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ABSTRACT
We study the one-dimensional nonlinear Nernst–Planck–Poisson system
of partial differential equations with the class of nonlinear boundary
conditions which cover the Chang–Jaffé conditions. The system describes
certain physical and biological processes, for example ionic diffusion in
porous media, electrochemical and biological membranes, as well as
electrons and holes transport in semiconductors. The considered boundary
conditions allow the physical system to be not only closed but also
open. Theorems on existence, uniqueness, and nonnegativity of local weak
solutions are proved. Themain tool used in the proof of the existence result
is the Schauder–Tychonoff fixed point theorem.
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1. Introduction and preliminaries

Transport of charged particles (ions, electrons, holes, or colloids) plays an important role in many
disciplines of science. In electrical engineering the motion of electrons and holes in semiconductors
in the electric field is essential for the functioning of modern electronic components such as diodes
and transistors. In electrochemistry the motion of inorganic ions (for example Na+, K+, Ca2+, Cl−)
in electrolytes and how this motion is influenced when the potential is applied to electrodes is the
basis for modeling of very diverse phenomena ranging from industrial electrolysis processes to the
construction and prediction of properties of important class of chemical sensors – the potentiometric
ion sensors (ion selective electrodes, ISE). Especially the last example is very important because ISEs
have prominent features (small size, portability, low-energy consumption, and low cost) which make
them attractive for practical applications (in electroanalysis and medicine). ISEs based on polymeric
membranes containing neutral or charged carriers are commercially produced for the quantitative
determination of a large number of inorganic and organic ions. Another important area of ion
transport applications is concerned with the mechanisms of deterioration of reinforced concrete
and corrosion of rebars. This is a wide topic, but again one of the basic processes involved here is
the transport of ions (in particular chlorides) and molecules (e.g. CO2) through the concrete to the
reinforcement. In the above applications (see for example Figure 1), we can study without loss of
physical generality one-dimensional models.

Moreover, transport of ions and molecules (or macro-molecules) is fundamental for many mech-
anisms in biological systems. The prominent example here is the movement of ions through the
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biological membranes via the ion channels. It is well known that the identification of potassium
and sodium currents in the behavior of a nerve system was one of the milestones in the history
of electrophysiology which earned their discoverers the Nobel Prize in Physiology and Medicine.
But, these models are generally three-dimensional because of additional sources of potential on
the boundary of ion channels.[1,2]

The driving force of ionic motion involves at least two parts: the gradient of concentration
(diffusion part) and the gradient of electric potential (migration part), that is the electric field
generated by electric charges. It is important to underline that electric field component comes here
via twomechanisms, namely as the externally applied potential (e.g. by the voltage difference between
electrodes immersed in the solution) and as electrostatic interactions between the ions present in the
system.Themathematical equations that govern ion transport in the contexts described above arewell
established.[3–5] The model is expressed by a system of partial differential equations. The formula
for the Nernst–Planck flux Ji ∈ R

3 of the ith species, i = 1, . . . ,m is a sum of two contributions

Ji = −Di∇ci + uiciE, (1.1)

where ci(t, x, y, z) is the concentration of i-th species as a function of time t and location (x, y, z) ∈
� ⊂ R

3, Di – the diffusion coefficient, ui – the mobility of the ion, and E ∈ R
3 – the electric field.[6,

Chapter 4, p.138] To associate the flux with the concentration the obvious choice is the law of mass
conservation (also called the continuity equation)

∂ci
∂t

= −div Ji (1.2)

[7, Chapter 12, p.347]. The charge density � is related to the electric field E by Gauss’ law

div E = �

εrε0
, (1.3)

where ε0 is the permittivity of free space (the electric constant) and εr is the relative permittivity of
the medium.[8, Chapters 3 and 6, Section 6.5.1] In a usual chemical context, the concentration is
measured in moles per volume so the expression of charge density by concentration shall contain the
Faraday constant F, � = F

∑m
j=1 zjcj, where zj is the charge number of the jth ion, and the sum is

over all species taken into account in the model. Now Equation (1.3) becomes

div E = F
εrε0

m∑
j=1

zjcj. (1.4)

Inmost applications the electric field is replaced with the electric potential ϕ according to the relation
E = −∇ϕ which simply states that the electric field is a conservative field (this is true in the absence
of magnetic fields).[8, Chapter 3, Section 3.3] Additionally, two material constants (the diffusion
coefficient and mobility) are connected by the Einstein–Smoluchowski relation ui = (ziF/RT)Di,
where R is the gas constant and T is the absolute temperature of the medium in Kelvin temperature
scale.[9, Chapter 18] Now Equations (1.1) and (1.4) put together give

{
∂ci
∂t = Di

(
�ci + zi F

RT ∇ · (ci∇ϕ)
)
, i = 1, . . . ,m,

�ϕ = − F
εrε0

∑m
j=1 zjcj.

(1.5)

This system of equations constitutes a mathematical framework for the deterministic modeling
of electrodiffusion in continuum media approximation.[10,11] In the literature it is known as the
Nernst–Planck–Poisson (NPP) or Poisson–Nernst–Planck (PNP) system (Figure 1).
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2318 R. FILIPEK ET AL.

Figure 1. NPP system.

We specify the boundary conditions. Here we do not just use “any reasonable” conditions that
would satisfy the mathematical necessity but rather pursue for conditions that are applicable for
modeling of real systems of practical importance that we alluded to above and which are consistent
with reasonable experimental situations.[3,12] From this perspective, the so-called Chang–Jaffé (CJ)
boundary conditions are particularly important (Figure 2). The basic idea is that the flux on the
boundary (or more precisely, the normal component of the flux) is proportional to the weighted
difference between concentration inside and outside of the region where the process takes place

n(x, y, z) · Ji(t, x, y, z) = −ki,f ci,out + ki,bci(t, x, y, z) (1.6)

for (x, y, z) ∈ ∂�, where n ∈ R
3 is the normal vector to ∂�, ki,f , ki,b are the material constants (the

so called heterogeneous rate constants) which describe the permeability of the boundary, and ci,out is
the concentration of the ith species outside� – it is assumed that ci,out is constant.

