X}) \right\} \subset \mathbf{C}([0,\infty);\mathbf{X})$$

generates the C₀-semigroup $\{T_X(t)\}_{t>0}$ of *left-shifts* on L²(0, ∞ ; X),

$$(T_X(t)f)(\tau) := f(t+\tau), \qquad t \ge 0,$$

whilst its adjoint $\mathcal{L}_X^* := \mathcal{R}_X$,

$$\mathcal{R}_{X}f = -f', \quad D(\mathcal{R}_{X}) = W_{0}^{1,2}([0,\infty);X)$$
$$W_{0}^{1,2}([0,\infty);X) := \left\{ f \in W^{1,2}([0,\infty);X) : f(0) = 0 \right\}$$

generates adjoint C₀-semigroup of *right-shifts* on $L^2(0, \infty; X)$,

$$(T_{X}^{*}(t)f)(\tau) := \left\{ \begin{array}{ccc} f(\tau - t) & \text{if} & \tau \ge t \\ 0 & \text{if} & 0 \le \tau < t \end{array} \right\}, \ t \ge 0.$$
(1.5)

1.2 Admissible observation operators

Define $\mathcal{Z} \in \mathbf{L}(\mathbf{H}, \mathbf{L}^2(0, \infty; \mathbf{Y})),$ $(\mathcal{Z}x_0)(t) := HS(t)x_0 \quad \left[\Leftrightarrow \mathcal{Z}^* f = \int_0^\infty S^*(t) H^* f(t) dt \right].$

The operator, called the *observability map*,

$$\Psi := \mathcal{L}_{Y}\mathcal{Z}, \qquad D(\Psi) = \{x \in H : \mathcal{Z}x \in D(\mathcal{L}_{Y})\}$$

is closed and densely defined, with $\Psi|_{D(A)} = \mathcal{Z}A$, and therefore it has closed and densely defined adjoint operator

$$\Psi^* = \mathcal{A}^* \mathcal{Z}^*, \quad D(\Psi^*) = \{ y \in L^2(0, \infty; Y) : \mathcal{Z}^* y \in D(\mathcal{A}^*) \},\$$

and $\Psi^*|_{D(\mathcal{R}_Y)} = \mathcal{Z}^*\mathcal{R}_Y.$

Definition 1.3. C is an admissible *observation (output) operator*^b if $\Psi \in L(H, L^2(0, \infty; Y)).$

Here $\Psi \in L(H, L^2(0, \infty; Y))$ can be replaced by Ψ is bounded or, by the closed graph theorem, $R(\mathcal{Z}) \subset D(\mathcal{L}_Y)$).

Lemma 1.1. If C is admissible then Ψ is also a linear densely

^bTo be more precise *infinite–time admissible*. It is shown in (Grabowski, 1995, Lemma 1.1) that *finite–time admissibility* is an equivalent concept under the assumption of **EXS**.

defined and *bounded* operator from H into $L^1(0, \infty; Y)$.

This result is proved in (Grabowski, 2007, Lemma 2.1).

1.3 Admissible control operators

Define $\mathcal{W} \in L(L^2(0,\infty;U),H)$

$$\mathcal{W}f := \int_0^\infty S(t)\mathcal{D}f(t)dt \quad \left[\Leftrightarrow \left(\mathcal{W}^* x_0 \right)(t) = \mathcal{D}^* S^*(t) x_0 \right].$$

The operator, called the *reachability map*,

$$\mathbf{\Phi} := \mathcal{AW}, \ D(\mathbf{\Phi}) = \{ u \in L^2(0, \infty; \mathbf{U}) : \mathcal{W}u \in D(\mathcal{A}) \}$$

is closed and densely defined, with $\Phi|_{D(\mathcal{R}_U)} = \mathcal{W}\mathcal{R}_U$, and therefore it has closed and densely defined adjoint operator

$$\mathbf{\Phi}^* = \mathcal{L}_{\mathbf{Y}} \mathcal{W}^*, \ D(\mathbf{\Phi}) = \{ x \in \mathbf{H} : \ \mathcal{W}^* x \in D(\mathcal{L}_{\mathbf{U}}) \},\$$

with $\Phi^*|_{D(\mathcal{A}^*)} = \mathcal{W}^*\mathcal{A}^*$.

Definition 1.4. \mathcal{D} is an admissible *factor control operator* if $\Phi \in L(L^2(0,\infty;U),H)$.

Here $\Phi \in L(L^2(0, \infty; U), H)$ can be replaced by Φ is bounded or, by the closed graph theorem, $R(W) \subset D(A)$.

Using duality arguments, we can state the following result (Grabowski and Callier, 1999).

Lemma 1.2. \mathcal{D} is an admissible factor control operator iff $\mathcal{D}^* \mathcal{A}^*$ is an admissible observation operator with respect to the semigroup $\{S^*(t)\}_{t\geq 0}$.

2 Lyapunov criterion of admissibility

This criterion has been proposed and developed in (Grabowski, 1983a,b, 1990, 1991, 1997, 1999, 2022) especially for a class of time–delay systems of neutral type.

Theorem 2.1. C is admissible iff there exists $\mathcal{H} = \mathcal{H}^* \in L(H)$, $\mathcal{H} \ge 0$, and \mathcal{H} satisfies the *Lyapunov operator equation*^c

 $\langle \mathcal{A}x, \mathcal{H}z \rangle_{\mathrm{H}} + \langle x, \mathcal{H}\mathcal{A}z \rangle_{\mathrm{H}} = -\langle \mathcal{C}x, \mathcal{C}z \rangle_{\mathrm{Y}} \qquad \forall x, z \in D(\mathcal{A})$ (2.1)

If the solution to (2.1) is unique then it is called the *Gramian of observability* with infinite horizon of observation.

