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Abstract. We present a topological method for the detection of normally
hyperbolic type invariant sets for maps. The invariant set covers the sub-

manifold without a boundary in Rk. For the method to hold we only need

to assume that the movement of the system transversal to the manifold has
directions of topological expansion and contraction. The movement in the

direction of the manifold can be arbitrary. The result is based on the method
of covering relations and local Brouwer degree theory.

1. Introduction. Covering relations are topological tools used for proofs of non-
trivial symbolic dynamics of dynamical systems. The method is based on the
Brouwer fixed point index, and the setting is such that it allows for rigorous nu-
merical verification. The method has been applied in computer assisted proofs for
the Hénon map, Rössler equations [15], [4], Lorenz equations [6], Chua circuit [5]
or Kuramoto-Shivashinsky ODE [14], amongst others. The method is based on sin-
gling out a number of regions, called h-sets, which have hyperbolic type properties.
Using these properties one can find orbits of the system, which shadow the h-sets
along their trajectories. So far the method has always relied on the fact that the
systems had a strong expanding and contracting local coordinates. The aim of this
paper is to develop a method, which would also allow for a third central coordi-
nate, where the dynamics is not as distinctive. The method will be used for finding
invariant sets in the setting of (topological) normal hyperbolicity.

We consider a dynamical system in a small neighborhood of a compact sub-
manifold in Rk. We suspect that in this neighborhood we have an invariant set
(manifold). The reason for the existence of such a set, is that in the investigated re-
gion the system has normally-hyperbolic type properties. The properties considered
are of purely topological nature. For each point in the region, locally three (possibly
multidimensional) directions can be singled out. The first two are the directions of
topological contraction and expansion. The third is a direction associated with the
coordinate of our sub-manifold. In this direction we need not say much about the
dynamics, and refer to it as the central direction. We assume that if we start on a
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section with a fixed central coordinate, then locally we have topological contraction
and expansion of our map in the first two directions. This is expressed in terms of
covering relations. The movement in the central direction can be arbitrary, as long
as the projections onto the first two coordinates preserve their topological proper-
ties. It turns out that the expansion and contraction are enough for us to establish
the existence of an invariant set, which covers the sub-manifold.

Since the method is topological, we do not obtain any regularity properties for
our invariant set. We also do not obtain its uniqueness. These are the main limita-
tions of the result. The topological nature of the argument though does give us also
a number of advantages. The setting is such, that it allows for rigorous computer
assisted verification of the conditions. It is not necessary to consider any C1 con-
ditions. Also the required assumptions are local in nature. Another advantage is
that one does not need to investigate the dynamics in the central direction, which
from the point of view of rigorous numerics is very awkward to handle.

The paper is organized as follows. In the second section we give brief preliminaries
on covering relations and on the properties of the Brouwer degree, which are used for
the proof of the main result. Section three contains the main result. In section four
we show how the assumptions of the main theorem may be verified using rigorous
computer assisted methods. We also show how the result compares with the method
of Haro and de la Llave [8], which is one of the most recent results on the detection
of normally hyperbolic invariant manifolds, designed for rigorous computer assisted
implementation (for related work see also [9], [10], [1], [2] and [3]). Section five
contains examples of applications of the method.

2. Preliminaries. In this section we introduce the basic background on h-sets,
covering relations and Brouwer degree theory.

2.1. Covering relations. Let Bn(0, 1) denote a closed ball of radius one centered
at zero in Rn.

Definition 2.1. [7] An h-set, is an object consisting of the following data

1. N - a compact subset of Rk
2. u(N), s(N) ∈ {0, 1, 2, 3, . . .}, such that u(N) + s(N) = k
3. a homeomorphism ηN : Rk → Rk = Ru(N) × Rs(N) such that

ηN (N) = Bu(N)(0, 1)×Bs(N)(0, 1)

We set

Nη = Bu(N)(0, 1)×Bs(N)(0, 1),

N−η = ∂Bu(N)(0, 1)×Bs(N)(0, 1),

N+
η = Bu(N)(0, 1)× ∂Bs(N)(0, 1),

N− = η−1
N (N−η ), N+ = η−1

N (N+
η ).

Definition 2.2. [7] Assume N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f : N → Rk be a continuous map. Let fη = ηM ◦ f ◦ η−1

N :
Nη → Ru × Rs. We say that

N
f

=⇒M

(N f -covers M) if the following conditions are satisfied
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Figure 1. An h-set N , and a covering relation N
f

=⇒ N , in the
setting of a hyperbolic fixed point.

1. There exists a continuous homotopy h : [0, 1]×Nη → Ru × Rs such that the
following conditions hold true

h0 = fη,

h([0, 1], N−η ) ∩Mη = ∅, (1)

h([0, 1], Nη) ∩M+
η = ∅. (2)

2.1. If u > 0, then there exists a linear map A : Ru → Ru, such that

h1(x, y) = (Ax, 0), where x ∈ Ru and y ∈ Rs, (3)

A(∂Bu(0, 1)) ⊂ Ru\Bu(0, 1). (4)

2.2. If u = 0, then
h1(x) = 0, for x ∈ Nη.

The idea behind Definition 2.2 is that the coordinate x ∈ Ru is the direction of
topological expansion and y ∈ Rs is the coordinate of topological contraction (the
notations u, s stand for ”unstable” and ”stable” respectively).

To provide some more intuition for the Definitions 2.1 and 2.2 let us illustrate the
setting in the case of a hyperbolic fixed point (see Figure 1). I such a case we can
take Nη = Mη to be a small box surrounding the fixed point, chosen in the linearized
coordinates of hyperbolic expansion and contraction. The homotopy h corresponds
to a projection onto the unstable coordinate, and the homeomorphism η is the local
change of coordinates around the fixed point (a more detailed discussion on how to
choose η,N,M, and in particular on how to construct the homotopy h will be given
in the proof of Proposition 1 and in Section 5).

Let us note that the class of functions satisfying Definition 2.2 is broader than
those having a hyperbolic invariant set. In particular, Definition 2.2 does not require
the function to be differentiable.

2.2. Properties of the local Brouwer degree. For a bounded open set D ⊂ Rn,
a continuous function f : D → Rn, and c ∈ Rn such that c ∈ Rn \f(∂D), we denote
by deg(f,D, c) the Brouwer degree of f with respect to the set D at c [12].