In the case of one dimension these types of boundary conditions were first used by Chang and Jaffé
in 1951 in their paper on the polarization in electrolytic solutions.[13] Since then the CJ boundary
conditions have been used extensively in the field of potentiometric sensors modeling as proposed
by Brumleve and Buck in their seminal paper [12] (in 1D){

Ji(t, 0) = kiL,f ciL − kiL,bci(t, 0),
Ji(t, d) = −kiR,f ciR + kiR,bci(t, d),

(1.7)

where the domain � = (0, d) ⊂ R is an interval, the subscript L refers to the “left end” (x = 0) and
the subscript R to the “right end” (x = d), respectively.

Another boundary conditions that are nonlinear and play an important role in electrolysis with
two species (m = 2) have the form

n(x, y, z) · J1(t, x, y, z) = k(t, x, y, z)c1(t, x, y, z)e−a n(x,y,z)·∇ϕ(t,x,y,z), (1.8)

n(x, y, z) · J2(t, x, y, z) = −k(t, x, y, z)c2(t, x, y, z)eb n(x,y,z)·∇ϕ(t,x,y,z), (1.9)
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APPLICABLE ANALYSIS 2319

Figure 2. CJ boundary conditions.

where k > 0 is the standard rate function and a, b > 0 are the transfer coefficients. They are known
in the electrode kinetics theory as the Butler–Volmer boundary conditions.[6, Chapter 3]

Although the formulation is straightforward, the numerical solution is quite a challenging task.
One reason for this difficulty is that the values of parameters that appear in (1.5), the permittivity of
free space ε0 is of the order of 10−12 and Faraday constant is of the order of 105, thus the coefficient
in Poisson equation is of the order of 1017. This leads to the phenomenon of boundary layers and
requires special discretization meshes.[14]

The mathematical theory of the NPP system is quite extensive but still it lacks the main results
(local and global existence and uniqueness) in the case of relevant boundary conditions. Krzywicki
and Nadzieja [15] consider system (1.5) with one component (m = 1), while Biler et al. [16] with
two components (m = 2) and prove the global existence and uniqueness, and the convergence to
the steady-state solution as time advances to infinity. However, the boundary conditions they use
are simpler than (1.6), (1.7) and have the form of null fluxes on the boundary (Ji = 0 on ∂�). This
has a simple physical interpretation meaning the closed system. But as we motivated above, real
electrodiffusion applications of practical importance are almost always open systems which interact
with surroundings through boundary fluxes. There is a handful of mathematical papers that address
the NPP system but in the steady-state variant.[17–21] Because we are here interested only in the
time-dependent system we shall not go into details but stress the fact that none of these papers uses
the CJ boundary conditions or its extensions.

There exists vast literature on existence and regularity of solutions for both parabolic and elliptic
problems, cf., e.g. [22–25]. The aim of this paper is to give theorems on existence, uniqueness, and
nonnegativity of local weak solutions to the one-dimensional nonlinear parabolic-elliptic NPP (1.5)
system with the initial conditions and the class of nonlinear boundary conditions that cover the CJ
conditions. In the existence proof we use the Schauder–Tychonoff fixed point theorem instead of the
Schauder fixed point theorem as in [16,26] because of compact embeddings in the boundary spaces.
We expect that it is possible to prove the existence of global weak solutions by the entropy method
with the use of the logarithmic Lyapunov function (see [16,26]), but unfortunately, to this day, our
result is not complete. We expect it to be the topic of our further research.

The paper is organized in the followingway. In Section 2, the initial-boundary differential problem
is formulated, and in Section 3 its weak version is given together with the assumptions that will be
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2320 R. FILIPEK ET AL.

used in the further part. Sections 4–6 deal with the existence, uniqueness, and nonnegativity of local
weak solutions of the problem studied, respectively.

2. Problem formulation

Denote for simplicity� = (0, 1). The study of the general case� = (0, d) is the same. Let functions
u0, v0 : � → R, fi, gi : [0,T] × R → R, hi : [0,T] → R and constants αi,βi, λ > 0 for i = 1, 2
be given, where T > 0. We consider the nonlinear parabolic–elliptic system of equations in one-
dimensional case ⎧⎨

⎩
ut = α1uxx − α2(uϕx)x ,
vt = β1vxx + β2(vϕx)x ,
ϕxx = λ(u − v)

(2.1)

for (t, x) ∈ [0,T] ×� with the initial conditions

u(0, x) = u0(x) and v(0, x) = v0(x) (2.2)

for x ∈ � and the nonlinear boundary conditions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1ux(t, 0)− α2u(t, 0)ϕx(t, 0) = f1(t, u(t, 0)),
α1ux(t, 1)− α2u(t, 1)ϕx(t, 1) = f2(t, u(t, 1)),
β1vx(t, 0)+ β2v(t, 0)ϕx(t, 0) = g1(t, v(t, 0)),
β1vx(t, 1)+ β2v(t, 1)ϕx(t, 1) = g2(t, v(t, 1)),
ϕ(t, 0) = h1(t),
ϕ(t, 1) = h2(t)

(2.3)

for t ∈ [0,T]. We study two evolution equations for simplicity only. If we put m = 2, z1 = −z,
z2 = z, (z ∈ N), u = c1, v = c2, α1 = D1, α2 = −D1z1 F

RT , β1 = D2, β2 = D2z2 F
RT , λ = F

εrε0
, then

system (2.1) is a special case of (1.5).
The NPP system (2.1) and the boundary conditions (2.3) can be written in a more lucid physical

notation as follows ⎧⎨
⎩
ut = −(J1)x ,
vt = −(J2)x ,
ϕxx = λ(u − v),

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J1(t, 0) = −f1(t, u(t, 0)),
J1(t, 1) = −f2(t, u(t, 1)),
J2(t, 0) = −g1(t, v(t, 0)),
J2(t, 1) = −g2(t, v(t, 1)),
ϕ(t, 0) = h1(t),
ϕ(t, 1) = h2(t),

(2.5)

where J1, J2 are the Nernst–Planck fluxes defined by the formulas

J1 = −α1ux + α2uϕx and J2 = −β1vx − β2vϕx. (2.6)

The boundary conditions (2.5) (see also (2.3)) cover as a special case the well-known CJ conditions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J1(t, 0) = a11 − a21u(t, 0),
J1(t, 1) = −a12 + a22u(t, 1),
J2(t, 0) = b11 − b21v(t, 0),
J2(t, 1) = −b12 + b22v(t, 1),
ϕ(t, 0) = h1(t),
ϕ(t, 1) = h2(t),

