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Abstract

The mathematical model of the transport and diffusion of ions in biological channels is considered. It 
is described by the three-dimensional nonlinear evolution classical Poisson–Nernst–Planck (cPNP) system 
of partial differential equations with nonlinear coupled boundary conditions. In particular the Chang–Jaffé 
(CJ) conditions are given on the input and output of a channel. The Robin boundary conditions on a po-
tential are taken. Theorems on the existence, uniqueness and nonnegativity of local weak solutions, in the 
suitable Sobolev spaces, are proved. The main tool used in the proof of the existence result is the Schauder–
Tychonoff fixed point theorem.
© 2021 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The transport of ions and molecules is a fundamental process in biological systems. The rel-
evant example here is the identification of potassium and sodium currents in the behavior of 
a nerve system [24]. The work was a milestone in the history of electrophysiology for which 
Hodgkin and Huxley were awarded the 1963 Nobel Prize in Medicine. The intensive research 
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Fig. 1. The simplified biological ion channel.

is devoted toward understanding the functions of protein channels in the living cell membranes 
[1,14,40]. They separate the interior of a cell from the exterior, fluctuate between open and closed 
states and mediate the transport of specific inorganic ions (Fig. 1). In an open state, they work 
as selective filters, permitting some ions to pass, but limiting the rate of passing of the others. 
The mobile ions diffuse downhill the gradient of an electrochemical potential, without coupling 
to an energy source. The cell channels open in response to a specific stimulus, e.g., the change of 
the voltage across the membrane. Most interesting is however their ability to work as selective 
filters in the open conformation. The fact is that the selectivity mechanism is extremely rich and 
provides challenge for comprehensive understanding [16,45]. The big activity in understanding 
the generic phenomena and processes occurring in living organisms is partially due to a grow-
ing interest in bio-mimetic materials designed based on knowledge of biology. It is believed 
that learning and understanding of the selective transport of ions through the channels will give 
rise towards real-world applications and will provide guidelines to design and fabricate synthetic 
nanopores that can be applied in sensing, purifying or energy conversion.

Mathematical modeling serves to bridge the gap between the fundamental physics behind de-
vice operation and experimental results. The driving force in the Nernst–Planck flux involves two 
indispensable parts: the gradients of the concentrations ci and the electrical potential ϕ generated 
by electric charges

Ji = −Di

(∇ci + αzici∇ϕ
)

(1.1)

in the case of s components, i = 1, ..., s, where Di and zi are the diffusion coefficient and the 
charge number of the ith ion, respectively, and α = F

RT
is a constant with the Faraday constant F , 

the gas constant R and the absolute temperature of the medium T . The electric field component 
comes here via two mechanisms, namely as the externally applied potential and as the electro-
static interaction between the ions present in the system. We will study the nonlinear evolution 
classical Poisson–Nernst–Planck (cPNP) system of equations

{
∂t ci + divJi = 0, i = 1, ..., s,

−�ϕ = λ
∑s

j=1 zj cj ,
(1.2)

on [0, T ] × �, � ⊂ R3 is an open bounded set. The Debye constant is given by λ = F
ε0εr

, where 
F denotes the Faraday constant, ε0 - the vacuum permittivity and εr - the relative permittivity of 
the medium. This system constitutes a mathematical framework for the deterministic modeling 
of electrodiffusion in continuum media approximation [29,30,44,45,47].
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The investigations of different types of boundary conditions show efficiency of the Chang-
Jaffé boundary conditions. The basic idea is that the flux on the boundary (or more precisely, the 
normal component of the flux) is proportional to the weighed difference between the concentra-
tion inside and outside of the region where the process takes place

Ji(t, x) ◦ n(x) = −ki,f ci,out + ki,bci(t, x) (1.3)

for x ∈ ∂�, where n ∈ R3 is the outside normal unit vector to ∂�, ki,f , ki,b ≥ 0 are the ma-
terial constants (the so called heterogeneous rate constants) which describe the permeability of 
the boundary, and ci,out is the concentration of the i-th species outside � – it is assumed that 
ci,out is constant. The symbol “◦” means the standard scalar product in R3. In the case where 
the ions have different mobilities, the exact impedance spectra using the Chang-Jaffé-Nernst–
Planck-Poisson response model were obtained and the conditions providing essentially exact or 
approximate numerical correspondence of different models were determined [33,39]. Impedance 
is a complex quantity characterizing the relationship between the current intensity and voltage in 
alternating current (sinusoidal alternating) circuits. In one dimension this type of boundary con-
ditions were first used by Chang and Jaffé in 1951 in their paper on the polarization in electrolytic 
solutions [12]. This phenomenon consists in the change of the electrode potential with respect to 
the solution as a result of the current flow during electrolysis. Since then, the CJ boundary condi-
tions have been used extensively in the field of potentiometric sensors modeling as proposed by 
Brumleve and Buck in their seminal paper [10]. These sensors measure the equilibrium electrical 
potential of an electrode when no current is present.

The real materials commonly have the high concentration of internal bounded charges. By 
subtracting the effect of internal charges, the equations for free charges follow. They have a 
form of the original Maxwell equations but with E = −∇ϕ replaced by the supplementary field 
D = −ε∇ϕ, ε = ε0εr and charges q by the free charges qf ree. A similar argument holds for the 
magnetic flux density B and the magnetic field intensity H . Upon introducing those supplemen-
tary D and H , the Maxwell equations get a geometric, particularly useful in electrochemistry, 
connotation. Let � ⊂ ∂� be a fixed part of ∂� with the closed boundary ∂�. The fields E, D, B
and H allow expressing the electromagnetism by the system of integral equations. In this work, 
the total current formula is of interest∮

∂�

H ◦ dl − ∂

∂t

∫
�

D ◦ dS =
∫
�

I� ◦ dS, (1.4)

where I� = I + F
∑s

i=1 ziJi is the overall current density at �, I and F
∑s

i=1 ziJi are the 
densities of the electron and ionic currents. In ionic solutions at low frequencies it might be 
simplified

∂

∂t

∫
�

D ◦ dS = −
∫
�

I� ◦ dS, (1.5)

and in the local form

ε(t, x)
∂ϕ

(t, x) = I�(t, x) ◦ n(x), (1.6)

∂n
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where n is the outside normal unit vector to �. A channel wall can be formed by different 
compounds. It implies different values of ε at the boundary. In particular ε = ε(t, x). In order to 
formulate the boundary conditions for the whole � we postulate the Robin type ones

a(t, x)
∂ϕ

∂n
+ b(t, x)ϕ = h(t, x). (1.7)

The processes inside � refer to the electrolyte (solution). The processes at the boundary ∂� ex-
pressed by (1.7) allow inventing appropriate boundary conditions on ϕ for the Poisson equation 
in (1.2). Our partial differential equations (1.2) describe everything except a very thin double con-
tact layer of ions due to the Stern effect or the permanent charge Q(t, x), which may be included 
in (1.7) by putting h(t, x) := Q(t, x). The “electrode”, we refer to the electrically conducting 
phase on the wall of the channel in contact with the electrolyte inside of its, which does not in-
clude either the diffuse or contact parts of the double layer. The Maxwell equations are valid in 
mediums where gradients of scalar potentials are not too large and the continuum approximation 
is allowed, e.g., the local densities are defined.

The boundary models should, in principle, be treated using a quantum mechanical treatment of 
the boundary. So far such satisfactory quantum mechanical models have not been developed for 
aqueous solutions considered here. A common simplification, valid if the electric field does not 
change very quickly [26], assumes the local and instantaneous material response. The Langevin 
function [22] models such dielectric saturation in a polar substance, i.e. such a substance that 
contains polar molecules, the chemical species in which the distribution of electrons is not ho-
mogenous. Thus the a, b and h coefficients in (1.7) can be approximated based on experimental 
data and simplified boundary models. The boundary conditions considered in this paper are much 
more physical and perspective than those in [6,7,15,44,46]. We suppose that the difference meth-
ods formulated in [8,42] will be appropriate to make numerical simulations for the problems 
studied. It will be a subject of our future articles.