2.2.1. Solution property. [12] If deg(f,D, c) 6= 0 then there exists an x ∈ D with
f(x) = c.

2.2.2. Homotopy property. [12] Let H : [0, 1] × D → Rn be continuous. Suppose
that ⋃

λ∈[0,1]

H−1
λ (c) ∩D is compact, (5)
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then
∀λ ∈ [0, 1] deg(Hλ, D, c) = deg(H0, D, c).

If [0, 1]×D ⊂dom(H) and D is compact, then (5) follows from the condition

c /∈ H([0, 1], ∂D).

2.2.3. Degree property for affine maps. [12] Suppose that f(x) = B(x − x0) + c,
where B is a linear map and x0 ∈ Rn. If the equation B(x) = 0 has no nontrivial
solutions (i.e if Bx = 0, then x = 0) and x0 ∈ D, then

deg(f,D, c) = sgn(detB). (6)

2.2.4. Excision property. [12] Suppose that we have an open set E such that E ⊂ D
and

f−1(c) ∩D ⊂ E,
then

deg(f,D, c) = deg(f,E, c).

3. Main Result. Let D be a compact set in Rk. Let us assume that there exists
a neighborhood U of D and a homeomorphism φ : U → Rk such that

φ(D) = Λ×N,

where N = Bu(0, 1) × Bs(0, 1) and Λ is a compact c = k − u − s dimensional
sub-manifold, without a boundary, in Rk.

We consider a homeomorphism

f : U → U.

We will look for an invariant set in the interior of D, which covers the manifold
φ−1(Λ, 0, 0). The exact meaning of this statement will be made clear in the formu-
lation of the result.

A point p in Λ × N will be represented as p = (θ, x, y), where θ, x, and y
correspond to Λ, Bu(0, 1) and Bs(0, 1) coordinates respectively. For a given point
θ ∈ Λ we will use the notations fθ and, f−1

θ for functions

fθ, f
−1
θ : N → Ru+s,

fθ(x, y) := πus ◦ φ ◦ f ◦ φ−1(θ, x, y), (7)

f−1
θ (x, y) := πus ◦ φ ◦ f−1 ◦ φ−1(θ, x, y),

where πus is the projection onto the x, y coordinates. In line with Definition 2.2
we will adapt a notation in which x will be the unstable and y will be the stable
coordinate (in the topological sense of covering relations) for the maps fθ. For the
coordinate θ we will not assume any expansion or contraction properties (θ can be
thought of as the central direction). We assume that for any θ ∈ Λ

N
fθ=⇒ N, (8)

and

N
f−1
θ=⇒ N. (9)

For (9) we make a natural assumption that the roles of the stable and unstable
directions are reversed with respect to (8). The coordinates x become the stable
coordinates and y the unstable coordinates for the maps f−1

θ .



COVERING RELATIONS AND NORMALLY HYPERBOLIC SETS 5

The following Theorem is the main result of the paper. It gives a tool for the
detection of an invariant set for the map f , which covers the manifold Λ.

Theorem 3.1. If f : U → U is a homeomorphism, and for every point θ ∈ Λ the
set N is covered by the maps fθ and f−1

θ

N
fθ=⇒ N, N

f−1
θ=⇒ N, (10)

then for any θ ∈ Λ the set

Kθ := {p ∈ D|fm(p) ∈ D for all m ∈ Z, and

p = φ−1(θ, x, y) for some x ∈ Bu(0, 1), y ∈ Bs(0, 1)}

is nonempty and lies in the interior of D.

Proof. Without loss of generality we can assume that D = Λ × N. We therefore
assume that we have our map

f = (fc, fu, fs) : Λ×Bu(0, 1)×Bs(0, 1)→ Rk.

(the indexes c, u, s standing for ”central”, ”unstable” and ”stable” respectively).
We will use the notations f−1

c , f−1
u , f−1

s for the functions

f−1
c (·) = (f−1(·))c, f−1

u (·) = (f−1(·))u, f−1
s (·) = (f−1(·))s.

We note that from (7) follows that

fθ(x, y) = (fu(θ, x, y), fs(θ, x, y)), (11)

f−1
θ (x, y) = (f−1

u (θ, x, y), f−1
s (θ, x, y)).

Let us fix a point

ρ0 ∈ Λ.

We will show that Kρ0 6= ∅ and that Kρ0 ⊂ int D.
Let us take an m ∈ N, and two arbitrary linear functions g : Ru → Ru, h : Rs →

Rs such that

g(∂Bu(0, 1)) ⊂ Ru\Bu(0, 1), (12)

h(∂Bs(0, 1)) ⊂ Rs\Bs(0, 1). (13)

We define a compact set

XD := D × . . .×D︸ ︷︷ ︸
2m+1

⊂ R(2m+1)k,

and a map

F : XD → R(2m+1)k,



6 MACIEJ J. CAPIŃSKI

F (x) =F (θ−m, x−m, y−m, . . . , θ0, x0, y0, . . . , θm, xm, ym)

:=(θ−m − f−1
c (θ−m+1, x−m+1, y−m+1),

x−m − f−1
u (θ−m+1, x−m+1, y−m+1),

y−m − f−1
s (θ−m+1, x−m+1, y−m+1),

. . .

θ−1 − f−1
c (θ0, x0, y0), x−1 − f−1

u (θ0, x0, y0), y−1 − f−1
s (θ0, x0, y0),

θ0 − ρ0, x0 − g(xm), y0 − h(y−m),

θ1 − fc(θ0, x0, y0), x1 − fu(θ0, x0, y0), y1 − fs(θ0, x0, y0),
. . .

θm − fc(θm−1, xm−1, ym−1), xm − fu(θm−1, xm−1, ym−1),

ym − fs(θm−1, xm−1, ym−1)).

(The functions g and h are inserted into F for technical reasons. These will become
apparent during the proof). Throughout the course of the proof we will show that
F (x) = 0 for some point x ∈ int XD. This is the main and most important part
of the argument, which will take up the majority of the proof. Let us note that by
showing this we will obtain a pair (x0, y0) ∈ int N , such that

f i(ρ0, x0, y0) ∈ int D for i = −m, . . . ,m. (14)

The proof that F (x) = 0 for some x ∈ int XD will be done in three stages. For
each stage we will consider a different homotopy. In the final stage of the argument
we will combine all three of them together, and obtain the result by the use of
properties of the local Brouwer degree.

