
'

&

$

%

ADMISSIBILITY of OBSERVATION OPERATORS.
Pt. II: Time–delay systems. Semigroup criteria.

Piotr Ludwik Grabowski ©

EMERITUS PROFESSOR OF

THE AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

KRAKÓW, POLAND

pgrab@agh.edu.pl home.agh.edu.pl/~pgrab/main.xml

AFA Seminar, 11th and 25th January, 29th November 2023.

Last opening or modification: November 25, 2023 at 12:15

1

home.agh.edu.pl/~pgrab/main.xml


'

&

$

%

Abstract

This presentation contains a survey of selected papers on
admissibility of observation operators as well as some new
criteria ensuring admissibility.

The results are illustrated by some comparative examples.

1 Basic theory

The contents of this section has been presented previously, see also
(Grabowski, 2021, Sections 2 and the beginning of Section 3) or
(Grabowski, 2022, pp. 350-370).

Consider a class of control systems with observation governed by
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the model in factor form
ẋ(t) = A [x(t) +Du(t)]

x(0) = x0

y(t) = Cx(t)

 , (1.1)

where the linear state operator A : (D(A) ⊂ H) −→ H acts on a
Hilbert state space H with scalar product 〈·, ·〉H and is invertible
with A−1 ∈ L(H).

C : (D(C) ⊂ H) −→ Y is an observation (output) operator, such that
D(A) ⊂ D(C) and H := CA−1 ∈ L(H, Y)a. Here Y denotes an
output space which is a Hilbert space with scalar product 〈·, ·〉Y.

D ∈ L(U, H) with range R(D) ⊂ D(C), CD ∈ L(U, Y) is a factor
control operator and U stands for a space of controls which is also a

aSince A is boundedly invertible the norms ‖Ax‖H, ‖x‖H + ‖Ax‖H are equiva-
lent, whence without loss of generality: C = HA, H ∈ L(H, Y).

3



'

&

$

%

Hilbert space with scalar product 〈·, ·〉U.

The function

G(s) = CA(sI −A)−1D = sC(sI −A)−1D − CD, s ∈ ρ(A)

is call the transfer function of the system (1.1).

1.1 Semigroups and state operators

Definition 1.1. A family {S(t)}t≥0 ⊂ L(H) is a C0–semigroup on H
if (i) S(0) = I, S(t + τ) = S(t)S(τ) for t, τ ≥ 0 and (ii) S(t)x0 → x0

as t→ 0 for every x0 ∈ H.

{S(t)}t≥0 is uniformly bounded if there exist M ≥ 1 such that

‖S(t)x0‖H ≤ M ∀t ≥ 0. (1.2)

{S(t)}t≥0 is asymptotically stable (AS) if ‖S(t)x0‖H −→ 0 as t→ ∞,
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x0 ∈ H.

{S(t)}t≥0 is exponentially stable (EXS) if there exist M ≥ 1, α > 0
such that

‖S(t)‖L(H) ≤ Me−αt ∀t ≥ 0. (1.3)

The generator of a C0 semigroup {S(t)}t≥0 is defined by

Ax0 = lim
h→0

1
h
[S(h)x0 − x0],

D(A) = {x0 ∈ H : ∃ lim
h→0

1
h
[S(h)x0 − x0]}.

Theorem 1.1 (Hille–Phillips–Yosida). A linear operator
A : (D(A) ⊂ H) −→ H generates C0–semigroup {S(t)}t≥0

satisfying the growth estimate ‖S(t)‖L(H) ≤ Meωt for t ≥ 0 and
some M ≥ 1, ω ∈ R (by the principle of boundedness every
C0–semigroups satisfies this estimate) iff A is closed densely

5



'

&

$

%

defined and its resolvent (sI −A)−1 satisfies the estimate

‖(sI −A)−n‖L(H) ≤
M

(s−ω)n ∀s > ω, ∀n ∈N

For a good sufficient generation criterion – see (Walker, 1980).