Let us stress that this paper considers only the relatively simplest model that treats ions as 
point-charges and no specific ion effects are touched. Also, the model is primitive in the sense 
that it treats water as a dielectric medium through the dielectric coefficient. A one-dimensional 
steady-state model with the richer Nernst–Planck fluxes

Ji = −r(x)
1

RT
Dici

dμi

dx
(1.8)

and the Poisson equation

− 1

r(x)

d

dx

(
r(x)

dϕ

dx

)
= λ

( s∑
j=1

zj cj + Q(x)
)
, (1.9)

where r(x) represents the cross-section area of the channel over the longitudinal and Q(x) is 
the distribution of the permanent charge along the interior wall of the channel, was developed in 
[18,28]. The electrochemical potential μi for the ith ion species consists of the ideal component 
μid

i , the excess component μex
i and the concentration-independent component μ0

i : μi = μid
i +

μex
i + μ0

i , where

μid
i = Fziϕ + RT ln

ci (1.10)

c0
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with some characteristic number density c0 which without loss of generality is normalized to 
one in the model. The cPNP system (1.2) takes the ideal component μid

i only. This component 
reflects the collision between ion particles and the water molecules. It has been accepted that the 
cPNP system is a reasonable model in, for example, the dilute case under which the ions can be 
treated as point charges and the ion-to-ion interaction can be ignored. As remarked in [28], Di ’s 
involve the ionic radii through the Einstein relation so that the cPNP does not completely ignore 
ion sizes. Two critical potential values at the entry of the channel that characterize some size 
effects on current-voltage relation are identified with the use of a combination of the geometric 
singular perturbation and the density functional theory, DFT, in [28]. This work generalizes re-
sults from [43]. It is determined in [18], using the geometric singular perturbation theory, when 
the permanent charge Q(x) produces current reversal. A singular orbit of a one-dimensional 
cPNP boundary value problem for two species is identified based on the dynamics of limiting 
fast and slow steady-state systems in [36]. An application of the geometric singular perturbation 
theory gives rise to the existence and (local) uniqueness of the boundary value problem. These 
ideas are extended to systems with multiple regions of the permanent charge and with multi-
ple ion species in [37]. The connections between attractors of three-dimensional systems with 
permanent charges for two species and theirs one-dimensional limiting reductions are studied in 
[17,38], with the use of the geometric singular perturbation theory.

In recent years some more general two- or three-dimensional ionic electrodiffusion mod-
els have been studied also, but with boundary conditions simpler than CJ and Robin’s. The 
Poisson–Nernst–Planck–Navier–Stokes cross-diffusion system describing the compressible vis-
cous conductive fluid with the crowded charged particles of two species has been considered in 
[48], while in [15], the similar system for the incompressible conductive fluid with diluted mul-
tiple species has been studied. The Poisson–Nernst–Planck–Fourier system for two species with 
a variable temperature has been developed in [25]. In these papers, the existence and stability 
of global weak solutions has been proven. The work [34] concerns electrostatic properties of an 
ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are 
described by the minimization of an electrostatic free-energy functional of ionic concentrations.

This work presents the model of representing the dynamical operation of the nanochannel. 
The three-dimensional differential problem models electrodiffusion of s-mobile ions of different 
charges and mobilities, and the electrode effects, e.g. the permanent charge effect. It contains new 
advances in two major expects, namely it allows more than two ion species and it allows non-
homogenous boundary conditions. The CJ boundary conditions for the normal fluxes can realize
a new blocking or selective mechanism for different types of ions. It allows modeling a range 
of dynamics and behavior which have not been studied previously, and explore the numerical 
challenges required when adding more complexity to a model. Furthermore, the basic transport 
equations can in the future accommodate the inclusion of additional physics (see (1.8), (1.9), 
(1.10)), and coupling to more complex boundary conditions that incorporate two-dimensional 
surface phenomena and higher order reactions. In mathematical models and numerical simula-
tions of electrochemical systems, it is particularly important that all Maxwell’s equations are 
satisfied. If not it leads to highly not physical phenomena like the superluminal propagation of 
waves and failure to conserve energy or momentum. The model takes into account nonhomogene-
ity of the wall of the channel. Namely by including dielectric polarization effects by introducing 
different values of the dielectric permittivity in different parts of the boundary due to adsorption. 
Advection and convection effects are not modeled but could in future be incorporated.

The mathematical theory of the cPNP and PNP systems is quite extensive but still it lacks 
the main results on the local or global existence and uniqueness of solutions in the case of rele-
5
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vant boundary conditions in dimensions bigger than one. Well-posedness of the one-dimensional 
cPNP system for two components with the class of nonlinear boundary conditions which cover 
the CJ on fluxes and the Dirichlet on potential boundary conditions is studied in [20]. But even 
in this case there are no theorems about the global in time existence. Biler et al. in [4,5] consider 
the cPNP system describing chemotaxis in different dimensions for one or two components and 
prove the global existence and uniqueness, and the convergence to the steady-state solution as 
time advances to infinity. However, the boundary conditions they use are simpler than CJ and 
have the form of null normal fluxes on the whole boundary. Those boundary conditions imply 
the law of mass conservation and in consequence a construction of the Lapunov function. This 
function is crucial in the proof of the global existence. This has a simple physical interpreta-
tion meaning the closed system. But as we motivated above, real electrodiffusion applications of 
practical importance are almost always open systems which interact with surroundings through 
boundary fluxes. There is a handful of mathematical papers that address the cPNP and PNP 
systems but in the steady-state variant [3,18,23,27,28,32,34,36,37,43,49]. Because we are here 
interested only in the time dependent system we shall not go into details but stress the fact that 
none of these papers uses the CJ boundary conditions or their extensions.

There exists vast literature on the existence and regularity of solutions for both parabolic and 
elliptic problems, cf., e.g. [9,11,13,19,31,35,41,50]. The aim of this paper is to give theorems on 
the existence, uniqueness and nonnegativity of weak solutions, in the suitable Sobolev spaces, 
to the three-dimensional cPNP system. We have two parts of boundary conditions on fluxes, i.e. 
null normal fluxes on the wall of the channel and the Chang–Jaffé (CJ) conditions on the input 
and output. The Robin boundary conditions on the potential are taken. In the existence proof we 
use the Schauder–Tychonoff fixed point theorem instead of the Schauder fixed point theorem as 
in [4,5] because of compact embeddings in the boundary spaces.

The paper is organized in the following way. In Section 2, the initial-boundary differential 
problem is formulated and its weak version is given together with the assumptions that will be 
used in the further parts. Section 3 is concerned the regularity and estimate of weak solutions to 
the auxiliary elliptic Robin boundary value problem. Sections 4, 5 and 6 deal with the existence, 
uniqueness and nonnegativity of weak solutions of the problem studied, respectively.

2. Problem formulation

We define a simplified tubular-like membrane channel � ⊂R3 with the boundary ∂� belong-
ing to class C∞ of the form

� =
{
(x1, x2, x3) ∈R3 : 0 < x1 < 1, x2

2 + x2
3 < g2(x1)

}
,

where g ∈ C∞([0, 1], R) (see Fig. 2). The boundary ∂� will be divided into three portions as 
follows:

∂1� =
{
(x1, x2, x3) ∈ ∂� : x1 = 0

}
,

∂2� =
{
(x1, x2, x3) ∈ ∂� : x1 = 1

}
,

∂3� =
{
(x1, x2, x3) ∈ ∂� : 0 < x1 < 1, x2

2 + x2
3 = g2(x1)

}
.