(2.7)
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APPLICABLE ANALYSIS 2321

where aij > 0, bij > 0, i, j = 1, 2, are given constants.
It follows from the initial-boundary conditions that a suitable physical system can be closed or

open.
Remark 2.1: If h1(t) �≡ 0 or h2(t) �≡ 0, then the substitution ϕ(t, x) = (h2(t)− h1(t))x + h1(t)+
ψ(t, x) transforms problem (2.1)–(2.3) to the equivalent one with the homogeneous boundary
conditions on ψ . To avoid cumbersome computations we will consider only the case h1(t) ≡
h2(t) ≡ 0 in the sequel, however, the corresponding results can be easily generalized to the case
h1, h2 ∈ L2(0,T). We add that from a physical point of view the charge numbers of ions such that
z1 < 0 and z2 > 0 are interesting only, and our results can be extended immediately to this general
case.

3. Assumptions and a weak formulation

Denote V = H1(�) and H = L2(�). Then V ⊂ H ⊂ V∗ constitute an evolution triple with
the embeddings being dense, continuous, and compact. By H+ we denote the cone of nonnegative
functions in H , that is

H+ = {u ∈ H : u(x) ≥ 0 a.e. in �}.
In the paper by C > 0 we will always denote a generic constant dependent only on the problem data.

We assume the following conditions on u0, v0 and fi, gi.
Assumption H

(H0) u0 ∈ H and v0 ∈ H.
(H1) fi, gi, i = 1, 2, satisfy the Caratheodory conditions: fi(·, u) and gi(·, u) are measurable, and
fi(t, ·) and gi(t, ·) are continuous.
(H2) The following growth conditions hold

|fi(t, u)| ≤ a1i + a2i|u| and |gi(t, u)| ≤ b1i + b2i|u|,

for a.e. t ∈ (0,T) and all u ∈ R, with the constants a1i, a2i, b1i, b2i ≥ 0, i = 1, 2.
(H3) The following one sided Lipschitz conditions hold

f1(t, u1)− f1(t, u2) ≥ −Lf1(u1 − u2),
g1(t, u1)− g1(t, u2) ≥ −Lg1(u1 − u2),

f2(t, u1)− f2(t, u2) ≤ Lf2(u1 − u2),
g2(t, u1)− g2(t, u2) ≤ Lg2(u1 − u2),

for a.e. t ∈ (0,T) and all u1, u2 ∈ R, u1 ≥ u2, with the constants Lfi , Lgi ≥ 0, i = 1, 2.

Assumption H+

(H+
0 ) u0 ∈ H+ and v0 ∈ H+.

(H+
1 ) For u < 0 and a.e. t ∈ (0,T)

f1(t, u) ≤ 0 and g1(t, u) ≤ 0,
f2(t, u) ≥ 0 and g2(t, u) ≥ 0.

Remark 3.1: Note that, as the solutions u, v of the considered problem which will be substituted
in the place of the second variable in fi, gi are supposed to be nonnegative, it is possible to modify
arbitrarily the functions fi, gi for the negative values of the second argument. For example we can take

fi(t, u) = fi(t, 0) and gi(t, u) = gi(t, 0) for u < 0 and a.e. t ∈ (0,T), i = 1, 2.
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2322 R. FILIPEK ET AL.

Hence, it is enough to assume, instead of (H+
1 ), that f1(t, 0) ≤ 0, g1(t, 0) ≤ 0 and f2(t, 0) ≥ 0,

g2(t, 0) ≥ 0.
Remark 3.2: It follows from Remark 3.1 that Assumptions H and H+ are fulfilled for the CJ
boundary conditions (2.7). In this case f1(t, u) = −a11 + a21u, f2(t, u) = a12 − a22u, g1(t, u) =
−b11 + b21u, g2(t, u) = b12 − b22u for t ∈ [0,T], u ∈ R.

The original initial-boundary value problem (2.1)–(2.3) has the following weak version.
ProblemPE.Findu, v ∈ L2(0,T;V) andϕ ∈ L2(0,T;H3(�)∩H1

0 (�)) such thatut , vt ∈ L2(0,T;V∗)
and for a.e. t ∈ (0,T)

〈ut , η〉V∗×V +
∫
�

(α1ux − α2uϕx)ηxdx (3.1)

= f2(t, u(t, 1))η(1)− f1(t, u(t, 0))η(0) for each η ∈ V ,

〈vt , ζ 〉V∗×V +
∫
�

(β1vx + β2vϕx)ζxdx (3.2)

= g2(t, v(t, 1))ζ(1)− g1(t, v(t, 0))ζ(0) for each ζ ∈ V ,∫
�

ϕxξxdx + λ

∫
�

(u − v)ξdx = 0 for each ξ ∈ H1
0 (�), (3.3)

and the initial conditions (2.2) hold.

4. Existence of local weak solutions

We will use the following version of the Schauder–Tychonoff fixed point theorem which is a simple
consequence of [27, Theorem 1].
Theorem 4.1: Let X be a reflexive Banach space and let C ⊂ X be a closed, bounded, convex and
nonempty set. If the function � : C → C is sequentially weakly continuous, then it must have a fixed
point.

To study the existence of a weak solution for Problem PE, we split it into two auxiliary problems,
an elliptic one, and a parabolic one.
Problem E.Given w, z ∈ L2(0,T;V) findψ ∈ L2(0,T;H3(�)∩H1

0 (�)) such that for a.e. t ∈ (0,T)
∫
�

ψxξxdx + λ

∫
�

(w − z)ξdx = 0 for each ξ ∈ H1
0 (�). (4.1)

Problem P. Given w, z ∈ L2(0,T;V) and ψ ∈ L2(0,T;H3(�) ∩ H1
0 (�)) find u, v ∈ L2(0,T;V)

such that ut , vt ∈ L2(0,T;V∗) and for a.e. t ∈ (0,T)

〈ut , η〉V∗×V +
∫
�

(α1ux − α2uψx)ηxdx (4.2)

= f2(t,w(t, 1))η(1)− f1(t,w(t, 0))η(0) for each η ∈ V ,

〈vt , ζ 〉V∗×V +
∫
�

(β1vx + β2vψx)ζxdx (4.3)

= g2(t, z(t, 1))ζ(1)− g1(t, z(t, 0))ζ(0) for each ζ ∈ V ,

and the initial conditions (2.2) hold.
Define for a fixed T > 0 the space of vector valued functions

XT = {(u, v) ∈ L2(0,T;V)× L2(0,T;V) : ut , vt ∈ L2(0,T;V∗)} (4.4)
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normed by

‖(u, v)‖XT = ‖u‖L2(0,T;V) + ‖v‖L2(0,T;V) + ‖ut‖L2(0,T;V∗) + ‖vt‖L2(0,T;V∗),

‖u‖2L2(0,T;V) =
∫ T

0
‖u(t)‖2V dt, ‖ut‖2L2(0,T;V∗) =

∫ T

0
‖ut(t)‖2V∗ dt.