Theorem 1.2 (Walker). Let H be a Hilbert space with scalar
product 〈·, ·〉H. Assume that A : (D(A) ⊂ H) −→ H is a linear
operator for which the following conditions holds:

(i) there exists λ0 > 0 such thatR(λI −A) = H for λ > λ0,

(ii) there exist ω ∈ R and an equivalent scalar product 〈·, ·〉e in H
such that A is ω-dissipative with respect to 〈·, ·〉e, i.e.,

〈Ax, x〉e + 〈x,Ax〉e ≤ 2ω ‖x‖2
e ∀x ∈ D(A).

Then A generates C0-semigroup {S(t)}t≥0 on H satisfying the
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estimate

‖S(t)x‖e ≤ eωt ‖x‖e ∀t ≥ 0 ∀x ∈ H. (1.4)

Theorem 1.3 (Prüss-Huang-Weiss). A C0 – semigroup generated
by A is EXS iff s 7−→ (sI −A)−1 is in the Hardy class
H∞(C+, L(H)), C+ = {s ∈ C : Re s > 0}.

In a Hilbert space H: A generates a semigroup {S(t)}t≥0/EXS iff
A∗ generates semigroup {S∗(t)}t≥0/EXS. Then H and A are called
the state space and state operators, respectively.

The resolvent s 7−→ (sI −A)−1x0 is the Laplace transform of
t 7→ S(t)x0. In particular, if {S(t)}t≥0 is EXS then, by (1.3), the
half–plane {s ∈ C : Re s > −α} is contained in ρ(A) – the
resolvent set of A which, in particular, implies that A is invertible
with A−1 ∈ L(H).
Definition 1.2. Let x0 ∈ H and u ∈ L2(0, ∞; U). A continuous
vector valued function t 7→ x(t) ∈ H is called a weak solution of (1.1)
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if x(0) = x0 and x satisfies (1.1) in a weak sense, i.e., the function
t 7→ 〈x(t), w〉H is absolutely continuous and for almost all t ≥ 0:

d
dt
〈x(t), w〉H = 〈x(t),A∗w〉H + 〈Du(t),A∗w〉H, w ∈ D(A∗).

Theorem 1.4 (Ball). A linear operator A generates a C0–semigroup
{S(t)}t≥0 on H iff A is closed densely defined and for each x0 ∈ H
there exists a unique weak solution of (1.1) with D = 0 and C = 0.

It is known that if X is a Hilbert space then

LX f = f ′, D(LX) = W1,2([0, ∞); X) :={
f ∈ L2(0, ∞; X) : f ′ ∈ L2(0, ∞; X)

}
⊂ C([0, ∞); X)

generates the C0–semigroup {TX(t)}t≥0 of left–shifts on L2(0, ∞; X),

(TX(t) f ) (τ) := f (t + τ), t ≥ 0,
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whilst its adjoint L∗X := RX,

RX f = − f ′, D(RX) = W1,2
0 ([0, ∞); X)

W1,2
0 ([0, ∞); X) :=

{
f ∈W1,2([0, ∞); X) : f (0) = 0

}
.

generates adjoint C0–semigroup of right–shifts on L2(0, ∞; X),

(T∗X(t) f ) (τ) :=

 f (τ − t) if τ ≥ t

0 if 0 ≤ τ < t

 , t ≥ 0. (1.5)

1.2 Admissible observation operators

Define Z ∈ L(H, L2(0, ∞; Y)),

(Zx0) (t) := HS(t)x0

⇔ Z∗ f =

∞∫
0

S∗(t)H∗ f (t)dt

 .
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The operator, called the observability map,

Ψ := LYZ , D(Ψ) = {x ∈ H : Zx ∈ D(LY)}

is closed and densely defined, with Ψ|D(A) = ZA, and therefore it
has closed and densely defined adjoint operator

Ψ∗ = A∗Z∗, D(Ψ∗) = {y ∈ L2(0, ∞; Y) : Z∗y ∈ D(A∗)},

and Ψ∗|D(RY)
= Z∗RY.

Definition 1.3. C is an admissible observation (output) operatorb if
Ψ ∈ L(H, L2(0, ∞; Y)).

Here Ψ ∈ L(H, L2(0, ∞; Y)) can be replaced by Ψ is bounded or, by
the closed graph theorem, R(Z) ⊂ D(LY)).
Lemma 1.1. If C is admissible then Ψ is also a linear densely

bTo be more precise infinite–time admissible. It is shown in (Grabowski, 1995,
Lemma 1.1) that finite–time admissibility is an equivalent concept under the assump-
tion of EXS.
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defined and bounded operator from H into L1(0, ∞; Y).