6



L. Sapa Journal of Differential Equations 291 (2021) 1–26
Fig. 2. The domain � and its sample boundary ∂�.

Thus, ∂1� and ∂2� are viewed as the input and output of the channel, respectively and ∂3� -
the wall of the channel. Let functions c0i : � → R, a, b, h : [0, T ] × ∂� → R and constants 
Di, α, λ > 0, aji, bji ≥ 0, zi ∈ R, i = 1, ..., s, j = 1, 2 be given, where T > 0 is arbitrary.

We consider the nonlinear parabolic-elliptic system of equations

{
∂t ci + div

(−Di

(∇ci + αzici∇ϕ
))= 0 on

[
0, T

]×�,

−�ϕ = λ
∑s

j=1 zj cj on
[
0, T

]×�,
(2.1)

with the initial condition

ci(0, x) = c0i (x) on �, (2.2)

and the nonlinear boundary conditions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Di

(
∂ci

∂n
+ αzici

∂ϕ
∂n

)= −a1i + b1ici on [0, T ] × ∂1�,

−Di

(
∂ci

∂n
+ αzici

∂ϕ
∂n

)= −a2i + b2ici on [0, T ] × ∂2�,

−Di

(
∂ci

∂n
+ αzici

∂ϕ
∂n

)= 0 on [0, T ] × ∂3�,

a(t, x)
∂ϕ
∂n

+ b(t, x)ϕ = h(t, x) on [0, T ] × ∂�,

(2.3)

for i = 1, ..., s. The first and second conditions in (2.3) are called the Chang–Jaffé boundary 
conditions.

Define the Sobolev spaces V = H 1(�) and H = L2(�). Then V ⊂ H ⊂ V ∗ constitute an 
evolution triple with the embeddings being dense, continuous and compact. By H+ we denote 
the cone of nonnegative functions in H , that is

H+ = {
u ∈ H : u(x) ≥ 0 a.e. in �

}
.

In the paper by C > 0 we will always denote a generic constant dependent only on the problem 
data.

We assume the following conditions on c0i , i = 1, ..., s and a, b, h.
7
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Assumption H.

(H0) c0i ∈ H , i = 1, ..., s.
(H1) b

a
∈ L∞(0, T ; C∞(∂�)), h

a
∈ L∞(0, T ; H 1

2 (∂�)).
(H2) b

a
(t, x) ≥ p0 > 0 for a.e. t ∈ (0, T ) and all x ∈ ∂�, p0 = const.

The original initial-boundary value problem (2.1)–(2.3) has the following weak version.

Problem PE. Find ci ∈ L2(0, T ; V ) and ϕ ∈ L2(0, T ; H 2(�)) such that ∂tci ∈ L2(0, T ; V ∗) and 
for a.e. t ∈ (0, T )

〈∂t ci, ηi〉V ∗×V +
∫
�

Di(∇ci + αzici∇ϕ) ◦ ∇ηi dx (2.4)

=
∫

∂1�

(
a1i − b1ici

)
ηi dσ +

∫
∂2�

(
a2i − b2ici

)
ηi dσ for each ηi ∈ V,

∫
�

∇ϕ ◦ ∇ξ dx +
∫
∂�

b

a
ϕ ξ dσ = λ

s∑
j=1

∫
�

zj cj ξ dx +
∫
∂�

h

a
ξ dσ for each ξ ∈ V, (2.5)

and the initial condition (2.2) holds.

Remark 2.1. We postulate that the differences of the potential ϕ and its normal derivative ∂ϕ
∂n

on 
different parts of the boundary of the channel are a stimulus that causes selective ion flow. For 
numerical simulations, we can divide the wall of the channel ∂3� into several rings, for example 
as in Fig. 2. Then we may put a(t, x) ≈ χ∂3.1�∪∂3.3�∪∂3.5�(t, x) and b(t, x) ≈ χ∂3.2�∪∂3.4�(t, x)

for (t, x) ∈ ∂�3 := ⋃5
k=1 ∂3.k�, where χ means the characteristic function. Moreover, we can 

test different functions h, e.g. h(t, x) := Q(t, x), where Q means the distribution of the perma-
nent charge along the interior wall of the channel. Numerical calculations for such a boundary 
∂� with much simpler boundary conditions were made in [6,7,46]. Now it is a challenge task 
and we have not finished it yet.

Remark 2.2. We assumed the constants aji, bji ≥ 0, i = 1, ..., s, j = 1, 2 in the CJ boundary 
conditions in (2.3). This assumption implies the physically desirable positivity property of solu-
tions given in Theorem 6.1. Moreover, putting a1i = b1i = 0 we block inflow of ith ions into the 
channel and putting a2i = b2i = 0 we block outflow. In this way, the boundary conditions (2.3)
give a blocking or selective mechanism for different types of ions. Another kind of selectivity 
is proposed in [15], where blocking and unblocking of flow of ith ions through ∂1� or ∂2� is 
realized by setting Ji ◦ n = 0 and ci > 0, respectively. It is different in [6,7,46], where ∂1� and 
∂2� are permeable, which means that the ions enter and exit the channel, and it is realized by 
setting ci > 0.

3. Regularity of weak solutions to the elliptic problem

We will formulate below two theorems regarding the auxiliary elliptic Robin boundary value 
problem and then we will come back to our main Problem PE. Suppose that � ⊂ Rd , d ∈ N
8
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is an open bounded set with the boundary ∂� of class C2 (see [9], p. 272). Let f ∈ L2(�), 
g ∈ L2(∂�), p ∈ L∞(∂�) and p(x) ≥ p0 > 0 for all x ∈ ∂�, p0 = const. We consider the 
Robin boundary value problem

{ −�ϕ = f (x) on �,
∂ϕ
∂n

+ p(x)ϕ = g(x) on ∂�.
(3.1)

We say that ϕ ∈ H 1(�) is a weak solution of (3.1) if

∫
�

∇ϕ ◦ ∇ξ dx +
∫
∂�

pϕ ξ dσ =
∫
�

f ξ dx +
∫
∂�

gξ dσ for each ξ ∈ H 1(�). (3.2)

The space H 1(�) is equipped with the standard Sobolev norm

‖ϕ‖H 1(�) =
(∫

�

(
ϕ2 + |∇ϕ|2)dx

) 1
2

(3.3)

and with the equivalent norm

‖ϕ‖∗ =
(∫

�

|∇ϕ|2 dx +
∫
∂�

ϕ2 dσ
) 1

2
(3.4)

(see [50, Theorem 21.A]).

Theorem 3.1. Under the assumptions above, the Robin boundary value problem (3.1) has a 
unique weak solution ϕ ∈ H 1(�). Moreover

‖ϕ‖H 1(�) ≤ C
(‖f ‖L2(�) + ‖g‖L2(∂�)

)
, (3.5)

where C is a positive constant depending on p0.

Proof. The existence of a unique solution ϕ ∈ H 1(�) follows from [50, Proposition 22.16]. To 
prove the estimate (3.5) note that, by (3.2)

∫
�

|∇ϕ|2 dx +
∫
∂�

pϕ2 dσ ≤ C
(‖f ‖L2(�) + ‖g‖L2(∂�)

)‖ϕ‖H 1(�).

But on the other hand

C‖ϕ‖2
H 1(�)

≤ C1‖ϕ‖2∗ ≤
∫
�

|∇ϕ|2 dx + p0

∫
∂�

ϕ2 dσ ≤
∫
�

|∇ϕ|2 dx +
∫
∂�

pϕ2 dσ.

Using these relations and the Young with ε inequality, we obtain
9
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C‖ϕ‖2
H 1(�)

≤ C(ε)
(‖f ‖2

L2(�)
+ ‖g‖2

L2(∂�)

)+ε‖ϕ‖2
H 1(�)

and consequently (3.5), by putting ε = C
2 . �

Theorem 3.2. Under the assumptions of Theorem 3.1 and adding that ∂� belongs to class C∞, 
p ∈ C∞(∂�) and g ∈ H

1
2 (∂�), the Robin boundary value problem (3.1) has a weak solution 

ϕ ∈ H 2(�) which is unique in H 1(�). Moreover

‖ϕ‖H 2(�) ≤ C
(‖f ‖L2(�) + ‖g‖

H
1
2 (∂�)

)
, (3.6)

where C is a positive constant depending on p0.

