
A short introduction to the CAPD library

Maciej Capiński

January 30, 2019

This is a brief introduction to the CAPD (Computer Assisted Proofs in Dynamics)
library. The library is written in C++ and provides an extensive selection of
tools for rigorous-interval-enclosure based computations. Here we present only
some of its features. Our aim is to keep things as simple as possible. The below
presented tools are more than enough though to perform highly nontrivial proofs
in dynamical systems.

For more advanced tools we encourage the user to visit the CAPD home page:
http://capd.ii.uj.edu.pl

Contents

1 Linear algebra - linalg.cpp 2
1.1 Matrixes and vectors . 2
1.2 Basic operations . 2
1.3 Commands for intervals and interval vectors 3
1.4 Eigenvectors . 3

2 Maps - map.cpp 4

3 Integration of ODEs, time shift map - tmap.cpp 5
3.1 Non-rigorous computation . 5
3.2 Interval computation . 6

4 Poincaré map - pmap.cpp 7
4.1 Non-rigorous computation . 7
4.2 Interval computation . 9

5 2D Plots and sequences of IVectors - plot-seq.cpp 10

1

http://capd.ii.uj.edu.pl

1 Linear algebra - linalg.cpp

1.1 Matrixes and vectors

IVector x(3);

IVector y(2);

IMatrix A(2,3);

x[0] = interval(9.0,11.0)/interval(10.0);

x[1] = -x[0];

x[2] = x[0];

A[0][0] = interval(1); A[0][1] = interval(2); A[0][2] = interval(3);

A[1][0] = -interval(3); A[1][1] = -interval(2); A[1][2] = -interval(1);

y = A*x;

• x is an interval-vector of dimension 3, y is an interval-vector of dimension
2 and A is a 2× 3 interval matrix. After specifying the values of A and x

we compute y.

• Instead of using IVector, IMatrix we can use DVector, DMatrix, which
results in having computations performed in doubles. Then we cannot use
intervals of course and need to use standard numbers (for example x(1)

= 1.1)

1.2 Basic operations

IMatrix B = transpose(A);

IMatrix C = (A+A)*B;

IMatrix invC = gaussInverseMatrix(C);

IVector v = gauss(C,y);

y = transpose(gaussInverseMatrix(A*B)+C)*y;

• Here we show how to compute a transposition of a matrix, how to multiply
matrixes, and how to compute an inverse.

• v = gauss(C,y) solves the equation y = C*v for v. In principle we could
compute v = gaussInverseMatrix(C)*y, but this is much slower than
using v = gauss(C,y).

• We can perform a number of computations at the same time.

• All of the above operations work identically for standard matrixes and
vectors using DMatrix and DVector.

2

1.3 Commands for intervals and interval vectors

For an interval a and interval-vectors x,y we have the following useful com-
mands:

midVector(x);

subsetInterior(x,y);

a.mid();

a.left();

a.right();

a.leftBound();

a.rightBound();

• midVector(x) returns an interval-vector consisting of a single point which
lies in the middle of x. subsetInterior(x,y) verifies whether x is con-
tained in the interior of y. If the answer is ”yes” then this function returns
1, if ”no” then it returns 0.

• a.mid(), a.left(), a.right() return single point intervals which lie in
the middle, to the left and to the right of the interval a respectively.

• a.leftBound() and a.rightBound() perform the same tasks as a.left()
and a.right(), but instead of returning an interval they return a number
(of type double).

1.4 Eigenvectors

CAPD library computes eigenvalues and eigenvectors for matrixes. This fea-
ture is only implemented for non-rigorous computations using DVector

and DMatrix !

DMatrix D(2,2);

D[0][0] = 5; D[0][1] = 1;

D[1][0] = 3; D[1][1] = 6;

DVector rE(2), iE(2);

DMatrix rVec(2,2), iVec(2,2);

computeEigenvaluesAndEigenvectors(D,rE,iE,rVec,iVec);

• Vectors rE and iE hold real and imaginary parts of eigenvalues respec-
tively. This means that the k-th eigenvalue is equal to rE(k) + iE(k)i.

• Matrixes rVec and iVec hold real and imaginary parts of eigenvectors
respectively. The eigenvectors are stored in matrixes for convenience. For
example, for our matrix D both eigenvalues are real, which gives us

gaussInverseMatrix(rVec)*D*rVec;

as the Jordan form of D.

3

2 Maps - map.cpp

IMap f = "par:a,b;var:x,y;fun:1-a*x^2+y,b*x;";

f.setParameter("a", interval(14)/interval(10));

f.setParameter("b", interval(3) /interval(10));

IVector x(2);

IVector y(2);

IMatrix Df(2,2);

x[0] = interval(9,11)/interval(10);

x[1] = interval(-1,1)/interval(10);

y = f(x);

Df = f[x];

• Above we have an example of a map f(x, y) = (1− ax2, bx) with a = 1.4
and b = 0.3.