This result is proved in (Grabowski, 2007, Lemma 2.1).

1.3 Admissible control operators

DefineW ∈ L(L2(0, ∞; U), H)

W f :=
∫ ∞

0
S(t)D f (t)dt [⇔ (W∗x0) (t) = D∗S∗(t)x0] .

The operator, called the reachability map,

Φ := AW , D(Φ) = {u ∈ L2(0, ∞; U) :Wu ∈ D(A)}

is closed and densely defined, with Φ|D(RU)
=WRU, and

therefore it has closed and densely defined adjoint operator

Φ∗ = LYW∗, D(Φ) = {x ∈ H : W∗x ∈ D(LU)},
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with Φ∗|D(A∗) =W∗A∗.
Definition 1.4. D is an admissible factor control operator if
Φ ∈ L(L2(0, ∞; U), H).

Here Φ ∈ L(L2(0, ∞; U), H) can be replaced by Φ is bounded or, by
the closed graph theorem, R(W) ⊂ D(A).

Using duality arguments, we can state the following result
(Grabowski and Callier, 1999).

Lemma 1.2. D is an admissible factor control operator iff D∗A∗ is
an admissible observation operator with respect to the semigroup
{S∗(t)}t≥0.

The admissibilty notion is widely surveyed in the paper by (Jacob
and Partington, 2004).
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2 Lyapunov criterion of admissibility

This criterion has been proposed and developed in (Grabowski,
1983a,b, 1990, 1991, 1997, 1999, 2022) especially for a class of
time–delay systems of neutral type.
Theorem 2.1. C is admissible iff there existsH = H∗ ∈ L(H),
H ≥ 0, andH satisfies the Lyapunov operator equationc

〈Ax,Hz〉H + 〈x,HAz〉H = −〈Cx, Cz〉Y ∀x, z ∈ D(A) (2.1)

If the solution to (2.1) is unique then it is called the Gramian of
observability with infinite horizon of observation.
Theorem 2.2. Let C be admissible. If the semigroup {S(t)}t≥0 is
AS then (2.1) has the unique solution.
Definition 2.1. Let H1 and H2 be Hilbert spaces with scalar

cIf, in addition, C is closed then C has closed densely defined adjoint operator C∗
and we haveHD(A) ⊂ D(A∗) while (2.1) reduces to A∗Hz +HAz = −C∗Cz.
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products 〈·, ·〉H1 , 〈·, ·〉H2 , respectively. An operator T ∈ L(H1, H2)

is called a compact operator if 〈 fn, g〉H1 −→ 〈 f , g〉H1 for all g ∈ H1

implies ‖T fn − T f ‖H2 −→ 0 as n→ ∞. T is called a
Hilbert–Schmidt operator (HS) if there exists (equivalently, for

every) ONB {ek}k∈N in H1 such that
∞

∑
k=1
‖T ek‖2

H2
< ∞ (the sum

does not depend on a choice of ONB). T is called a nuclear operator
if for any ONBs {ek}k∈N in H1 and { fk}k∈N in H2 there holds
∞

∑
k=1

∣∣〈T ek, fk〉H2

∣∣ < ∞.

It can be shown with an aid of the Cauchy–Schwarz inequality that
any nuclear operator is a HS operator and that a composition of
any two HS operators is a nuclear operator (it is less obvious that
conversely, every nuclear operator is a composition of two HS
operators).
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Theorem 2.3. Suppose that Y = R and C is such that the estimate

|CS(t)x0| ≤ k(t) ‖x0‖H ∀x0 ∈ D(A) and almost all t ≥ 0
(2.2)

holds for some k ∈ L2(0, ∞). Then (2.1) has a solutionH ∈ L(H),
withH = H∗ andH ≥ 0, andH is a nuclear operator.

3 What was presented in Pt. I.

1. Translation semigroups and admissibilty

2. Introduction to a class of time–delay systems

4 To be presented

1. Corrections concerning translation semigroups on a finite
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space interval

2. Admissible observations for time–delay systems

3. Two general spectral criteria of admissibility
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