Proof. Consider the linear operator

P : H 2(�) → L2(�) × H
1
2 (∂�), Pϕ = (

Aϕ,B0ϕ
)
,

where Aϕ = −�ϕ on � and B0ϕ = ∂ϕ
∂n

+ p(x)ϕ on ∂�. Obviously the conjugate operator A∗ is 
equal A. Put S0ϕ = ϕ, C0 = B0 and T0 = S0 on ∂�. We have for any ϕ, v ∈ H 2(�) the following 
relation, by the Green’s formula

∫
�

(Aϕ)v dx −
∫
�

ϕA∗v dx =
∫
∂�

S0ϕC0v dσ −
∫
∂�

B0ϕT0v dσ.

It follows from Theorem 3.1 that the homogeneous problem A∗v = 0, C0v = 0 has a unique 
solution v = 0 in C∞(�) because C∞(�) ⊂ H 1(�). Theorem 5.3 in [35] implies that P is 
surjective. In consequence problem (3.1) has a solution ϕ ∈ H 2(�), and it is unique in H 1(�)

from Theorem 3.1. We get from [35, Theorem 5.1] the estimate

‖ϕ‖H 2(�) ≤ C
(‖f ‖L2(�) + ‖g‖

H
1
2 (∂�)

+ ‖ϕ‖H 1(�)

)
.

Then the use of (3.5) in Theorem 3.1 together with the continuous imbedding H
1
2 (∂�) ⊂ L2(∂�)

given by [11, Theorems 2.80] finishes the proof. �
4. Existence of local weak solutions

We will use the following version of the Schauder–Tychonoff fixed point theorem which is a 
simple consequence of [2, Theorem 1].

Theorem 4.1. Let X be a reflexive Banach space and let C ⊂ X be a closed, bounded, convex 
and nonempty set. If the function 
 : C → C is sequentially weakly continuous, then it must have 
a fixed point.

To study the existence of a weak solution to Problem PE, we split it into two auxiliary prob-
lems, an elliptic one, and a parabolic one.
10
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Problem E. Given wi ∈ L2(0, T ; V ) find ψ ∈ L2(0, T ; H 2(�)) such that for a.e. t ∈ (0, T )

∫
�

∇ψ ◦ ∇ξ dx +
∫
∂�

b

a
ψ ξ dσ = λ

s∑
j=1

∫
�

zjwj ξ dx +
∫
∂�

h

a
ξ dσ for each ξ ∈ V. (4.1)

Problem P. Given wi ∈ L2(0, T ; V ) and ψ ∈ L2(0, T ; H 2(�)) find ci ∈ L2(0, T ; V ) such that 
∂t ci ∈ L2(0, T ; V ∗) and for a.e. t ∈ (0, T )

〈∂t ci , ηi〉V ∗×V +
∫
�

Di

(∇ci + αzici∇ψ
)◦∇ηidx (4.2)

=
∫

∂1�

(
a1i − b1iwi

)
ηidσ +

∫
∂2�

(
a2i − b2iwi

)
ηidσ for each ηi ∈ V,

and the initial condition (2.2) holds.

Define for a fixed T > 0 the space of vector valued functions

XT = {
c = (

c1, ..., cs

): ci ∈ L2(0, T ;V ), ∂t ci ∈ L2(0, T ;V ∗)
}

(4.3)

normed by

‖c‖XT
=

s∑
i=1

(
‖ci‖L2(0,T ;V ) + ‖∂t ci‖L2(0,T ;V ∗)

)
, (4.4)

where

‖ci‖2
L2(0,T ;V )

=
T∫

0

‖ci(t)‖2
V dt,

‖∂t ci‖2
L2(0,T ;V ∗) =

T∫
0

‖∂t ci(t)‖2
V ∗ dt.

The space 
(
XT , ‖ ‖XT

)
is a reflexive Banach space. We will use two topologies in this space, 

namely the strong topology and the weak topology. We define the set

B = B(T ,Q0,Q1,Q2,Q3)

parameterized by the time T > 0 and the constants Q0, Q1, Q2, Q3 > 0,

B = {
w ∈ XT : ‖wi‖2

L2(0,T ;H)
≤ Q0, ‖∇wi‖2

L2(0,T ;H)
≤ Q1, ‖∂twi‖2

L2(0,T ;V ∗) ≤ Q2, (4.5)

‖wi‖4
L4(0,T ;H)

≤ Q3
}
.

11
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Note that the set B is convex and strongly closed in XT , so it is also weakly closed. Since it is 
also strongly bounded, it follows that it is weakly compact. Define the operator


E : B → L2(0, T ;H 2(�)),

which maps any w ∈ B to the unique solution ψ ∈ L2(0, T ; H 2(�)) of Problem E, and the 
operator


P : B × L2(0, T ;H 2(�)) → XT ,

which maps any pair w ∈ B and function ψ ∈ L2(0, T ; H 2(�)) to the unique solution c ∈ XT of 
Problem P. Composing the two operators we define


 : B → XT , 
(w) = 
P (w,
E(w)). (4.6)

Obviously, (c, ϕ) is a solution of Problem PE if and only if c is a fixed point of 
, and ϕ =

E(c). We establish several lemmas on the properties of 
E , 
P , 
 which imply the correctness 
of their definitions and will be useful in the local existence result.

Lemma 4.1. If assumptions (H1), (H2) hold, then Problem E has a unique solution, and the 
following estimate is true

‖ψ(t)‖H 2(�) ≤ C
( s∑

j=1

‖wj(t)‖H + 1
)

for a.e. t ∈ (0, T ) with C > 0. (4.7)

Proof. The existence for a.e. t ∈ (0, T ) of a unique weak solution ψ = ψ(t, ·) ∈ V follows from 
Theorem 3.1. Then, using Theorem 3.2 we have for a.e. t ∈ (0, T ) that ψ(t, ·) ∈ H 2(�) and (4.7)
holds. Note that ψ depends measurably on t , because of measurability of wj on t , linearity of 
(4.1) and the estimate (4.7). Hence,

T∫
0

‖ψ(t)‖2
H 2(�)

dt ≤ C
( s∑

j=1

T∫
0

‖wj(t)‖2
H dt + T

)
< ∞ (4.8)

and in consequence ψ ∈ L2(0, T ; H 2(�)). �
Remark 4.1. Let r ∈ ( 1

2 , 1]. It follows from [11, Theorems 2.81] that the trace T : Hr(�) →
Hr− 1

2 (∂�) is linear, continuous and

‖T u‖
H

r− 1
2 (∂�)

≤ C‖u‖Hr(�), u ∈ Hr(�).

Moreover, by [11, Theorems 2.80], the embedding Hr− 1
2 (∂�) ⊂ L2(∂�) is compact. In con-

sequence T̃ : Hr(�) → L2(∂�), T̃ u := i(T u) for u ∈ Hr(�), where i means the identity on 
Hr− 1

2 (∂�), is the linear continuous trace and

‖T̃ u‖L2(∂�) ≤ C‖u‖Hr(�), u ∈ Hr(�). (4.9)
12
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Lemma 4.2. If assumption (H0) holds, then Problem P has a unique solution.

Proof. Note that ∇ψ ∈ L2(0, T ; L6(�)), because ∇ψ ∈ L2(0, T ; V ) and V ⊂ L6(�) continu-
ously. Moreover, it follows from Remark 4.1 that wi(·) ∈ L2(∂�). The proof of the existence 
and uniqueness of solutions to the linear problem is standard and can be done for example by the 
Galerkin method. The proof that uses the Galerkin method follows the steps of the proof of [13, 
Theorem 11.7] and [50, Theorem 23.A, Proposition 23.28]. �
Lemma 4.3. If Assumption H holds, then there exists T > 0 such that 
 : B(T , Q0, Q1, Q2, Q3)

→ B(T , Q0, Q1, Q2, Q3) for certain Q0, Q1, Q2, Q3 > 0.