Let us first consider a homotopy H : [0, 1]×XD → R(2m+1)k as follows. On each
coordinate θi we define Hλ as

(Hλ(x))i,c := θi − f−1
c (θi+1, (1− λ)xi+1, (1− λ)yi+1) for i < 0,

(Hλ(x))i,c := θi − fc (θi−1, (1− λ)xi−1, (1− λ)yi−1) for i > 0,

leaving the function on the other coordinates identical to F . Clearly we have

F = H0. (15)

We will show that

deg(Hλ, intXD, 0) is independent from λ. (16)

From the Homotopy Property of the Brouwer degree (See Section 2.2), to do so it
is sufficient to show that

Hλ(x) 6= 0 for each x ∈ ∂XD, λ ∈ [0, 1].

Since Λ is without boundary, if x ∈ ∂XD we must have either xi ∈ ∂Bu(0, 1)
or yi ∈ ∂Bs(0, 1) for some i ∈ {−m, . . . ,m}. We will consider the cases with
xi ∈ ∂Bu(0, 1) for i ≥ 0 first. For 0 ≤ i ≤ m − 1, in order to have Hλ(x) = 0 we
would need to have

(xi+1, yi+1)− (fu, fs) (θi, xi, yi) = 0,

for some yi ∈ Bs(0, 1), (xi+1, yi+1) ∈ N. This is impossible since from the fact that

N
fθi=⇒ N,
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follows that (fu, fs) (θi, xi, yi) /∈ N (see (11), Definition 2.2 and (1) in particular.
In our case N−η = ∂Bu(0, 1) × Bs(0, 1) and Mη = N). For i = m, the fact that
x0−g (xm) 6= 0 follows from (12). Let us now consider that yi ∈ ∂Bs(0, 1) for i > 0.
If yi ∈ ∂Bs(0, 1) then in order to have Hλ(x) = 0 we would need

(xi, yi)− (fu, fs) (θi−1, xi−1, yi−1) = 0,

for some xi ∈ Bu(0, 1), (xi−1, yi−1) ∈ N. This is impossible since from the fact that

N
fθi−1=⇒ N,

we have (fu, fs) (θi−1, N) ∩ Bu(0, 1) × ∂Bs(0, 1) = ∅ (see (11), Definition 2.2 and
(2) in particular. In our case Nη = N and M+

η = Bu(0, 1) × ∂Bs(0, 1)). The fact
that for xi ∈ ∂Bu(0, 1) with i < 0 and yi ∈ ∂Bs(0, 1) with i ≤ 0 we cannot have
Hλ(x) = 0 follows by a mirror argument, using the fact that f−1

θ covers N. Let
us just note that for the inverse map the role of the coordinates is reversed: the
x coordinates become stable and y unstable. We also use h instead of g in the
argument for y−m ∈ ∂Bs(0, 1). This finishes establishing (16).

In this part of the proof, before we introduce the second homotopy, we will
restrict the set XD to some smaller subset, by the use of the Excision Property of
the Brouwer degree. Let us first define by induction a sequence of points starting
with ρ0

ρi := f−1
c (ρi+1, 0, 0) for −m ≤ i ≤ 1,

ρi := fc(ρi−1, 0, 0) for 1 ≤ i ≤ m.

From the fact that f and f−1 are continuous we can choose a sequence of sets
Ui ⊂ Λ, i = −m, . . . ,m, which are small neighborhoods of the points ρi such that(

f−1
(
Ui, 0, 0

))
c
⊂ Ui−1 for −m+ 1 ≤ i ≤ 0. (17)(

f
(
Ui, 0, 0

))
c
⊂ Ui+1 for 0 ≤ i ≤ m− 1.

Let us define the following subset of XD

XU = U−m ×N × . . .× Um ×N.

Since on the coordinates θi the function H1 is equal to

(H1(x))0,c = θ0 − ρ0 for i = 0,

(H1(x))i,c = θi − f−1
c (θi+1, 0, 0) for i < 0, (18)

(H1(x))i,c = θi − fc (θi−1, 0, 0) for i > 0,

from (17) and (18) we have that 0 /∈ H1(XD\intXU). This means that from the
Excision Property (See Section 2.2) we have

deg(H1, intXD, 0) = deg(H1, intXU, 0). (19)

Since the sets Ui can be chosen to be arbitrarily small, we can assume without loss
of generality that using local coordinates we have

Ui = Bc (ρi, 1) , for i = −m, . . . ,m. (20)

Let us note that this assumption will be important for us from the point of view
that now we can assume that the sets Ui are convex, which we could not apriori
assume about the whole manifold Λ.
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Let us now consider the following homotopy G : [0, 1] × XU → R(2m+1)k as
follows

(Gλ(x))0 = (F (x))0 ,

(Gλ(x))i,c = θi − λρi − (1− λ)f−1
c (θi+1, 0, 0)

(Gλ(x))i,u = xi − f−1
u (λρi+1 + (1− λ)θi+1, xi+1, yi+1)

(Gλ(x))i,s = yi − f−1
s (λρi+1 + (1− λ)θi+1, xi+1, yi+1)

 for i < 0,

(Gλ(x))i,c = θi − λρi − (1− λ)fc (θi−1, 0, 0)
(Gλ(x))i,u = xi − fu (λρi−1 + (1− λ)θi−1, xi−1, yi−1)
(Gλ(x))i,s = yi − fs (λρi−1 + (1− λ)θi−1, xi−1, yi−1)

 for i > 0.

Let us note that from the definitions of G and H (see (18)) we have

G0(x) = H1(x). (21)

Using a similar argument to the one used for (16) we will show that

deg(Gλ, intXU, 0) is independent from λ. (22)

Let us introduce a notation θi,λ

θi,λ := λρi + (1− λ)θi.

To show (22) it is enough to prove that for x ∈ ∂XU we have Gλ(x) 6= 0. If
x ∈ ∂XU then either θi ∈ ∂Bc(ρi, 1), xi ∈ ∂Bu(0, 1) or yi ∈ ∂Bs(0, 1) for some
i ∈ {−m, . . . ,m}. If θi ∈ ∂Bc(ρi, 1) then for i = 0 we have Gλ 0,c(x) = θ0 − ρ0 6= 0.
For i 6= 0, if θi ∈ ∂Bc(ρi, 1) from (17) we know that f−1

c (θi+1, 0, 0) ∈ int Bc(ρi, 1)
for i < 0, and fc (θi−1, 0, 0) ∈ int Bc(ρi, 1) for i > 0, which from the definition of
Gλ implies that we cannot have Gλ(x) = 0. If xi ∈ ∂Bu(0, 1) with 0 ≤ i ≤ m − 1
then since for any θi,λ we have

N
fθi,λ=⇒ N,

we know that (fu, fs)
(
θi,λ, ∂Bu(0, 1)×Bs(0, 1)