Theorem 2.2. Let C be admissible. If the semigroup $\{S(t)\}_{t\geq 0}$ is **AS** then (2.1) has the unique solution.

Definition 2.1. Let H₁ and H₂ be Hilbert spaces with scalar

^cIf, in addition, C is *closed* then C has closed densely defined adjoint operator C^* and we have $\mathcal{H}D(\mathcal{A}) \subset D(\mathcal{A}^*)$ while (2.1) reduces to $\mathcal{A}^*\mathcal{H}z + \mathcal{H}\mathcal{A}z = -C^*Cz$. products $\langle \cdot, \cdot \rangle_{H_1}$, $\langle \cdot, \cdot \rangle_{H_2}$, respectively. An operator $\mathcal{T} \in \mathbf{L}(H_1, H_2)$ is called a *compact operator* if $\langle f_n, g \rangle_{H_1} \longrightarrow \langle f, g \rangle_{H_1}$ for all $g \in H_1$ implies $\|\mathcal{T}f_n - \mathcal{T}f\|_{H_2} \longrightarrow 0$ as $n \to \infty$. \mathcal{T} is called a *Hilbert–Schmidt* operator (**HS**) if there exists (equivalently, for every) ONB $\{e_k\}_{k \in \mathbb{N}}$ in H_1 such that $\sum_{k=1}^{\infty} \|\mathcal{T}e_k\|_{H_2}^2 < \infty$ (the sum does not depend on a choice of ONB). \mathcal{T} is called a *nuclear* operator if for any ONBs $\{e_k\}_{k \in \mathbb{N}}$ in H_1 and $\{f_k\}_{k \in \mathbb{N}}$ in H_2 there holds $\sum_{k=1}^{\infty} |\langle \mathcal{T}e_k, f_k \rangle_{H_2}| < \infty$.

It can be shown with an aid of the Cauchy–Schwarz inequality that any nuclear operator is a **HS** operator and that a composition of any two **HS** operators is a nuclear operator (it is less obvious that conversely, every nuclear operator is a composition of two **HS** operators). **Theorem 2.3.** Suppose that $Y = \mathbb{R}$ and C is such that the estimate $|CS(t)x_0| \le k(t) ||x_0||_H$ $\forall x_0 \in D(\mathcal{A})$ and almost all $t \ge 0$ (2.2) holds for some $k \in L^2(0, \infty)$. Then (2.1) has a solution $\mathcal{H} \in L(H)$,

with $\mathcal{H} = \mathcal{H}^*$ and $\mathcal{H} \ge 0$, and \mathcal{H} is a nuclear operator.

3 To be presented

- 1. Translation semigroups on a finite space interval
- 2. Time-delay systems I
- 3. Spectral criterion of admissibility
- 4. Time-delay systems II

References

GRABOWSKI P., A Lyapunov functional approach to a parametric optimization problem for a class of infinite-dimensional control systems. ELEKTROTECHNIKA, 2 (1983). No. 3. pp. 207-232. http://home.agh.edu.pl~pgrab/grabowski_files/ mypublications/elektrotechnika1983.pdf

GRABOWSKI P., The Lyapunov operator equation with unbounded operators. 3rd International Conference on Functional–Differential Systems and Related Topics. Błażejewko, 1983. Higher College of Engineering. Zielona Góra, 1983, pp. 105-112. MR0788913. http://home.agh.edu.pl/~pgrab/grabowski_files/ mypublications/blazejewko1983.pdf

GRABOWSKI P., On spectral – Lyapunov approach to parametric optimization of distributed parameter systems, IMA JOURNAL of

MATHEMATICAL CONTROL and INFORMATION. 1990. 7. 4. 317-338.

GRABOWSKI P., Spectral and Lyapunov methods in the analysis of infinite–dimensional feedback systems. ZESZYTY NAUKOWE AGH. AUTOMATYKA, **58** (1991), pp. 1-190 (in Polish).

GRABOWSKI P. *Admissibility of observation functionals*. INTERNATIONAL JOURNAL of CONTROL, **62** (1995), No. 5, pp. 1161 - 1173.

GRABOWSKI P., *Parametric optimization of infinite-dimensional systems*. Proceedings of the European Control Conference, Bruxelles, 1997. Invited session organized by O. Staffans. CD-ROM version-retrieval code: ECC977.

GRABOWSKI P., *Lecture Notes on Optimal Control* Uczelniane Wydawnictwa Naukowo–Dydaktyczne AGH: Kraków, 1999. GRABOWSKI P., Stability of a heat exchanger feedback control system using the circle criterion, INTERNATIONAL JOURNAL of CONTROL, **80** (2007), No.9, pp. 1388-1403.

GRABOWSKI P., Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedbak control systems. INTERNATIONAL JOURNAL of APPLIED MATHEMATICS and COMPUTER SCIENCES, **31** (2021). No. 2, pp. 195-218.

GRABOWSKI P., Fundamentals of Control Theory in Problems and Tasks (in Polish). Wydawnictwo AGH: Kraków, 2022.

GRABOWSKI P. AND CALLIER F.M., Admissible observation operators. Duality of observation and control using factorizations, DYNAMICS of CONTINUOUS, DISCRETE and IMPULSIVE SYSTEMS, **6** (1999), No.1, pp. 87-119.

WALKER J.A., *Evolution Equations and Dynamical Systems*, Plenum Press: New York, 1980.