Proof. Let w ∈ B(T , Q0, Q1, Q2, Q3), where Q0, Q3 are arbitrary, and the choice of T , Q1, Q2
will be specified later. Denote ψ = 
E(w) and c = 
P (w, ψ). We will derive a priori estimates 
for Problem P. Taking ηi = ci(t) in (4.2) we get

1

2

d

dt
‖ci(t)‖2

H +Di‖∇ci(t)‖2
H + Diαzi

∫
�

ci(t)∇ψ(t) ◦ ∇ci(t) dx (4.10)

=
∫

∂1�

(
a1i − b1iwi(t)

)
ci(t) dσ +

∫
∂2�

(
a2i − b2iwi(t)

)
ci(t) dσ,

for a.e. t ∈ (0, T ). We will prove, using the equation (4.10), the estimates ‖ci‖2
L2(0,T ;H)

≤
Q0, ‖∇ci‖2

L2(0,T ;H)
≤ Q1, ‖∂t ci‖2

L2(0,T ;V ∗) ≤ Q2 and ‖ci‖4
L4(0,T ;H)

≤ Q3. The term Diαzi

· ∫
�

|ci(t)∇ψ(t) ◦ ∇ci(t)| dx can be estimated using the continuous imbeddings H 2(�) ⊂ V ⊂
L6(�), the Hölder inequality, the Sobolev approximation inequality ‖u‖L3(�) ≤ C‖u‖

1
2
V ‖u‖

1
2
H

for u ∈ V , the Young with ε inequality for p = 4
3 , q = 4 and Lemma 4.1, as below

Diα|zi |
∫
�

∣∣ci(t)∇ψ(t) ◦ ∇ci(t)
∣∣dx ≤ Diα|zi |‖∇ci(t)‖H ‖ci(t)‖L3(�)‖∇ψ(t)‖L6(�)

≤ C‖∇ci(t)‖H

(‖∇ci(t)‖2
H + ‖ci(t)‖2

H

) 1
4 ‖ci(t)‖

1
2
H

( s∑
j=1

‖wj(t)‖H + 1
)

≤ C
(‖∇ci(t)‖2

H + ‖ci(t)‖2
H

) 3
4 ‖ci(t)‖

1
2
H

( s∑
j=1

‖wj(t)‖H + 1
)

≤ Di

4

(‖∇ci(t)‖2
H + ‖ci(t)‖2

H

)+C‖ci(t)‖2
H

( s∑
j=1

‖wj(t)‖4
H + 1

)

≤ Di

4
‖∇ci(t)‖2

H + C
( s∑

j=1

‖wj(t)‖4
H + 1

)
‖ci(t)‖2

H . (4.11)

To estimate the boundary terms let r ∈ ( 1
2 , 1). Define Z = Hr(�). By Remark 4.1, the inequality 

(4.9) is true. Consider the triple of spaces V ⊂ Z ⊂ H . The embeddings V ⊂ Z and Z ⊂ H are 
13
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compact (see [11, Theorem 2.80]). We can use the Ehrling lemma (see for example [41, Lemma 
7.6]) to conclude that for any ε > 0 we can find C(ε) > 0 such that

‖u‖L2(∂�) ≤ ε‖∇u‖H + C(ε)‖u‖H , u ∈ V.

Add that the norm ‖u‖L2(∂�) is understood in the trace sense. We estimate the boundary terms 
in (4.10). Using the Schwartz inequality, the Cauchy with ε inequality and the above inequality, 
we have∫

∂1�

∣∣(a1i − b1iwi(t)
)
ci(t)

∣∣dσ +
∫

∂2�

∣∣(a2i − b2iwi(t)
)
ci(t)

∣∣dσ (4.12)

≤ ‖a1i − b1iwi(t)‖L2(∂1�)‖ci(t)‖L2(∂1�) + ‖a2i − b2iwi(t)‖L2(∂2�)‖ci(t)‖L2(∂2�)

≤ C
(
1 + ‖wi(t)‖L2(∂�)

)‖ci(t)‖L2(∂�)

≤ ‖ci(t)‖2
L2(∂�)

+ C‖wi(t)‖2
L2(∂�)

+ C

≤ εi‖∇ci(t)‖2
H + C(εi)‖ci(t)‖2

H + ε1i‖∇wi(t)‖2
H + C(ε1i )‖wi(t)‖2

H + C,

where the constants εi, ε1i > 0 are at this point arbitrary and will be specified later. We take 
εi = Di

4 in the last estimate, and using this estimate together with (4.11) in (4.10) we get

d

dt
‖ci(t)‖2

H + Di‖∇ci(t)‖2
H ≤ (4.13)

C
( s∑

j=1

‖wj(t)‖4
H + 1

)
‖ci(t)‖2

H + ε1i‖∇wi(t)‖2
H + C(ε1i )‖wi(t)‖2

H + C.

The Gronwall lemma implies that for all t ∈ [0, T ] we have

‖ci(t)‖2
H ≤ e

∫ t
0 C

(∑s
j=1 ‖wj (τ)‖4

H +1
)
dτ× (4.14)⎡

⎣‖c0i‖2
H +

t∫
0

(
ε1i‖∇wi(τ)‖2

H + C(ε1i )‖wi(τ)‖2
H + C

)
dτ

⎤
⎦

≤ e
CT +C

∑s
j=1

∫ T
0 ‖wj (τ)‖4

H dτ×⎡
⎣‖c0i‖2

H + CT +
T∫

0

(
ε1i‖∇wi(τ)‖2

H + C(ε1i )‖wi(τ)‖2
H

)
dτ

⎤
⎦

≤ eC(T +sQ3)(‖c0i‖2
H + CT + C(ε1i )Q0 + ε1iQ1).

Integrating over the interval (0, T ) we obtain

‖ci‖2
L2(0,T ;H)

≤ CT eC(T +sQ3)(‖c0i‖2
H + T + C(ε1i )Q0 + ε1iQ1). (4.15)

Integrating (4.13) from 0 to T we get
14
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Di

T∫
0

‖∇ci(t)‖2
H dt ≤C‖ci‖2

L∞(0,T ;H)

T∫
0

( s∑
j=1

‖wj(t)‖4
H + 1

)
dt

+ CT +
T∫

0

(
ε1i‖∇wi(t)‖2

H + C(ε1i )‖wi(t)‖2
H

)
dt + ‖c0i‖2

H .

Using (4.14) in the last inequality we get after cumbersome but straightforward computation

‖∇ci‖2
L2(0,T ;H)

≤ C
(‖c0i‖2

H + T + C(ε1i )Q0 + ε1iQ1
)(

1 + (sQ3 + T )eC(T +sQ3)
)

≤ ε1iQ1C
(
1 + (sQ3 + T )eC(T +sQ3)

)
+ C

(‖c0i‖2
H + T + C(ε1i )Q0

)(
1 + (sQ3 + T )eC(T +sQ3)

)
.

Without loss of generality we may assume that T ≤ 1, thus

‖∇ci‖2
L2(0,T ;H)

≤ ε1iQ1C
(
1 + (sQ3 + 1)eC(1+sQ3)

)
(4.16)

+ C
(‖ci0‖2

H + 1 + C(ε1i )Q0
)(

1 + (sQ3 + 1)eC(1+sQ3)
)
.

Let Q0, Q3 > 0 be fixed. We put

ε1i = 1

2C(1 + (sQ3 + 1)eC(1+sQ3))

and

Q1 = 2C
(‖c0i‖2

H + 1 + C(ε1i )Q0
)(

1 + (sQ3 + 1)eC(1+sQ3)
)
.