• f(x) computes an image of an interval-vector x.

• f[x] computes the derivative of f at x.

• To conduct non-rigorous computations the code needs to be slightly changed:

– IMap needs to be replaced with DMap,

– IVector needs to be changed into DVector,

– IMatrix needs to be changed into DMatrix,

– all intervals need to be changed to numbers.

4

3 Integration of ODEs, time shift map - tmap.cpp

In this example we consider the flow Φt(x) generated by an ODE

x′ = f(x),

and show how to compute the map

x→ ΦT (x)

for a given fixed T ∈ R.

3.1 Non-rigorous computation

int order = 20;

DMap f="var:x,y;fun:x*(1-(x^2+y^2)^(-0.5))-y,x+y*(1-(x^2+y^2)^(-0.5));";

DOdeSolver solver(f,order);

DTimeMap Phi(solver);

double T =3.14159265358979;

DVector x(2);

x[0] = 1.;

x[1] = 0.;

DVector y(2);

y = Phi(T,x);

DMatrix der(2,2);

y = Phi(T,x,der);

• The integration is performed using a Taylor method. We need to specify
the order of this method.

• A map is declared as in Section 2. We then specify that we use a Taylor
method for the map of a given order. Phi is the flow of the vector field f.

• T will be the time for our time map ΦT , y will hold the result ΦT (x), the
matrix der will hold the derivative DΦT .

• y = Phi(T,x) computes the time shift map.

• When we execute y = Phi(T,x,der) then at the same time the derivative
of the map is computed (der = DΦT (x) is computed behind scenes).

• If we are not interested in the derivative then we should use Phi(T,x)

since it is faster than Phi(T,x,der).

5

3.2 Interval computation

int order = 20;

IMap f = "var:x,y;fun:x*(1-(x^2+y^2)^(-0.5))-y,x+y*(1-(x^2+y^2)^(-0.5));";

IOdeSolver solver(f,order);

ITimeMap Phi(solver);

interval T = 2*4*atan(interval(1));

IVector x(2);

x[0] = interval(1);

x[1] = interval(0);

C0Rect2Set R(x);

IVector y(2);

y = Phi(T,R);

IMatrix der(2,2);

C1Rect2Set S(x);

y = Phi(T,S,der);

• The code is very similar to the program from Section 3.1. The difference
is that we use intervals instead of doubles.

• The 2*4*atan(interval(1)) returns an interval which contains 2π.

• To compute ΦT (x) the map Phi cannot work on interval-vectors, but needs
to work on sets of type ”C0Rect2Set”. The underlying reason is that
objects of type C0Rect2Set carry more information. We can create a set
R of type C0Rect2Set that is equal to x by calling

C0Rect2Set R(x);

and then turn it back to an IVector if we wish by calling

x = R;

• The R, which is a C0Rect2Set can also be declared in the following way:

C0Rect2Set R(x,A,B);

where A is an IMatrix and b is an IVector. This is equivalent to R =

x+A*b. If A is well aligned with the dynamics of the flow, then such
representation can give much better results.

• To compute ΦT (x) together with DΦT (x) we need to work on sets of type
”C1Rect2Set”. The way we use them is identical to the way that we
handle C0Rect2Set. In particular, we could also declare:

C1Rect2Set S(x,A,b);

6

4 Poincaré map - pmap.cpp

Here we consider an ODE x′ = f(x) with a Poincaré section V = {s = 0} where
s is some function s : Rn → R. We shall show how to compute the Poincaré
map

P : V → V. (1)

4.1 Non-rigorous computation

int order = 20;

DMap f = "var:x,y,z;fun:x*(1-(x^2+y^2)^(-0.5))-y,x+y*(1-(x^2+y^2)^(-0.5)),-z;";

DCoordinateSection section(3,0);

DOdeSolver solver(f,order);

DPoincareMap P(solver,section);

DVector x(3);

x[0] = 0;

x[1] = 1;

x[2] = 0.5;

DVector y(3);

y = P(x);

DMatrix DPhi(3,3);

DMatrix DP(3,3);

y = P(x,DPhi);

DP = P.computeDP(y,DPhi);

• We initiate out map f.

• DCoordinateSection initiates a section. This reads as follows: we choose
the first coordinate (with index 0) out of a three dimensional space. This
means that our section is {x = 0}. We could also choose sections {y = 0}
and {z = 0} by calling, respectively:

DCoordinateSection section(3,1);

DCoordinateSection section(3,2);

• To initiate our Poincaré map P we need to specify the Taylor method for
integration and the section.