We will use two topologies in this space, namely the strong topology and the weak topology. We
define the set

B = B(T ,Q0,Q1,Q2,R0,R1,R2)

parameterized by the time T > 0 and the constants Q0,Q1,Q2,R0,R1,R2 > 0

B = {(w, z) ∈ XT : ‖w‖2L2(0,T;H) ≤ Q0, ‖wx‖2L2(0,T;H) ≤ Q1,

‖z‖2L2(0,T;H) ≤ R0, ‖zx‖2L2(0,T;H) ≤ R1,

‖wt‖2L2(0,T;V∗) ≤ Q2, ‖zt‖2L2(0,T;V∗) ≤ R2}. (4.5)

Note that the set B is convex and strongly closed in XT , so it is also weakly closed. Since it is also
strongly bounded, it follows that it is weakly compact. Define the operator

�E : B → L2(0,T;H3(�) ∩ H1
0 (�)),

which maps any pair (w, z) ∈ B to the unique solution ψ ∈ L2(0,T;H3(�) ∩H1
0 (�)) of Problem E,

and the operator
�P : B × L2(0,T;H3(�) ∩ H1

0 (�)) → XT ,

which maps any pair (w, z) ∈ B and function ψ ∈ L2(0,T;H3(�) ∩ H1
0 (�)) to the unique solution

(u, v) ∈ XT of Problem P. Composing the two operators we define

� : B → XT , �(w, z) = �P(w, z,�E(w, z)).

Obviously, (u, v,ϕ) is a solution of Problem PE if and only if (u, v) is a fixed point of �, and ϕ =
�E(u, v). We establish several lemmas on the properties of �E , �P , � which imply the correctness
of their definitions and will be useful in the local existence result.
Lemma 4.1: Problem E has the unique solution, and the following estimate holds

‖ψ(t)‖H2(�) ≤ Cλ‖w(t)− z(t)‖H for a.e. t ∈ (0,T) with C > 0. (4.6)

Proof: The existence for a.e. t ∈ (0,T) of the unique weak solution ψ = ψ(t, ·) ∈ H1
0 (�) follows

from [22, Chapter 6.2, Theorem 3]. Then, using [22, Chapter 6.3, Theorem 5] we have for a.e.
t ∈ (0,T) that ψ(t) ∈ H3(�) and

‖ψ(t)‖H3(�) ≤ C‖λ(w(t)− z(t))‖V for a.e. t ∈ (0,T). (4.7)

Note that ψ depends measurably on t, because of measurability of w, z on t, linearity of (4.1) and
inequality (4.7). Hence,

∫ T

0
‖ψ(t)‖2H3(�) dt ≤ C

∫ T

0
‖λ(w(t)− z(t))‖2V dt < ∞ (4.8)

and in consequenceψ ∈ L2(0,T;H3(�)∩H1
0 (�)). The estimate (4.6) follows from [22, Chapter 6.3,

Theorem 4]. �
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2324 R. FILIPEK ET AL.

Remark 4.1: It follows from [22, Chapter 5.6, Theorem 6] and [28, Corollary 26] that Hs(�) ⊂
C(�̄) for s ∈ ( 12 , 1], with continuous embeddings.
Lemma 4.2: If assumptions (H0), (H1), (H2) hold, then Problem P has the unique solution.
Proof: Note that ψx ∈ L2(0,T;H2(�)) and fi(·,w(·, 0)), fi(·,w(·, 1)), gi(·, z(·, 0)), gi(·, z(·, 1)) ∈
L2(0,T), i = 1, 2 are all given functions. The proof of existence and uniqueness of the solutions for
the linear problem is standard and can be done for example by the Galerkin method. The proof that
uses the Galerkin method follows the steps of the proof of [23, Theorem 11.7]. �
Lemma 4.3: If assumptions (H0), (H1), (H2) are fulfilled, then there exists T > 0 such that � :
B(T ,Q0,Q1,Q2,R0,R1,R2) → B(T ,Q0,Q1,Q2,R0,R1, R2) for certain Q0,Q1,Q2,R0,R1,R2 > 0.
Proof: Let (w, z) ∈ B(T ,Q0,Q1,Q2,R0,R1,R2), where Q0,R0 are arbitrary, and the choice of
T ,Q1,R1,Q2,R2 will be specified later. Denote ψ = �E(w, z) and (u, v) = �P(w, z,ψ). We will
derive a priori estimates for Problem P. Taking η = u(t) in (4.2) and ζ = v(t) in (4.3) we get

1
2
d
dt

‖u(t)‖2H+α1‖ux(t)‖2H − α2

∫
�

u(t)ψx(t)ux(t) dx

= f2(t,w(t, 1))u(t, 1)− f1(t,w(t, 0))u(t, 0), (4.9)
1
2
d
dt

‖v(t)‖2H+β1‖vx(t)‖2H + β2

∫
�

v(t)ψx(t)vx(t) dx

= g2(t, z(t, 1))v(t, 1)− g1(t, z(t, 0))v(t, 0), (4.10)

for a.e. t ∈ (0,T). We will only prove, using the Equation (4.9), the estimates ‖u‖L2(0,T;H) ≤
Q0, ‖ux‖L2(0,T;H) ≤ Q1, and ‖ut‖L2(0,T;V∗) ≤ Q2. The proof of the estimates ‖v‖L2(0,T;H) ≤ R0,
‖vx‖L2(0,T;H) ≤ R1, and ‖vt‖L2(0,T;V∗) ≤ R2 uses (4.10) and is analogous, so we omit it here. First we
estimate the term α2

∫
�

|u(t)ψx(t)ux(t)| dx. We have

α2

∫
�

|u(t)ψx(t)ux(t)| dx ≤ α1

4
‖ux(t)‖2H + C‖ψx(t)‖2L∞(�)‖u(t)‖2H .