The inequality (4.16) yields ‖∇ci‖2
L2(0,T ;H)

≤ Q1. From (4.15), assuming that T ≤ 1, we get

‖ci‖2
L2(0,T ;H)

≤ CT eC(1+sQ3)(‖c0i‖2
H + 1 + C(ε1i )Q0 + ε1iQ1) = T F(Q0,Q3),

‖ci‖4
L4(0,T ;H)

≤ T F 2(Q0,Q3),

where F(Q0, Q3) depends only on Q0, Q3, but not on T . Hence if we take T = min{1, Q0
F(Q0,Q3)

,
Q3

F 2(Q0,Q3)
}, we obtain ‖ci‖2

L2(0,T ;H)
≤ Q0 and ‖ci‖4

L4(0,T ;H)
≤ Q3. It remains to obtain the 

estimate for ∂t ci . For any ηi ∈ L2(0, T ; V ) using the continuous imbeddings H 2(�) ⊂ V ⊂
L6(�), V ⊂ L2(∂�), the Hölder inequality, the Sobolev approximation inequality ‖u‖L3(�) ≤
C‖u‖

1
2 ‖u‖

1
2 for u ∈ V , the Cauchy inequality and Lemma 4.1, we have the following estimates
V H

15
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Di

T∫
0

∫
�

∣∣∇ci(t) ◦ ∇ηi(t)
∣∣dxdt ≤ Di

T∫
0

‖∇ci(t)‖H ‖∇ηi(t)‖H dt (4.17)

≤ Di‖∇ci‖L2(0,T ;H)‖ηi‖L2(0,T ;V ),

Diα|zi |
T∫

0

∫
�

∣∣ci(t)∇ψ(t) ◦ ∇ηi(t)
∣∣dxdt (4.18)

≤ Diα|zi |
T∫

0

‖ci(t)‖L3(�)‖∇ψ(t)‖L6(�)‖∇ηi(t)‖H dt

≤ C

T∫
0

(‖∇ci(t)‖2
H + ‖ci(t)‖2

H

) 1
4 ‖ci(t)‖

1
2
H

( s∑
j=1

‖wj(t)‖H + 1
)
‖∇ηi(t)‖H dt

≤ C‖ci‖
1
2
L∞(0,T ;H)

T∫
0

(
‖ci(t)‖V +

s∑
j=1

‖wj(t)‖2
H + 1

)
‖∇ηi(t)‖H dt

≤ C‖ci‖
1
2
L∞(0,T ;H)

(
‖ci‖L2(0,T ;V ) +

s∑
j=1

‖wj‖2
L4(0,T ;H)

+ T
1
2

)
‖ηi‖L2(0,T ;V ),

T∫
0

∫
∂1�

∣∣(a1i − b1iwi(t)
)
ηi(t)

∣∣dσ dt +
T∫

0

∫
∂2�

∣∣(a2i − b2iwi(t)
)
ηi(t)

∣∣dσ dt (4.19)

≤
T∫

0

‖a1i − b1iwi(t)‖L2(∂1�)‖ηi(t)‖L2(∂1�) dt

+
T∫

0

‖a2i − b2iwi(t)‖L2(∂2�)‖ηi(t)‖L2(∂2�) dt

≤ C

T∫
0

(
1 + ‖wi(t)‖L2(∂�)

)‖ηi(t)‖L2(∂�) dt

≤ C
(
T

1
2 + ‖wi‖L2(0,T ;V )

)‖ηi‖L2(0,T ;V ).

The inequalities (4.17)–(4.19) imply

‖∂t ci‖L2(0,T ;V ∗) ≤ Di‖∇ci‖L2(0,T ;H) + C‖ci‖
1
2
L∞(0,T ;H)

(
‖ci‖L2(0,T ;V )

+
s∑

j=1

‖wj‖2
L4(0,T ;H)

+ T
1
2

)
+C

(
T

1
2 + ‖wi‖L2(0,T ;V )

)
.
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Taking into account (4.14) to estimate the term ‖ci‖L∞(0,T ;H), we can write

‖∂t ci‖L2(0,T ;V ∗) ≤ G(T ,Q0,Q3,Q1),

with the constant G(T , Q0, Q3, Q1). It is enough to take Q2 = G2(T , Q0, Q3, Q1). The proof 
is complete. �
Remark 4.2. Without the use of the Ehrling lemma, the proof would still be possible with addi-
tional not physical bounds on the constants present in the model.

We will denote B = B(T , Q0, Q1, Q2, Q3) found in Lemma 4.3.

Lemma 4.4. If Assumption H holds, then the mapping 
 : B → B is sequentially weakly contin-
uous.

Proof. Consider sequences win → wi weakly in L2(0, T ; V ) with (∂twin) → ∂twi weakly in 
L2(0, T ; V ∗) such that wn = (w1n, ..., wsn), w = (w1, ..., ws) ∈ B . Let cn = 
(wn) and ψn =

E(wn), cn = (c1n, ..., csn). We must prove that cin → ci weakly in L2(0, T ; V ) and ∂t cin →
∂t ci weakly in L2(0, T ; V ∗) for c = 
(w), c = (c1, ..., cs). As cn ∈ B , a bounded set in XT , for a 
subsequence, not renumbered we must have cin → ci weakly in L2(0, T ; V ). Moreover ∂t cin →
c̄i weakly in L2(0, T ; V ∗) where it must be c̄i = ∂t ci . If we are able to show that c = 
(w) then, 
by the uniqueness of the limit, the convergence will hold for the whole sequence and the proof 
will be complete. For any ηi, ξ ∈ L2(0, T ; V ) we have

T∫
0

〈∂t cin(t), ηi(t)〉V ∗×V dt +
T∫

0

∫
�

Di

(∇cin(t) + αzicin(t)∇ψn(t)
)◦∇ηi(t) dxdt

=
T∫

0

∫
∂1�

(
a1i − b1iwin(t)

)
ηi(t) dσdt +

T∫
0

∫
∂2�

(
a2i − b2iwin(t)

)
ηi(t) dσdt, (4.20)

T∫
0

∫
�

∇ψn(t) ◦ ∇ξ(t) dxdt +
T∫

0

∫
∂�

b(t)

a(t)
ψn(t) ξ(t) dσdt (4.21)

= λ

s∑
j=1

T∫
0

∫
�

zjwjn(t)ξ(t) dxdt +
T∫

0

∫
∂�

h(t)

a(t)
ξ(t) dσdt.

From Lemma 4.1, we obtain the estimate

‖ψn‖L2(0,T ;H 2(�)) ≤ C
( s∑

j=1

‖wjn‖L2(0,T ;H) + T
1
2

)
.

It follows that, for a subsequence, denoted again by n, we must have ψn → ψ weakly in 
L2(0, T ; H 2(�)). We can pass to the limit in (4.21) which implies that
17
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T∫
0

∫
�

∇ψ(t) ◦ ∇ξ(t) dxdt +
T∫

0

∫
∂�

b(t)

a(t)
ψ(t) ξ(t) dσdt

= λ

s∑
j=1

T∫
0

∫
�

zjwj (t)ξ(t) dxdt +
T∫

0

∫
∂�

h(t)

a(t)
ξ(t) dσdt,

whence ψ = 
E(w).
We need to pass to the limit in (4.20). Note that the space L2(0, T ; H 2(�)) is dense in 

L2(0, T ; V ). Hence there are sequences ηik ∈ L2(0, T ; H 2(�)), ηik → ηi as k → ∞ strongly 
in L2(0, T ; V ). We can write for any ηik , by (4.20)

T∫
0

〈∂t cin(t), ηik(t)〉V ∗×V dt +
T∫

0

∫
�

Di

(∇cin(t) + αzicin(t)∇ψn(t)
)◦∇ηik(t) dxdt

=
T∫

0

∫
∂1�

(
a1i − b1iwin(t)

)
ηik(t) dσdt +

T∫
0

∫
∂2�

(
a2i − b2iwin(t)

)
ηik(t) dσdt. (4.22)

Passing to the limit with n and k in the terms with the time derivative and Di∇cin(t) ◦∇ηik(t) is 
clear and we omit it.