• It is essential to highlight one feature. The image of the Poincaré map y

= P(x) is computed in the full phase space. Our section was defined as
{x = 0}. It is therefore natural to view the map only in coordinates (y, z).
In such case the image is (y[1], y[2]), since these are the (y, z) coordinate
of vector y.

7

• We can compute the map together with the derivative DΦτ , where τ is
the return time to the section, by calling P(x,DPhi). Then, we convert
DPhi to the derivative of the Poincaré map P by calling

DP = P.computeDP(y,DPhi);

• The derivative is computed in full dimension of the system. In our
example, since our section was defined as {x = 0}, the derivative restricted
to the (y, z) coordinate on the section is(

DP[1][1] DP[1][2]
DP[2][1] DP[2][2]

)

8

4.2 Interval computation

int order = 20;

IMap f = "var:x,y,z;fun:x*(1-(x^2+y^2)^(-0.5))-y,x+y*(1-(x^2+y^2)^(-0.5)),-z;";

ICoordinateSection section(3,0);

IOdeSolver T(f,order);

IPoincareMap P(T,section);

IVector x(3);

x[0] = interval(0);

x[1] = interval(1);

x[2] = interval(1)/interval(2);

IVector y(3);

C0Rect2Set R(x);

y = P(R);

IMatrix DPhi(3,3);

IMatrix DP(3,3);

C1Rect2Set S(x);

y = P(S,DPhi);

DP = P.computeDP(y,DPhi);

• The code is a mirror of the program from Section 4.1, rewritten for inter-
vals.

• Similar to the computation of the time map from Section 3.1, to compute
the image of the Poincaré map we need to work on a C0Rect2Set type.
To compute the image of the Poincaré map together with its derivative
we need to work with C1Rect2Set type.

• Here also, as in Section 4.1, the image of the Poincaré map and its deriva-
tive is computed in the full phase space.

• In some cases one might wish to compute a second, third or higher order
iterate of the Poincaré map. The following code gives y as the third iterate
of the map

P(R);

P(R);

y = P(R);

Each time that P(R) is called, the set R is transformed to its image by P.

9

5 2D Plots and sequences of IVectors - plot-seq.cpp

int N = 64;

vector<IVector> p(N);

IMap r = "par:phi;var:x,y;fun:x*cos(phi)-y*sin(phi),x*sin(phi)+y*cos(phi);";

r.setParameter("phi",interval(1)/interval(10));

IVector x(2);

x[0] = interval(-1,1)/interval(1000);

x[1] = x[0]+interval(1);

p[0] = x;

for(int i=1;i<N;i++) p[i] = r(p[i-1]);

• The first two lines create a sequence of N IVectors called p.

• We declare a map r, which is a rotation by an angle phi.

• We assign the first element p[0] from the sequence p to be the IVector x.
Next we let successive elements in p to be the successive iterates of x by
the map r.

Now we shall show how we can write our sequence into a file:

ofstream outdata;

outdata.open("NameOfFile.txt");

outdata.precision(10);

double xl,xr,yl,yr;

for(int i=0;i<N;i++)

{

xl = p[i][0].leftBound(); xr=p[i][0].rightBound();

yl = p[i][1].leftBound(); yr=p[i][1].rightBound();

outdata << (xr+xl)/2. <<" ";

outdata << (yr+yl)/2. <<" ";

outdata << (xr-xl)/2. <<" ";

outdata << (yr-yl)/2. <<" "<< endl;

}

outdata.close();

• We write our results into a file named NameOfFile.txt (any name can be
given, of course).

• We fill our file with lines of the format

xm ym rx ry

10

each line for a single IVector p[i] from our sequence. The numbers are
interpreted as follows: (xm, ym) is a point which lies in the middle of the
IVector p[i]. rx and ry are the radii of the intervals on the x and y
coordinates respectively.

• By running Gnuplot in the directory containing the file NameOfFile.dat

and typing:

plot "NameOfFile.txt" with boxxyerrorbars

we obtain a graph of our sequence:

Typing simply

plot "NameOfFile.txt"

gives a plot of mid-points for our sequence:

11

	Linear algebra - redlinalg.cpp
	Matrixes and vectors
	Basic operations
	Commands for intervals and interval vectors
	Eigenvectors

	Maps - redmap.cpp
	Integration of ODEs, time shift map - red tmap.cpp
	Non-rigorous computation
	Interval computation

	Poincaré map - redpmap.cpp
	Non-rigorous computation
	Interval computation

	2D Plots and sequences of IVectors - redplot-seq.cpp