As H1(�) ⊂ C(�) (cf. Remark 4.1), we further have

α2

∫
�

|u(t)ψx(t)ux(t)| dx ≤ α1

4
‖ux(t)‖2H + C‖ψ(t)‖2H2(�)‖u(t)‖2H , (4.11)

and, by (4.6)

α2

∫
�

|u(t)ψx(t)ux(t)| dx ≤ α1

4
‖ux(t)‖2H + C‖w(t)− z(t)‖2H‖u(t)‖2H .

To estimate the boundary terms let s ∈ ( 12 , 1). Define Z = Hs(�). By Remark 4.1 this space embeds
continuously in C(�). Consider the triple of spaces V ⊂ Z ⊂ H . The embedding V ⊂ Z is compact
(see [29, Theorem 2.80]) and the embedding Z ⊂ H is continuous. We can use the Ehrling lemma
(see e.g. [24, Lemma 7.6]) to conclude that for any ε > 0 we can find C(ε) > 0 such that

|y(1)| ≤ ε‖yx‖H + C(ε)‖y‖H and |y(0)| ≤ ε‖yx‖H + C(ε)‖y‖H ,

for all y ∈ V . We estimate the boundary terms in (4.9). By (H3) we have

|f2(t,w(t, 1))u(t, 1)| + |f1(t,w(t, 0))u(t, 0)|
≤ (a12 + a22|w(t, 1)|)|u(t, 1)| + (a11 + a21|w(t, 0)|)|u(t, 0)|
≤ |u(t, 1)|2 + |u(t, 0)|2 + C + C|w(t, 1)|2 + C|w(t, 0)|2
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APPLICABLE ANALYSIS 2325

≤ ε‖ux(t)‖2H + C(ε)‖u(t)‖2H + C + ε1‖wx(t)‖2H + C(ε1)‖w(t)‖2H ,

where the constants ε, ε1 > 0 are at this point arbitrary and will be specified later. We take ε = α1
4 in

the last estimate, and using this estimate together with (4.11) in (4.9) we get

d
dt

‖u(t)‖2H + α1‖ux(t)‖2H (4.12)

≤ C(‖w(t)‖2H + ‖z(t)‖2H + 1)‖u(t)‖2H + C + ε1‖wx(t)‖2H + C(ε1)‖w(t)‖2H .

The Gronwall lemma implies that for all t ∈ [0,T] we have

‖u(t)‖2H ≤ e
∫ t
0 C(‖w(s)‖2H+‖z(s)‖2H+1) ds

×
[
‖u0‖2H +

∫ t

0
(C + ε1‖wx(s)‖2H + C(ε1)‖w(s)‖2H) ds

]

≤ eCT+C
∫ T
0 (‖w(t)‖2H+‖z(t)‖2H ) dt

×
[
‖u0‖2H + CT +

∫ T

0
(ε1‖wx(t)‖2H + C(ε1)‖w(t)‖2H) dt

]

≤ eC(T+Q0+R0)(‖u0‖2H + CT + C(ε1)Q0 + ε1Q1). (4.13)

Integrating over the interval (0,T) we get

‖u‖2L2(0,T;H) ≤ CTeC(T+Q0+R0)(‖u0‖2H + T + C(ε1)Q0 + ε1Q1). (4.14)

Integrating (4.12) from 0 to T we get

α1

∫ T

0
‖ux(t)‖2H dt ≤ C‖u‖2L∞(0,T;H)

∫ T

0
(‖w(t)‖2H + ‖z(t)‖2H + 1) dt

+ CT +
∫ T

0
(ε1‖wx(t)‖2H + C(ε1)‖w(t)‖2H) dt + ‖u0‖2H .

Using (4.13) in the last inequality we get after cumbersome but straightforward computation

‖ux‖2L2(0,T;H)
≤ C(‖u0‖2H + T + C(ε1)Q0 + ε1Q1)(1 + (T + Q0 + R0)eC(T+Q0+R0))

≤ ε1CQ1(1 + (T + Q0 + R0)eC(T+Q0+R0))

+ C(‖u0‖2H + T + C(ε1)Q0)(1 + (T + Q0 + R0)eC(T+Q0+R0)).

Without loss of generality we may assume that T ≤ 1, thus

‖ux‖2L2(0,T;H) ≤ ε1CQ1(1 + (1 + Q0 + R0)eC(1+Q0+R0)) (4.15)

+ C(‖u0‖2H + 1 + C(ε1)Q0)(1 + (1 + Q0 + R0)eC(1+Q0+R0)).

Let Q0,R0 > be fixed. We put

ε1 = 1
2C(1 + (1 + Q0 + R0)eC(1+Q0+R0))
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2326 R. FILIPEK ET AL.

and
Q1 = 2C(‖u0‖2H + 1 + C(ε1)Q0)(1 + (1 + Q0 + R0)eC(1+Q0+R0)).

The inequality (4.15) yields ‖ux‖2L2(0,T;H) ≤ Q1. From (4.14), assuming that T ≤ 1, we get

‖u‖2L2(0,T;H) ≤ CTeC(1+Q0+R0)(‖u0‖2H + 1 + C(ε1)Q0 + ε1Q1) = TF(Q0,R0),

where F(Q0,R0) depends only on Q0,R0, but not on T . Hence if we take T = min{1, Q0
F(Q0,R0) }, we

obtain ‖u‖2L2(0,T;H) ≤ Q0. It remains to obtain the estimate for ut . We have

∫ T

0
〈ut(t), η(t)〉V∗×V dt ≤ α1‖ux‖L2(0,T;H)‖ηx‖L2(0,T;H)

+ α2‖ψx‖L2(0,T;L∞(�))‖u‖L∞(0,T;H)‖ηx‖L2(0,T;H)

+
∫ T

0
(a11 + a12 + (a21 + a22)‖w(t)‖V )‖η(t)‖V dt. (4.16)

Moreover,
∫ T

0
(a11 + a12 + (a21 + a22)‖w(t)‖V )‖η(t)‖V dt

≤ ‖η‖L2(0,T;V)(C1 + C2‖w‖L2(0,T;V)),

whence

‖ut‖L2(0,T;V∗) ≤ α1‖ux‖L2(0,T;H) + α2‖ψx‖L2(0,T;L∞(�))‖u‖L∞(0,T;H)
+ C1 + C2‖w‖L2(0,T;V).