)
∩ N = ∅. This means that we

cannot have
(xi+1, yi+1)− (fu, fs) (θi,λ, xi, yi) = 0,

for any yi ∈ Bs(0, 1), (xi+1, yi+1) ∈ N, therefore Gλ(x) 6= 0. If xm ∈ ∂Bu(0, 1)
then from (12) we have x0 − g(xm) 6= 0, hence Gλ(x) 6= 0. For yi ∈ ∂Bs(0, 1) for
1 ≤ i ≤ m from the fact that

N
fθi−1,λ=⇒ N,

we have (fu, fs)(θi−1,λ, N) ∩Bu(0, 1)× ∂Bs(0, 1) = ∅. This means that we will not
have

(xi, yi)− (fu, fs)(θi−1,λ, xi−1, yi−1) = 0,

for all xi ∈ Bu(0, 1), (xi−1, yi−1) ∈ N, hence Gλ(x) 6= 0. The fact that for xi ∈
∂Bu(0, 1) with i < 0 and yi ∈ ∂Bs(0, 1) with i ≤ 0 we cannot have Gλ(x) = 0
follows by a mirror argument, using the fact that for any λ ∈ [0, 1] the map f−1

θi,λ

covers N (We once again note that for the inverse map the role of the coordinates
is reversed: the x coordinates become stable and y unstable. We also use h instead
of g in the argument for y−m ∈ ∂Bs(0, 1)). This finishes establishing (22).
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Let us consider now a last homotopy K : [0, 1]×XU → Rmk,

Kλ(x) =( θ−m − ρ−m, (x−m, y−m)− h−mλ (x−m+1, y−m+1) , (23)
. . .

θ−1 − ρ−1, (x−1, y−1)− h−1
λ (x0, y0) ,

θ0 − ρ0, x0 − g(xm), y0 − h(y−m),

θ1 − ρ1, (x1, y1)− h1
λ (x0, y0) ,

. . .

θm − ρm, (xm, ym)− hmλ (xm, ym−1)),

where for i = −m + 1, . . . ,m the function hiλ is the homotopy from the definition
of the covering

N
f−1
ρi+1=⇒ N, for i < 0,

N
fρi−1=⇒ N, for i > 0.

Let us observe that from the definition of G and K we have

K0(x) = G1(x). (24)

We will now show that

deg(Kλ, XU, 0) is independent from λ. (25)

From the Homotopy Property of the Brouwer degree once again, it is sufficient to
show that

Kλ(x) 6= 0 for each x ∈ ∂XU, λ ∈ [0, 1].

Let x ∈ ∂XU , then we must either have θi ∈ ∂Ui, xi ∈ ∂Bu(0, 1) or yi ∈ ∂Bs(0, 1).
If θi ∈ ∂Ui then from (20) and (23) we can clearly see that we cannot have Kλ(x)
equal to zero on the θi coordinate. If xi ∈ ∂Bu(0, 1) then for i = 0, . . . ,m− 1, from
the fact that

N
fρi=⇒ N,

we have that hi+1([0, 1], ∂Bu(0, 1), Bs(0, 1)) ∩ N = ∅ and therefore for any yi ∈
Bs(0, 1), (xi+1, yi+1) ∈ Bu(0, 1)×Bs(0, 1) we have

(xi+1, yi+1)− hi+1
λ (xi, yi) 6= 0,

hence Kλ(x) 6= 0. If xm ∈ ∂Bu(0, 1) from (12) we have x0−g (xm) 6= 0 which means
that Kλ(x) 6= 0. If yi ∈ ∂Bs(0, 1) then for i > 0, from the fact that

N
fρi−1=⇒ N,

we have hi([0, 1], N) ∩Bu(0, 1)× ∂Bs(0, 1) = ∅ and therefore

(xi, yi)− hiλ(xi−1, yi−1) 6= 0,

for any xi ∈ Bu(0, 1) and (xi−1, yi−1) ∈ N , hence Kλ(x) 6= 0. The cases xi ∈
∂Bu(0, 1) for i < 0 and yi ∈ ∂Bs(0, 1) for i ≤ 0 can be shown by a mirror argument
using f−1

ρi+1
instead of fρi−1 (One has to remember that for the inverse map the

role of the coordinates is reversed: the x coordinates become stable and y unstable.
Otherwise the argument is identical). This finishes establishing (25).
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So far, taking (15), (16), (19), (21), (22), (24) and (25) into account we have
shown that

deg(F, intXD, 0) = deg(K1, intXU, 0). (26)
If we knew that

deg(K1, intXU, 0) 6= 0, (27)
then by (26) and the Solution Property of the Brouwer degree (See Section 2.2),
we would have that there exists an x ∈ int XD such that F (x) = 0, which would
finish establishing (14).

To show (27) let us write out the function K1,

K1(x) =( θ−m − ρ−m, x−m, y−m −A−my−m+1, (28)
. . .

θ−1 − ρ−1, x−1, y−1 −A−1y0,

θ0 − ρ0, x0 − g(xm), y0 − h(y−m),
θ1 − ρ1, x1 −A1x0, y1,

. . .

θm − ρm, xm −Amxm−1, ym),

where Ai = hi1 are linear maps. The map K1(x) is clearly affine and of the form

K1(x) = (Id−A)(x− c),
where

Ax = (0, 0, A−my−m+1, . . . , 0, 0, A−1y0,

0, g(xm), h(y−m), 0, A1x0, 0, . . . , 0, Amxm−1, 0),

c = (ρ−m, 0, 0, . . . , ρm, 0, 0),

hence by the Degree Property of Affine Maps (see Section 2.2) we have

deg(K1, XU, 0) = sgndet(Id−A).

We will show that (Id− A) is non-degenerate. Let us assume that (Id− A)x = 0.
From (28) we have xi = y−i = 0 for i = −m, . . . ,−1. Also

x0 = g ◦Am ◦Am−1 ◦ . . . ◦A1x0,

y0 = h ◦A−m ◦A−m+1 ◦ . . . ◦A−1y0,

which by the fact that

Ai
(
∂Bu(0, 1)

)
⊂ Ru \Bu(0, 1),

g
(
∂Bu(0, 1)

)
⊂ Ru \Bu(0, 1),

h
(
∂Bu(0, 1)

)
⊂ Ru \Bu(0, 1),

means that x0 = y0 = 0. From the fact that x0 = y0 = 0 and the fact that
(Id−A)x = 0 follows that for i ≥ 1

xi = Ai ◦ . . . ◦A1x0 = 0,
y−i = A−i ◦ . . . ◦A−1y0 = 0.