We will pass to the limit in the term with ∇ψn in (4.22). Let k be arbitrarily fixed. We have

T∫
0

∫
�

(
cin(t)∇ψn(t) − ci(t)∇ψ(t)

)◦∇ηik(t) dxdt (4.23)

=
T∫

0

∫
�

(
cin(t) − ci(t)

)∇ψn(t) ◦ ∇ηik(t) dxdt

+
T∫

0

∫
�

ci(t)
(∇ψn(t) − ∇ψ(t)

)◦∇ηik(t) dxdt.

We use Lemma 4.1 once again which gives the estimate

‖ψn‖L∞(0,T ;H 2(�)) ≤ C
( s∑

j=1

‖wjn‖L∞(0,T ;H) + 1
)
. (4.24)

Hence ψn → ψ weakly in L∞(0, T ; H 2(�)). Observe that

L∞(0, T ;H 2(�)) � ψ →
T∫ ∫

ci(t)∇ψ(t) ◦ ∇ηik(t) dxdt ∈R
0 �

18



L. Sapa Journal of Differential Equations 291 (2021) 1–26
defines a linear and continuous functional. Indeed, using the continuous imbeddings H 2(�) ⊂
V ⊂ L6(�), V ⊂ L2(∂�), the Hölder inequality, the Sobolev approximation inequality 

‖u‖L3(�) ≤ C‖u‖
1
2
V ‖u‖

1
2
H for u ∈ V and the Cauchy inequality, we obtain

T∫
0

∫
�

∣∣ci(t)∇ψ(t) ◦ ∇ηik(t)
∣∣dxdt ≤

T∫
0

‖ci(t)‖L3(�)‖∇ψ(t)‖L6(�)‖∇ηik(t)‖H dt

≤ C

T∫
0

(‖∇ci(t)‖2
H + ‖ci(t)‖2

H

) 1
4 ‖ci(t)‖

1
2
H ‖∇ψ(t)‖V ‖∇ηik(t)‖H dt

≤ C‖ci‖
1
2
L∞(0,T ;H)

T∫
0

(
1 + ‖ci(t)‖V

)‖ηik(t)‖V dt ‖ψ‖L∞(0,T ;H 2(�))

≤ C‖ci‖
1
2
L∞(0,T ;H)

(
1 + ‖ci‖L2(0,T ;V )

)‖ηik‖L2(0,T ;V )‖ψ‖L∞(0,T ;H 2(�)). (4.25)

It follows that

T∫
0

∫
�

ci(t)
(∇ψn(t) − ∇ψ(t)

)◦∇ηik(t) dxdt → 0, n → ∞.

By the Aubin–Lions compactness theorem we have cin → ci strongly in L2(0, T ; H). We remind 
that ψn is bounded in L∞(0, T ; H 2(�)), by (4.24). We have

T∫
0

∫
�

∣∣(cin(t) − ci(t)
)∇ψn(t) ◦ ∇ηik(t)

∣∣dxdt

≤
T∫

0

‖cin(t) − ci(t)‖H ‖∇ψn(t) ◦ ∇ηik(t)‖H dt

≤
T∫

0

‖cin(t) − ci(t)‖H ‖∇ψn(t)‖L4(�)‖∇ηik(t)‖L4(�) dt

≤ ‖ψn‖L∞(0,T ,H 2(�))

T∫
0

‖cin(t) − ci(t)‖H ‖ηik(t)‖H 2(�) dt

≤ ‖ψn‖L∞(0,T ,H 2(�))‖cin − ci‖L2(0,T ;H)‖ηik‖L2(0,T ;H 2(�)),

whence
19
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T∫
0

∫
�

(
cin(t) − ci(t)

)∇ψn(t) ◦ ∇ηik(t) dxdt → 0, n → ∞.

It follows that the integral on the left-hand side of (4.23) also converges to zero and in conse-
quence

T∫
0

∫
�

Diαzicin(t)∇ψn(t) ◦ ∇ηik(t) dxdt →
T∫

0

∫
�

Diαzici(t)∇ψ(t) ◦ ∇ηik(t) dxdt,

n → ∞ in (4.22). To pass to the limit with k note that the functional

L2(0, T ;V ) � η →
T∫

0

∫
�

ci(t)∇ψ(t) ◦ ∇η(t) dxdt ∈ R (4.26)

is linear and continuous. It is implied immediately by the estimate (4.25) with η instead of ηik . 
It is enough to take into account that ψ ∈ L∞(0, T ; H 2(�)).

Now we will pass to the limit in the boundary terms in (4.22). Consider the integral on ∂1�

only. Here passing to the limit follows from linearity of the functionals

L2(0, T ;V ) � w →
T∫

0

∫
∂1�

b1iw(t)ηik(t) dσdt ∈R,

L2(0, T ;V ) � η →
T∫

0

∫
∂1�

(
a1i − b1iwi(t)

)
η(t) dσdt ∈ R

and their continuity implied by the inequalities

T∫
0

∫
∂1�

∣∣b1iw(t)ηik(t)
∣∣dσdt ≤ C‖ηik‖L2(0,T ;V )‖w‖L2(0,T ;V ),

T∫
0

∫
∂1�

∣∣(a1i − b1iwi(t)
)
η(t)

∣∣dσdt ≤ C
(
1 + ‖wi‖L2(0,T ;V )

)‖η‖L2(0,T ;V ).

The proof is complete. �
Theorem 4.2. If Assumption H holds, then there exists T > 0 such that Problem PE has a solu-
tion.

Proof. The assertion follows immediately by Theorem 4.1 and Lemmas 4.1, 4.2, 4.3, 4.4. �
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5. Uniqueness of weak solutions

In this section we prove that Problem PE cannot have more than one weak solution.

Theorem 5.1. If Assumption H holds, then Problem PE has at most one solution on [0, T ] for an 
arbitrary T > 0.

Proof. Suppose that Problem PE has two solutions (c1, ϕ1), (c2, ϕ2), cj = (cj1, ..., cjs), j = 1, 2
on [0, T ]. We will show that they must be equal. By putting ηi = c1i (t) − c2i (t) in (2.4), we get 
for a.e. t ∈ (0, T )

1

2

d

dt
‖(c1i − c2i )(t)‖2

H + Di‖∇(c1i − c2i )(t)‖2
H (5.1)

+ Diαzi

∫
�

c1i (t)∇(ϕ1 − ϕ2)(t) ◦ ∇(c1i − c2i )(t) dx

+ Diαzi

∫
�

(c1i − c2i )(t)∇ϕ2(t) ◦ ∇(c1i − c2i )(t) dx

= −
∫

∂1�

b1i

(
(c1i − c2i )(t)

)2
dσ −

∫
∂2�

b2i

(
(c1i − c2i )(t)

)2
dσ.