But we know that ‖ψx(t)‖L∞(�) ≤ C‖w(t) − z(t)‖H , whereas, using (4.13) to estimate the term
‖u‖L∞(0,T;H), we can write

‖ut‖L2(0,T;V∗) ≤ G(T ,Q0,Q1,R0),

with a constant G(T ,Q0,Q1,R0). It is enough to take Q2 = G2(T ,Q0,Q1,R0). The proof is
complete. �
Remark 4.2: Without the use of the Ehrling lemma the proof would still be possible with additional
bounds on the constants present in the model.

We will denote B = B(T ,Q0,Q1,Q2,R0,R1,R2) found in Lemma 4.3.
Lemma 4.4: If Assumptions (H0), (H1), (H2) hold, then the mapping � : B → B is weakly
sequentially continuous.
Proof: Consider sequences wn → w and zn → z weakly in L2(0,T;V) with (wn)t → wt and
(zn)t → zt weakly in L2(0,T;V∗) such that wn, zn,w, z ∈ B. Let (un, vn) = �(wn, zn) and ψn =
�E(wn, zn). We must prove that un → u and vn → v weakly in L2(0,T;V), and (un)t → ut and
(vn)t → vt weakly in L2(0,T;V∗) for (u, v) = �(w, z). As (un, vn) ∈ B, a bounded set in XT , for a
subsequence, not renumbered we must have un → u and vn → v weakly in L2(0,T;V). Moreover
(un)t → ū and (vn)t → v̄ weakly in L2(0,T;V∗) where it must be ū = ut and v̄ = vt . If we are
able to show that (u, v) = �(w, z) then, by the uniqueness of the limit, the convergence will hold for
the whole sequence and the proof will be complete. For any η ∈ L2(0,T;V), ζ ∈ L2(0,T;V) and
ξ ∈ L2(0,T;H1

0 (�)) we have∫ T

0
〈(un)t(t), η(t)〉V∗×V dt +

∫ T

0

∫
�

(α1(un)x(t)− α2un(t)(ψn)x(t))ηx(t) dx dt
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APPLICABLE ANALYSIS 2327

=
∫ T

0
(f2(t,wn(t, 1))η(t, 1)− f1(t,wn(t, 0))η(t, 0)) dt, (4.17)∫ T

0
〈(vn)t(t), ζ(t)〉V∗×V dt +

∫ T

0

∫
�

(β1(vn)x(t)+ β2vn(t)(ψn)x(t))ζx(t)dx

=
∫ T

0
(g2(t, zn(t, 1))ζ(t, 1)− g1(t, zn(t, 0))ζ(t, 0)) dt, (4.18)

and ∫ T

0

∫
�

(ψn)x(t)ξx(t) dx dt + λ

∫ T

0

∫
�

(wn(t)− zn(t))ξ(t) dx dt = 0. (4.19)

From (4.19), by taking ξ = ψn we obtain the estimate

‖ψn‖2L2(0,T;H1
0 (�))

≤ λ(‖wn‖L2(0,T;H) + ‖zn‖L2(0,T;H))‖ψn‖L2(0,T;H).

Using the Poincaré inequality it follows that the sequence ψn is bounded in L2(0,T;H1
0 (�)) and

hence for a subsequence, denoted again by n, we must have ψn → ψ weakly in L2(0,T;H1
0 (�)). We

can pass to the limit in (4.19) which implies that

∫ T

0

∫
�

ψx(t)ξx(t) dx dt + λ

∫ T

0

∫
�

(w(t)− z(t))ξ(t) dx dt = 0, (4.20)

whence ψ = �E(w, z). We need to pass to the limit in (4.17). For (4.18) the proof is analogous.
Passing to the limit in the terms with time derivative and α1 is clear. Using the fact that the

Nemytskii trace operators

{y ∈ L2(0,T;V) : yt ∈ L2(0,T;V∗)} � y → y(·, 1) ∈ L2(0,T),
{y ∈ L2(0,T;V) : yt ∈ L2(0,T;V∗)} � y → y(·, 0) ∈ L2(0,T)

are compact it follows that

wn(·, 1) → w(·, 1) and wn(·, 0) → w(·, 0) strongly in L2(0,T).

By the growth conditions (H2) we are allowed to use the dominated convergence theorem, whereas
by the continuity of fi with respect to the second variable in (H1) we get∫ T

0
(f2(t,wn(t, 1))η(t, 1)− f1(t,wn(t, 0))η(t, 0)) dt

→
∫ T

0
(f2(t,w(t, 1))η(t, 1)− f1(t,w(t, 0))η(t, 0)) dt.

It remains to pass to the limit in the term with (ψn)x in (4.17). We have

∫ T

0

∫
�

(un(t)(ψn)x(t)− u(t)ψx(t))ηx(t) dx dt (4.21)

=
∫ T

0

∫
�

(un(t)− u(t))(ψn)x(t)ηx(t) dx dt

+
∫ T

0

∫
�

((ψn)x(t)− ψx(t))u(t)ηx(t) dx dt.
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2328 R. FILIPEK ET AL.

Clearly, (ψn)x − ψx → 0 weakly in L2(0,T;H), and
∫ T

0

∫
�

(u(t)ηx(t))2 dx dt ≤ ‖u‖L∞(0,T;H)‖ηx‖L2(0,T;L∞(�)),

whereas uηx ∈ L2(0,T;H). It follows that
∫ T

0

∫
�

((ψn)x(t)− ψx(t))u(t)ηx(t) dx dt → 0.

By the Aubin–Lions compactness theorem we have

un → u strongly in L2(0,T;H).