This means that det(Id−A) 6= 0, which finishes the proof of (14).
From the above argument we know that for anym ∈ N we have a point (x0(m), y0(m)) ∈

N such that

f i(ρ0, x0(m), y0(m)) ∈ int D for i ∈ {−m, . . .m}.
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Since the set N is compact we can pass to a convergent subsequence tending to
(x0, y0) ∈ N for which f i(ρ0, x0, y0) ∈ D for all i ∈ Z. Our construction implies
that f i(ρ0, x0, y0) has to be in the interior of D for all i ∈ Z. We therefore know that
our set Kρ0 is non-empty and lies in the interior of D, which finishes the proof.

Remark 1. In Theorem 3.1 the main emphasis should be put on the fact that we
have a trajectory in the interior of D starting from an arbitrary θ ∈ Λ. Showing
only an existence of an invariant set in the interior of D can be easily done by the
use of standard Conley index type arguments. Such arguments though will not give
us an invariant set which covers the whole manifold Λ.

Remark 2. Let us note that we have made no strong assumptions on the topology
of Λ, or on the dynamics on it. This is the underlying reason which made the proof
awkward to handle. For convex Λ, or for Λ = Tc, the proof can be considerably
simplified, since for these cases it is easy to define homotopies on Λ.

Remark 3. If f : D → Rk is a continuous map, instead of a homeomorphism,
then from the assumption that fθ cover N , using an analogous argument (without
backward covering), one can establish the existence of a (forward) invariant set for
the map f .

Remark 4. The main conditions (10) are local in nature. For (rigorous) computer
assisted applications this gives us an opportunity of tailoring the coordinates in D
around a given θ and verifying (10) in local coordinates.

Remark 5. The invariant set does not need to be unique in the sense that for a
given θ ∈ Λ we may have more than one x, y for which fn(θ, x, y) ∈intD for all
n ∈ Z (see the example in Section 5.2). We also do not obtain any regularity results
for the set

⋃
θ∈ΛKθ. We do not even know if it is a manifold or not.

4. Rigorous numerical verification and application of the result. In this
section we will show how Theorem 3.1 may be applied using rigorous computer
assisted methods. We will also compare the result with the method of Haro and de
la Llave [8]. The method of Haro and de la Llave relies strongly on the fact that
the invariant manifold is a normally hyperbolic torus and that the movement on
the torus is a rotation. In our method the manifold can be an arbitrary compact
sub-manifold in Rn without a boundary, the movement on it can be arbitrary, and
we do not require normal hyperbolicity (As mentioned above, due to the fact that
our assumptions are much weaker we lose the uniqueness and regularity results).

Let us start by presenting the result of Haro and de la Llave.

Theorem 4.1. [8] Let U ⊂ Rn be an open set. Let F : Td×U ⊂ Td×Rn → Rn be
a map of class Cr+1, with r ≥ 1 such that for all θ ∈ Td the map F (θ, ·) : U → Rn
is a local diffeomorphism. Let ω ∈ Rd be a rotation.

We consider a skew-product

x̄ = F (θ, x), θ̄ = θ + ω,

that is, a bundle map on the bundle E = Td × Rn.
Let K : Td → U ⊂ Rn be a Cr map such that:
a. K is an approximate invariant torus, that is

‖F (θ,K(θ))−K(θ + ω)‖Cr ≤ ε.
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b. The transfer operator L over the rotation ω, acting on complex sections ∆ :
Td → Cn by

L∆(θ) = DF (θ − ω,K(θ − ω))∆(θ − ω),

is hyperbolic as an operator on C0.

Then

1. If ε is small enough, there exists a Cr map KF : Td → U ⊂ Rn such that

F (θ,KF (θ)) = KF (θ + ω), (29)

and ||KF −K||Cr = O(ε).
2. The solution KF above is the only C0 solution of (29) in a C0 neighborhood

of K.
3. The torus KF is normally hyperbolic.

Moreover, the map F → KF is C1 when F is given the Cr+1 topology and KF

the Cr topology.

Let us make some remarks on the above result.

Remark 6. The result depends heavily on the fact that the motion on the torus
is a rotation.

Remark 7. The condition b. of Theorem 4.1 is on an infinite dimensional functional
space. Its verification most often is not straightforward.

Now we will show how the conditions of Theorem 3.1 can be verified in practice
and make a couple remarks to compare the result with Theorem 4.1. First let us
introduce the following definition.

Definition 4.2. Let U ⊂ Rn and f : U → Rn be a C1 function. We define the
interval enclosure of df on the set U as

[df(U)] =
{
A ∈ Rn×n|Aij ∈

[
inf
x∈U

dfi
dxj

(x), sup
x∈U

dfi
dxj

(x)
]

for all i, j = 1, . . . , n
}
.

Proposition 1. Let Λ be a c-dimensional sub-manifold without a boundary (in
particular Λ = Tc). Let N = Bu(0, 1)×Bs(0, 1) ⊂ U ⊂ Ru+s and F : Λ×U → Λ×U,
be a homeomorphism of the form

F (θ, p) = f(θ, p) + g+(θ, p),

F−1(θ, p) = f−1(θ, p)) + g−(θ, p),

where f = (id, fu, fs) : Λ × U → Λ × U is a diffeomorphism and the functions
g± = (g±c , g

±
u , g

±
s ) satisfy

|g±u (θ, p)| ≤ ε±u , (30)

|g±s (θ, p)| ≤ ε±s , (31)

for all θ ∈ Λ and p ∈ U. If there exist δ+
u , δ

+
s , δ

−
u , δ

−
s > 0, such that for any θ ∈ Λ

f(θ, 0) ∈ Λ×Bu(0, δ+
u )×Bs(0, δ+

s ), (32)

f−1(θ, 0) ∈ Λ×Bu(0, δ−u )×Bs(0, δ−s ), (33)
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and for any θ ∈ Λ, A ∈
[
d(fu,fs)
dp (θ,N)

]
and C ∈

[
d(fu,fs)
dp (θ,N)

]
we have

inf{|Au (vu, vs)| : |vu| = 1, |vs| ≤ 1} > 1 + ε+
u + δ+

u , (34)

sup{|As (vu, vs)| : |vs| ≤ 1, |vu| ≤ 1} < 1− ε+
s − δ+

s , (35)

sup{|Cu (vu, vs)| : |vs| ≤ 1, |vu| ≤ 1} < 1− ε−u − δ−u , (36)

inf{|Cs (vu, vs)| : |vs| = 1, |vu| ≤ 1} > 1 + ε−s + δ−s , (37)

then

N
Fθ=⇒ N, (38)

N
F−1
θ=⇒ N. (39)

In particular there exists a function K : Λ→ 2Rn\{∅}, such that for any θ ∈ Λ and
x ∈ K(θ)

K(θ) ⊂ intN,

F (θ, x) ∈ K(θ + g+
c (θ, x)), (40)

F−1(θ, x) ∈ K(θ + g−c (θ, x)).