Note that the equation

∫
�

∇ϕ ◦ ∇ξ dx +
∫
∂�

b

a
ϕξ dσ = λ

s∑
j=1

∫
�

zj (c1j − c2j )ξ dx for each ξ ∈ V (5.2)

has the unique solution ϕ = ϕ1 − ϕ2 ∈ L2(0, T ; H 2(�)) by the same arguments as in the proof 
of Lemma 4.1, and moreover

‖(ϕ1 − ϕ2)(t)‖H 2(�) ≤ C

s∑
j=1

‖(c1j − c2j )(t)‖H for a.e. t ∈ (0, T ) (5.3)

with C > 0. Analogously

‖ϕ2(t)‖H 2(�) ≤ C

s∑
j=1

‖c2j (t)‖H for a.e. t ∈ (0, T ) with C > 0. (5.4)

By the similar argument as in the proof of Lemma 4.3, using (5.3) and (5.4) we obtain the 
following estimates of the integral terms in (5.1)

Diα|zi |
∫ ∣∣c1i (t)∇(ϕ1 − ϕ2)(t) ◦ ∇(c1i − c2i )(t)

∣∣ dx
�
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≤ C‖∇(c1i − c2i )(t)‖H ‖c1i (t)‖L3(�)‖∇(ϕ1 − ϕ2)(t)‖L6(�)

≤ C‖∇(c1i − c2i )(t)‖H ‖c1i (t)‖V

s∑
j=1

‖(c1j − c2j )(t)‖H

≤ Di

2
‖∇(c1i − c2i )(t)‖2

H + C‖c1i (t)‖2
V

s∑
j=1

‖(c1j − c2j )(t)‖2
H ,

Diα|zi |
∫
�

∣∣(c1i − c2i )(t)∇ϕ2(t) ◦ ∇(c1i − c2i )(t)
∣∣ dx

≤ C‖∇(c1i − c2i )(t)‖H

(‖∇(c1i − c2i )(t)‖2
H + ‖(c1i − c2i )(t)‖2

H

) 1
4 ×

‖(c1i − c2i )(t)‖
1
2
H

s∑
j=1

‖c2j (t)‖H

≤ C
(‖∇(c1i − c2i )(t)‖2

H + ‖(c1i − c2i )(t)‖2
H

) 3
4 ‖(c1i − c2i )(t)‖

1
2
H

s∑
j=1

‖c2j (t)‖H

≤ Di

2

(‖∇(c1i − c2i )(t)‖2
H + ‖(c1i − c2i )(t)‖2

H

)+C‖(c1i − c2i )(t)‖2
H

s∑
j=1

‖c2j (t)‖4
H

≤ Di

2
‖∇(c1i − c2i )(t)‖2

H + C
( s∑
j=1

‖c2j (t)‖4
H + 1

)‖(c1i − c2i )(t)‖2
H .

In consequence

d

dt
‖(c1i − c2i )(t)‖2

H ≤C
(
‖c1i (t)‖2

V

s∑
j=1

‖(c1j − c2j )(t)‖2
H

+ ( s∑
j=1

‖c2j (t)‖4
H + 1

)‖(c1i − c2i )(t)‖2
H

)

and by adding, we get for a.e. t ∈ (0, T )

d

dt

s∑
j=1

‖(c1j − c2j )(t)‖2
H ≤C

( s∑
j=1

(‖c1j (t)‖2
V + ‖c2j (t)‖4

H

)+1
) s∑

j=1

‖(c1j − c2j )(t)‖2
H .

(5.5)

Hence the Gronwall lemma implies that for all t ∈ [0, T ]
s∑

j=1

‖(c1j − c2j )(t)‖2
H ≤ e

∫ T
0 C

(∑s
j=1

(‖c1j (t)‖2
V +‖c2j (t)‖4

H

)+1
)
dt

s∑
j=1

‖(c1j − c2j )(0)‖2
H . (5.6)
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Therefore c1 = c2 because the right-hand side in (5.6) is equal to zero. It follows from the unique-
ness of the solution to (5.2) that ϕ1 = ϕ2. �
6. Nonnegativity of weak solutions

In this section we prove that, provided the initial conditions c0i are nonnegative for a.e. x ∈ �, 
the concentrations ci(t) must also remain nonnegative.

Theorem 6.1. Let Assumption H be true and c0i ∈ H+. Then for all t ∈ [0, T ] such that the 
solution of Problem PE exists on the interval [0, T ] we have ci(t) ∈ H+.

Proof. The proof follows the lines of the corresponding part of the proof of [21, Lemma 4.1], 
[20, Theorem 6.1], see also [4, Proposition 1]. Consider the following auxiliary problem, which 
differs from Problem PE by replacement of ci with c+

i , where c+
i = max{ci, 0} in the terms 

representing electrostatic forces in (2.4).

Problem PE+. Find ci ∈ L2(0, T ; V ) and ϕ ∈ L2(0, T ; H 2(�)) such that ∂tci ∈ L2(0, T ; V ∗)
and for a.e. t ∈ (0, T )

〈∂t ci , ηi〉V ∗×V +
∫
�

Di

(∇ci + αzic
+
i ∇ϕ

)◦∇ηi dx (6.1)

=
∫

∂1�

(
a1i − b1ici

)
ηi dσ +

∫
∂2�

(
a2i − b2ici

)
ηi dσ for each ηi ∈ V,

∫
�

∇ϕ ◦ ∇ξdx +
∫
∂�

b

a
ϕ ξ dσ = λ

s∑
j=1

∫
�

zj cj ξ dx +
∫
∂�

h

a
ξ dσ for each ξ ∈ V, (6.2)

and the initial condition (2.2) holds.

By the same argument as in the proof of Theorem 4.2 based on the Schauder–Tychonoff fixed 
point theorem it follows that Problem PE+ has a local in time weak solution (c̄, ϕ̄). We will 
prove that each (c, ϕ) solves Problem PE+ on a certain interval [0, T ] if and only if it solves 
Problem PE on this interval.

Indeed, assume that (c, ϕ) solves Problem PE+ on [0, T ]. We will prove that ci(t) ∈ H+ for 
all t ∈ [0, T ]. Taking ηi = c−

i (t) = − min{ci(t), 0} in (6.1) we get

− 1

2

d

dt
‖c−

i (t)‖2
H − Di‖∇c−

i (t)‖2
H

= a1i‖c−
i (t)‖L1(∂1�) + b1i‖c−

i (t)‖2
L2(∂1�)

+ a2i‖c−
i (t)‖L1(∂2�) + b2i‖c−

i (t)‖2
L2(∂2�)

for a.e. t ∈ (0, T ). Hence

1

2

d

dt
‖c−

i (t)‖2
H + Di‖∇c−

i (t)‖2
H ≤ 0

for a.e. t ∈ (0, T ). After integration on the interval (0, t) for t ∈ [0, T ] we get
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1

2
‖c−

i (t)‖2
H + Di

t∫
0

‖∇c−
i (s)‖2

H ds ≤ 1

2
‖c−

i (0)‖2
H

for all t ∈ [0, T ], which, in view of c0i ∈ H+, yields that c−
i (t) = 0 for all t ∈ [0, T ], whereas c

satisfies (2.4). Note that we have also proved, that for every solution of Problem PE+ we must 
have ci(t) ∈ H+ for all t in the interval of solution existence.

Now assume that (c, ϕ) solves Problem PE on an interval [0, T ]. We know that there exists 
a solution (c̄, ϕ̄) on a certain time interval [0, T0] of Problem PE+ and (c̄, ϕ̄) must also solve 
Problem PE on this time interval. If T ≤ T0, then the uniqueness Theorem 5.1 implies that 
(c̄, ϕ̄) = (c, ϕ) on [0, T ] and the assertion is proved. If T0 < T we will use the barrier method. 
Indeed, denote by T̄0 the supremum of all times T0 such that Problem PE+ has a solution (c̄, ϕ̄)

in [0, T0] (it may be that T̄0 = +∞). If T̄0 > T we arrive at the previous case T ≤ T0. We will 
prove that the case T̄0 ≤ T leads to a contradiction. Observe that (c̄, ϕ̄) must also solve Problem
PE on each interval [0, T̄0 − ε], which, by the uniqueness of solutions to Problem PE implies 
that (c̄, ϕ̄) = (c, ϕ) on the interval [0, T̄0). But, as ci ∈ C([0, T ]; H), the values limt↗T̄0

‖c̄i (t)‖H

are well defined and finite, they are equal to ‖ci(T̄0)‖H , and hence we can continue the solution 
(c̄, ϕ̄) of Problem PE+, starting from T̄0, which contradicts its maximality.

As both problems are equivalent, and for the solution of Problem PE we must have ci(t) ∈ H+
for all t , the assertion is proved. �
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