Wemust prove that (ψn)xηx is bounded in L2(0,T;H). Lemma 4.1 implies that

‖(ψn)x‖H ≤ C(‖wn‖H + ‖zn‖H),

whereas
‖(ψn)x‖L∞(0,T;H) ≤ C(‖wn‖L∞(0,T;H) + ‖zn‖L∞(0,T;H)).

We have ∫ T

0

∫
�

((ψn)x(t)ηx(t))2 dx dt ≤ ‖(ψn)x(t)‖L∞(0,T;H)‖ηx‖L2(0,T;L∞(�))

≤ C(‖wn‖L∞(0,T;H) + ‖zn‖L∞(0,T;H))‖ηx‖L2(0,T;L∞(�)).

Hence (ψn)xηx is bounded in L2(0,T;H), whence
∫ T

0

∫
�

(un(t)− u(t))(ψn)x(t)ηx(t) dx dt → 0.

It follows that the integral on the left-hand side of (4.21) also converges to zero and we can pass to
the limit in the term ∫ T

0

∫
�

α2un(t)(ψn)x(t)ηx(t) dx dt

in (4.17). The proof is complete. �
Theorem 4.2: Let Assumptions (H0), (H1), (H2) be satisfied. Then there exists T > 0 such that
Problem PE has a solution.
Proof: The assertion follows immediately by Theorem 4.1 and Lemmas 4.1–4.4. �

5. Uniqueness of weak solutions

In this section, we prove that Problem PE cannot have more than one weak solution.
Theorem 5.1: Let AssumptionH be true. Then Problem PE has at most one solution on [0,T] for an
arbitrary T > 0.
Proof: Suppose that Problem PE has two solutions (u1, v1,ϕ1), (u2, v2,ϕ2) on [0,T]. We will show
that theymust be equal. By putting η = u1(t)−u2(t) and ζ = v1(t)−v2(t) in (3.1), (3.2), respectively,
we get

1
2
d
dt

‖(u1 − u2)(t)‖2H + α1‖(u1 − u2)x(t)‖2H
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− α2

∫
�

u1(t)(ϕ1 − ϕ2)x(t)(u1 − u2)x(t) dx

− α2

∫
�

ϕ2x(t)(u1 − u2)(t)(u1 − u2)x(t) dx

= (f2(t, u1(t, 1))− f2(t, u2(t, 1)))(u1(t, 1)− u2(t, 1)),
− (f1(t, u1(t, 0))− f1(t, u2(t, 0)))(u1(t, 0)− u2(t, 0)), (5.1)

1
2
d
dt

‖(v1 − v2)(t)‖2H + β1‖(v1 − v2)x(t)‖2H
− β2

∫
�

v1(t)(ϕ1 − ϕ2)x(t)(v1 − v2)x(t) dx

− β2

∫
�

ϕ2x(t)(v1 − v2)(t)(v1 − v2)x(t) dx

= (g2(t, v1(t, 1))− g2(t, v2(t, 1)))(v1(t, 1)− v2(t, 1)),
− (g1(t, v1(t, 0))− g1(t, v2(t, 0)))(v1(t, 0)− v2(t, 0)), (5.2)

for a.e. t ∈ (0,T).
Note that the equation∫

�

ϕxξxdx + λ

∫
�

((u1 − u2)− (v1 − v2))ξdx = 0 for each ξ ∈ H1
0 (�), (5.3)

has the unique solution ϕ = ϕ1 − ϕ2 ∈ L2(0,T;H3(�) ∩ H1
0 (�)) by the same arguments as in the

proof of Lemma 4.1, and moreover

‖(ϕ1 − ϕ2)(t)‖H2(�) ≤ Cλ‖(u1 − u2)(t)− (v1 − v2)(t)‖H for a.e. t ∈ (0,T) (5.4)

with C > 0. Analogously

‖ϕ2(t)‖H2(�) ≤ Cλ‖(u2 − v2)(t)‖H for a.e. t ∈ (0,T) with C > 0. (5.5)

By the similar argument as in the proof of Lemma 4.3, using (5.4) and (5.5) we obtain the following
estimates of the integral and boundary terms in (5.1)

α2

∫
�

|u1(t)(ϕ1 − ϕ2)x(t)(u1 − u2)x(t)| dx

≤ α1

4
‖(u1 − u2)x(t)‖2H + C‖u1(t)‖2H‖(ϕ1 − ϕ2)(t)‖2H2(�)

≤ α1

4
‖(u1 − u2)x(t)‖2H + C‖u1(t)‖2H(‖(u1 − u2)(t)‖2H + ‖(v1 − v2)(t)‖2H),

α2

∫
�

|ϕ2x(t)(u1 − u2)(t)(u1 − u2)x(t)| dx

≤ α1

4
‖(u1 − u2)x(t)‖2H + C‖(ϕ2)(t)‖2H2(�)‖(u1 − u2)(t)‖2H

≤ α1

4
‖(u1 − u2)x(t)‖2H + C(‖u2(t)‖2H + ‖v2(t)‖2H)‖(u1 − u2)(t)‖2H ,

(f2(t, u1(t, 1))− f2(t, u2(t, 1)))(u1(t, 1)− u2(t, 1))
≤ Lf2(u1(t, 1)− u2(t, 1))2

≤ α1

4
‖(u1 − u2)x(t)‖2H + C‖(u1 − u2)(t)‖2H ,

(f1(t, u1(t, 0))− f1(t, u2(t, 0)))(u1(t, 0)− u2(t, 0))

D
ow

nl
oa

de
d 

by
 [

L
uc

ja
n 

Sa
pa

] 
at

 0
0:

42
 1

2 
D

ec
em

be
r 

20
17

 



2330 R. FILIPEK ET AL.

≤ Lf1(u1(t, 0)− u2(t, 0))2

≤ α1

4
‖(u1 − u2)x(t)‖2H + C‖(u1 − u2)(t)‖2H .