Proof. To show (38), for any θ ∈ Λ we need to define the homotopy h from Definition
2.2. For a given θ and for any p = (pu, ps) ∈ N, λ ∈ [0, 1] we define h as

h(λ, p) = (1− λ)fθ(0) +
(∫ 1

0

(
d (fu, fs)

dp
(θ, (1− λ)tp)

)
u

dt · (pu, (1− λ)ps)

, (1− λ)
∫ 1

0

(
d (fu, fs)

dp
(θ, tp)

)
s

dt · p
)

+ (1− λ)g+(θ, p).

Since for i = u, s

(fθ(p)− fθ(0))i =
∫ 1

0

(
d (fu, fs)

dp
(θ, tp)

)
i

dt · p,

we have h(0, p) = fθ(p) + g+(θ, p) = Fθ(p). For λ = 1 we have

h(1, p) = (Apu, 0) with Apu :=
(
d (fu, fs)

dp
(θ, 0)

)
u

(pu, 0) .

For any λ from [0, 1], from the fact that

Aλ :=
∫ 1

0

d (f+
u , f

+
s )

dp
(θ, (1− λ)tp)dt ∈

[
d (f+

u , f
+
s )

dp
(θ,N)

]
,

for any p ∈ N− = ∂Bu(0, 1)×Bs(0, 1) using (30), (32) and (34) we have

| (h(λ, p))u | ≥ |
∫ 1

0

(
d (f+

u , f
+
s )

dp
(θ, (1− λ)tp)

)
u

dt · (pu, (1− λ)ps) |

− δ+
u − ε+

u

= |Aλu (pu, (1− λ)ps) | − δ+
u − ε+

u (41)
> 1.

This proves that for any λ ∈ [0, 1] we have h(λ,N−) ∩N = ∅. Also for λ = 1 from
(41), since A(x) = A1(x, 0), we have A (∂Bu(0, 1)) ∩Bu(0, 1) = ∅.
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For p ∈ N, using (31), (33) and (35) we have

| (h(λ, p))s | ≤ |(1− λ)
∫ 1

0

(
d (fu, fs)

dp
(θ, tp)

)
s

dt · p|+ δ+
s + ε+

s

= (1− λ)|A0
sp|+ δ+

s + ε+
s

< 1,

which means that h([0, 1], N) ∩N+ = ∅. This finishes establishing (38).
Using a mirror argument (keeping in mind that the role of the stable and unstable

directions is reversed for the inverse map) we can show that for any θ ∈ Λ we have
(39). The result (40) follows directly from Theorem 3.1.

Remark 8. For Proposition 1 to hold we do not need to assume that the manifold
Λ is a torus. What is more we do not need any assumptions on the dynamics on Λ.
In particular the conditions (34),...,(37) do not imply normal hyperbolicity, since F
need not be differentiable, and the movement on Λ can be arbitrary.

Remark 9. The conditions (34),...,(37) involve only standard derivatives on com-
pact sets. They can be verified using rigorous numerics. The result can be used for
(rigorous) computer assisted proofs. What is more, both Theorem 3.1 and Propo-
sition 1 can give us an explicit bound on the size of the perturbation under which
the invariant set persists (see examples in Section 5).

Remark 10. If we have a normally hyperbolic invariant manifold in Rc+n then
Proposition 1 can be applied. To do so one has to consider the coordinates in line
with the directions of hyperbolic contraction and expansion and focus on a small
neighborhood of the manifold.

Remark 11. Since the result is established through topological tools only, we loose
all of the regularity results of our invariant set. In comparison with Theorem 4.1
the result is quite weak. What is more, as it stands, it does not give a possibility
of detecting the stable and unstable manifolds as is done in [8]. The advantage of
the method lies in the simplicity of the required conditions.

It should be possible though to obtain some regularity results by adding appro-
priate cone conditions to the assumptions. The cone conditions should also give us
results for the foliations of the stable and unstable manifolds. The results which
will include the cone conditions in the spirit of [16] are under preparation and will
appear in forthcoming work.

5. Application of the results. In this Section we will present two examples. The
first is the rotating Hénon map. The map has been studied in [8], [11] and [13]. The
existence of the invariant set will be established by the use of Proposition 1. In the
second example we will deal with a ”toy” problem, which has a degenerate derivative
on Λ. For such cases Proposition 1 cannot be applied. The existence of the invariant
set is proved by applying Theorem 3.1 directly. This example demonstrates also
that for a θ ∈ Λ we can have more than just one point in Kθ.

5.1. The rotating Hénon map.
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5.1.1. Statement of the problem. We will consider the rotating Hénon map

Fε : Λ× R2 → Λ× R2,

Fε(θ, x, y) = (θ + g+
c (θ, x, y), 1 + y − ax2 + ε cos(2πθ), bx), (42)

where Λ is a c-dimensional submanifold without a boundary (say Λ = Tc), and
gc : Λ× R2 → Λ is such that the map (42) is a diffeomorphism.

The dynamics of (42) with a = 0.68, b = 0.1, Λ = T1 and

g+
c (θ, x, y) = θ + ω (mod 1), (43)

ω ∈ R, has been investigated by Haro and De la Llave in [8], for a demonstration
of a numerical algorithm for finding invariant manifolds and their whiskers in quasi
periodically forced systems.

In this section we will not use the assumption (43) that g+
c is a rotation. What

is more we do not assume that Λ is a one dimensional torus. In this more general
setting we will prove that for the parameters a = 0.68 and b = 0.1, for all ε ≤ 1

2 ,
there exists an invariant set of (42) which covers the manifold Λ and is contained
in a set

Uε = Λ× [x− − 1.1ε, x− + 1.1ε]× [y− − 0.12ε, y− + 0.12ε],
where (x−, y−) is a fixed point for the (standard) Hénon map,

x− =
−(1− b)−

√
(1− b)2 + 4a

2a
≈ −2.043 3,

y− = bx− ≈ −0.204 33.

Remark 12. Since we do not have any strong assumptions on g+
c this example

is not normally hyperbolic. What is more, since Proposition 1 is our main tool,
using the same method as is presented below we could obtain similar results for a
non-differentiable perturbation on all three coordinates. This is not done to keep
the example relatively simple and in line with [8].

Remark 13. If we include (43) into our assumptions, then the example becomes
normally hyperbolic. This though does not make it less interesting, since we not
only obtain the persistence of the manifold (which is automatic in such setting), but
also obtain explicit bounds on the size of the perturbation and the size of the region
in which the invariant set is contained. Such bounds are not easily obtainable from
the normal hyperbolicity theory.

5.1.2. The unperturbed map. We start by investigating the case of ε = 0. We will
ignore the coordinate θ and concentrate on a map

F (x, y) = (1 + y − ax2, bx).

The point (x−, y−) is one of the two fixed points (x±, y±) of the map F

x± =
−(1− b)±

√
(1− b)2 + 4a

2a
, y± = bx±.

We have

DF (x, y) =
(
−2ax 1
b 0

)
,

with two eigenvalues λ1 = −ax +
√
b+ a2x2, λ2 = −ax−

√
b+ a2x2. For (x−, y−)

the eigenvalues are

λ1 ≈ 2. 814 4, λ2 ≈ −3. 553 1× 10−2.
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We will consider the following Jordan forms of the matrix DF (x−, y−)

DF (x−, y−) = ΦεJΦ−1
ε ,

Φε = εκ

(
τ η
−τλ2 −λ1η

)
, J =

(
λ1 0
0 λ2

)
, Φ−1

ε =
1
ε

(
− 1
τ λ1 − 1

τ
1
ηλ2

1
η

)
,

where κ = 1/(λ2 − λ1). The constants τ, η serve the purpose of an appropriate
rescaling of the stable and unstable directions in the local coordinates, and will be
chosen later on. When we will consider the perturbed Hénon map in Section 5.1.3,
for a given ε > 0 we will use the maps Φε and Φ−1

ε .
We introduce local coordinates of hyperbolic expansion and contraction around

the point (x−, y−) as
(x̃, ỹ) = Φ−1

ε (x− x−, y − y−) . (44)

The map F in the local coordinates is

F̃ (x̃, ỹ) = Φ−1
ε (F (Φε(x̃, ỹ) + (x−, y−))− (x−, y−)) ,

and its derivative dF̃ is equal to

dF̃ (x̃, ỹ) = Φ−1
ε ◦ dF (Φε(x̃, ỹ) + (x−, y−)) ◦ Φε

= Φ−1
ε ◦ dF

(
εκ (τ x̃+ ηỹ) + x−

−εκ (τλ2x̃+ ηλ1ỹ) + y−

)
◦ Φε

= Φ−1
ε ◦

(
−2a (εκ (τ x̃+ ηỹ) + x−) 1

b 0

)
◦ Φε

= Φ−1
ε ◦

((
−2ax− 1

b 0

)
+
(
−2aεκ (τ x̃+ ηỹ) 0

0 0

))
◦ Φε

= J +Rε,

where

Rε = −2aεκ2 (τ x̃+ ηỹ)
(
−λ1 − ητ λ1
τ
ηλ2 λ2

)
.

For any x̃, ỹ ∈ [−1, 1] we have the following estimates, which will be used later on
for the verification of the covering conditions

[dF̃ (B(0, 1)×B(0, 1))] (45)

⊂
(
λ1 0
0 λ2

)
+ ε (τ + η)

(
[− 1

2 ,
1
2 ] [− 1

2
η
τ ,

1
2
η
τ ]

[− 6
1000

τ
η ,

6
1000

τ
η ] [− 6

1000 ,
6

1000 ]

)
.

Now we turn to the inverse map. The inverse map to F is

F−1(x, y) =
(

1
b
y,−1 + x+

a

b2
y2

)
,

and has a derivarive

dF−1(x, y) =
(

0 1
b

1 2a
b2 y

)
.

In the local coordinates (44) the inverse map is

F̃−1(x̃, ỹ) = Φ−1
ε

(
F−1 (Φε(x̃, ỹ) + (x−, y−))− (x−, y−)

)
,
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and its derivative dF̃−1 is equal to

dF̃−1(x̃, ỹ) = Φ−1
ε ◦ dF−1(Φε(x̃, ỹ) + (x−, y−)) ◦ Φε

= Φ−1
ε ◦ dF−1

(
εκ (τ x̃+ ηỹ) + x−

−εκ (τλ2x̃+ ηλ1ỹ) + y−

)
◦ Φε

= Φ−1
ε ◦

(
0 1

b
1 2a

b2 (−εκ (τλ2x̃+ ηλ1ỹ) + y−)

)
◦ Φε

= Φ−1
ε ◦

((
0 1

b
1 2a

b2 y−

)
+
(

0 0
0 − 2a

b2 εκ (τλ2x̃+ ηλ1ỹ)

))
◦ Φε

= J−1 +R′ε,

where

R′ε =
2a
b2
εκ2 (τλ2x̃+ ηλ1ỹ)

(
−λ2 − ητ λ1
τ
ηλ2 λ1

)
.

For x̃, ỹ ∈ [−1, 1] this gives us the following estimates

[dF̃−1(B(0, 1)×B(0, 1))] (46)

⊂
( 1

λ1
0

0 1
λ2

)
+ ε (τ |λ2|+ η|λ1|)

(
[− 6

10 ,
6
10 ] [−50 ητ , 50 ητ ]

[− τη
6
10 ,

τ
η

6
10 ] [−50, 50]

)
.

5.1.3. Verification of the covering conditions. Let N = B(0, 1)×B(0, 1). We define
φ : Λ× R2 → Λ× R2 as

φ(θ, x, y) = (θ,Φ−1
ε (x− x−, y − y−)),

φ−1(θ, x, y) = (θ,Φε (x, y) + (x−, y−)).