In consequence

d
dt

‖(u1 − u2)(t)‖2H ≤ C(‖u1(t)‖2H + ‖u2(t)‖2H + ‖v2(t)‖2H + 1)

× (‖(u1 − u2)(t)‖2H + ‖(v1 − v2)(t)‖2H). (5.6)

Making similar estimates as above for (5.2) we have

d
dt

‖(v1 − v2)(t)‖2H ≤ C(‖u2(t)‖2H + ‖v1(t)‖2H + ‖v2(t)‖2H + 1)

× (‖(u1 − u2)(t)‖2H + ‖(v1 − v2)(t)‖2H). (5.7)

Adding (5.6) and (5.7) we get

d
dt
(‖(u1 − u2)(t)‖2H + ‖(v1 − v2)(t)‖2H)
≤ C(‖u1(t)‖2H + ‖u2(t)‖2H + ‖v1(t)‖2H + ‖v2(t)‖2H + 1)

× (‖(u1 − u2)(t)‖2H + ‖(v1 − v2)(t)‖2H).

Hence the Gronwall lemma implies that for all t ∈ [0,T]

‖(u1 − u2)(t)‖2H + ‖(v1 − v2)(t)‖2H
≤ e

∫ T
0 C(‖u1(t)‖2H+‖u2(t)‖2H+‖v1(t)‖2H+‖v2(t)‖2H+1) dt

× (‖(u1 − u2)(0)‖2H + ‖(v1 − v2)(0)‖2H). (5.8)

Therefore u1 = u2, v1 = v2, because the right-hand side in (5.8) is equal zero. It follows from the
uniqueness of the solution to (5.3) that ϕ1 = ϕ2. �

6. Nonnegativity of local weak solutions

In this section we prove that, provided the initial conditions u0, v0 are nonnegative for a.e. x ∈ �, the
concentrations u(t), v(t)must also remain nonnegative.
Theorem 6.1: Let AssumptionsH,H+ hold. Then for all t ∈ [0,T] such that the solution of Problem
PE exists on the interval [0,T] we have u(t) ∈ H+ and v(t) ∈ H+.
Proof: The proof follows the lines of the corresponding part of the proof of [30, Lemma 4.1], see
also [26, Proposition 1]. Consider the following auxiliary problem, which differs from Problem PE
by replacement of u, v with u+, v+, where u+ = max{u, 0}, v+ = max{v, 0} in the terms representing
electrostatic forces in (3.1) and (3.2).
Problem PE+. Find u, v ∈ L2(0,T;V) and ϕ ∈ L2(0,T;H3(�) ∩ H1

0 (�)) such that ut , vt ∈
L2(0,T;V∗) and for a.e. t ∈ (0,T)

〈ut , η〉V∗×V +
∫
�

(α1ux − α2u+ϕx)ηxdx (6.1)

= f2(t, u(t, 1))η(1)− f1(t, u(t, 0))η(0) for each η ∈ V ,

〈vt , ζ 〉V∗×V +
∫
�

(β1vx + β2v+ϕx)ζxdx (6.2)
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= g2(t, v(t, 1))ζ(1)− g1(t, v(t, 0))ζ(0) for each ζ ∈ V ,∫
�

ϕxξxdx + λ

∫
�

(u − v)ξdx = 0 for each ξ ∈ H1
0 (�), (6.3)

and the initial conditions (2.2) hold.
By the same argument as in the proof of Theorem 4.2 based on the Schauder–Tychonoff fixed

point theorem it follows that Problem PE+ has a local in time weak solution (u, v,ϕ). We will prove
that (u, v,ϕ) solves Problem PE+ on a certain interval [0,T] if and only if it solves Problem PE on
this interval.

Indeed, assume that (u, v,ϕ) solves Problem PE+ on [0,T]. We will prove that u(t) ∈ H+ and
v(t) ∈ H+ for all t ∈ [0,T]. As the calculations for u and v are analogous, they will be done only for
u. Taking η = u−(t) = −min{u(t), 0} in (6.1) we get

−1
2
d
dt

‖u−(t)‖2H − α1‖u−
x (t)‖2H = f2(t, u(t, 1))u−(t, 1)− f1(t, u(t, 0))u−(t, 0),

for a.e. t ∈ (0,T). By (H+
1 ) the right-hand side in the above equation is nonnegative, which gives

1
2
d
dt

‖u−(t)‖2H + α1‖u−
x (t)‖2H ≤ 0,

for a.e. t ∈ (0,T). After integration on the interval (0, t) for t ∈ [0,T] we get

1
2
‖u−(t)‖2H + α1

∫ t

0
‖u−

x (s)‖2H ds ≤ 1
2
‖u−(t, 0)‖2H ,

for all t ∈ [0,T], which, in view of (H+
0 ), yields that u

−(t) = 0, and u+(t) = u(t) for all t ∈ (0,T),
whereas u satisfies (3.1). Note that we have also proved, that for every solution of Problem PE+ we
must have u(t) ∈ H+ and v(t) ∈ H+ for all t in the interval of solution existence.

Now assume that (u, v,ϕ) solves Problem PE on an interval [0,T]. We know that there exists
a solution (ū, v̄, ϕ̄) on a certain time interval [0,T0] of Problem PE+ and (ū, v̄, ϕ̄) must also solve
ProblemPE on this time interval. IfT ≤ T0, then the uniqueness Theorem 5.1 implies that (ū, v̄, ϕ̄) =
(u, v,ϕ) on [0,T] and the assertion is proved. IfT0 < T wewill use the barriermethod. Indeed, denote
by T̄0 the supremum of all times T0 such that Problem PE+ has a solution (ū, v̄, ϕ̄) in [0,T0] (it may
be that T̄0 = +∞). If T̄0 > T we arrive at the previous case T ≤ T0. We will prove that the case
T̄0 ≤ T leads to a contradiction. Observe that (ū, v̄, ϕ̄)must also solve Problem PE on each interval
[0, T̄0 − ε], which, by the uniqueness of solution to Problem PE implies that (ū, v̄, ϕ̄) = (u, v,ϕ) on
the interval [0, T̄0). But, as u, v ∈ C([0,T];H), the values limt↗T̄0 ‖ū(t)‖H and limt↗T̄0 ‖v̄(t)‖H are
well defined and finite, and hence we can continue the solution (ū, v̄, ϕ̄) of Problem PE+, starting
from T̄0, which contradicts its maximality.

As both problems are equivalent, and for the solution of Problem PE we must have u(t) ∈ H+
and v(t) ∈ H+ for all t, the assertion is proved. �
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[1] Bożek B, Wierzba B, Danielewski M. Molecular ion channels; electrodiffusion in R3. Defect Diffus. Forum.
2010;297–301:1469–1474.
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