We will show that for any θ ∈ Λ

N
(Fε)θ=⇒ N, (47)

N
(F−1
ε )

θ=⇒ N. (48)

We will now apply Proposition 1 to establish (47). From (7) and the fact that
F0(θ, x−, y−) = (θ + g+

c (θ, x, y) , x−, y−) we have

(Fε)θ (0, 0) = πus ◦ φ ◦ Fε ◦ φ−1 (θ, 0, 0)

= πus ◦ φ ◦ Fε(θ, x−, y−)

= πus ◦ φ (F0(θ, x−, y−) + (0, ε cos 2πθ, 0))

= πus ◦ (θ + g+
c (θ, x, y) ,Φ−1

ε ((0, 0) + (ε cos 2πθ, 0)))

= (−1
τ
λ1 cos 2πθ,

1
η
λ2 cos 2πθ),

which gives us

(fε)φ (Λ, 0, 0) ⊂ Λ×Bu(0,
1
τ
|λ1|)×Bs(0,

1
η
|λ2|). (49)

From (45) we have that for any θ ∈ Λ and A ∈ [d(Fε)θ
d(x,y) (N)]

inf {|Au(0, x, y)| : |x| = 1, |y| ≤ 1} ≥ |λ1| − ε (τ + η)
1
2

(
1 +

η

τ

)
, (50)

sup {|As(0, x, y) : |x| ≤ 1, |y| ≤ 1|} ≤ |λ2|+ ε (τ + η)
6

1000

(
1 +

τ

η

)
.
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From (49) and (50), by Proposition 1 (in our case since Fε is a diffeomorphism
ε±u = ε±s = 0. Also δ+

u = |λ1| /τ, δ+
s = |λ2| /η), if we have

|λ1| − ε (τ + η)
1
2

(
1 +

η

τ

)
> 1 +

1
τ
|λ1| , (51)

|λ2|+ ε (τ + η)
6

1000

(
1 +

τ

η

)
< 1− 1

η
|λ2| , (52)

then we have established (47). The conditions (51) and (52) hold for all ε ≤ 1
2 with

τ = 3, η = 3
40 .

To establish (48) we first compute

F−1
ε (θ, x, y) =

((
F−1
ε (θ, x, y)

)
c
,

1
b
y, x′ − 1 +

a

b2
y2 − ε cos

(
2πF−1

ε (θ, x, y)
))

,

which gives(
F−1
ε

)
θ

(0, 0) = πus ◦ φ ◦ F−1
ε ◦ φ−1 (θ, 0, 0)

= πus ◦ φ ◦ F−1
ε (θ, x−, y−)

= πus ◦ φ
(
F−1

0 (θ, x−, y−) + (0, 0, ε cos
(
2π
(
F−1
ε (θ, x, y)

)
c

)
)
)

= πus ◦ (
(
F−1

0 (θ, x−, y−)
)
c
,

Φ−1
ε

(
(0, 0) + (0, ε cos

(
2π
(
F−1
ε (θ, x, y)

)
c

)
)
)
)

= (−1
τ

cos
(
2π
(
F−1
ε (θ, x, y)

)
c

)
,

1
η

cos
(
2π
(
F−1
ε (θ, x, y)

)
c

)
),

hence

(Fε)
−1
φ (θ̃, 0, 0) ⊂ B(0,

1
τ

)×B(0,
1
η

). (53)

From (46) we know that for any θ ∈ Λ and B ∈ [
d(F−1

ε )
θ

d(x,y) (N)] we have (let us note
that the roles of the stable and unstable coordinates have been exchanged with
respect to the forward map)

inf {|Bu(0, x, y)| : |x| = 1, |y| ≤ 1} ≥
∣∣∣∣ 1
λ2

∣∣∣∣− ε (τ |λ2|+ η|λ1|)
(
τ

η

6
10

+ 50
)
,

sup {|Bs(0, x, y)| : |x| ≤ 1, |y| ≤ 1} ≤ 1
λ1

+ ε (τ |λ2|+ η|λ1|)
(

6
10

+ 50
η

τ

)
.

Hence from (53), by Proposition 1 (in our case ε±u = ε±s = 0, δ+
u = 1/τ and

δ+
s = 1/η), if we have∣∣∣∣ 1

λ2

∣∣∣∣− ε (τ |λ2|+ ηλ1)
(
τ

η

6
10

+ 50
)
> 1 +

1
η
, (54)

1
λ1

+ ε (τ |λ2|+ ηλ1)
(

6
10

+ 50
η

τ

)
< 1− 1

τ
, (55)

then we have established (48). The conditions (54) and (55) hold for ε ≤ 1
2 with

τ = 3, η = 3
40 .
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5.1.4. The estimate of the region in which the invariant set is contained. So far
we have shown that for ε ≤ 1

2 we have the covering relations (47), (48) for N =
B(0, 1)×B(0, 1). This means that we have an invariant set which covers the manifold
inside a set

D = φ−1 (Λ×N) .

This gives us the following bounds

D = φ−1 (Λ×N)

= Λ× {(x−, y−) + Φε
(
B(0, 1)×B(0, 1)

)
}

⊂ Λ× {(x−, y−) + [−ε|κ|(τ + η), ε|κ|(τ + η)]

× [−ε|κ| (τ |λ2|+ η|λ1|) , ε|κ| (τ |λ2|+ η|λ1|)]}.

With τ = 3 and η = 3
40 this gives us D ⊂ Uε.

5.2. An example with a degenerate derivative on Λ. The conditions (34),
...,(37) might suggest that for the application of Theorem 3.1 one should need hy-
perbolic contraction and expansion. This is not the case. The result is purely
topological and does not rely on hyperbolicity. To demonstrate this let us con-
sider the following example for which we apply Theorem 3.1 directly, without using
Proposition 1.

5.2.1. Statement of the problem. Let h : R→ R,

h(x) =

 3x− 2 for x ≥ 1
x3 for |x| < 1
3x+ 2 for x ≤ −1.

Let us consider the following ODE

θ̇ = g(θ, x, y) + ε1(θ, x, y)

ẋ = h(x) + ε2(θ, x, y) (56)

ẏ = −h(y) + ε3(θ, x, y),

where θ ∈ Tn and g, ε1, ε2,ε3 are locally Lipschitz.
Let

M :=
3

e3 − 1

(
1√
5
− 1

2

)
.

Using Theorem 3.1 we will show that if

sup{|εi(θ, x, y)|, θ ∈ Tn, x, y ∈ B(0, 1)} < M for i = 2, 3, (57)

then for any θ0 ∈ Tn there exists a trajectory of (56), starting at (θ0, x0, y0) for
some

(x0, y0) ∈ B(0,
1
2

)×B(0,
1
2

),

which stays in the interior of the set Tn ×B(0, 1
2 )×B(0, 1

2 ).
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5.2.2. Verification of the covering conditions. Let ε := (ε1, ε2, ε3) and fε : Tn ×
R2 → Tn×R2, fε = (fεc , f

ε
u, f

ε
s ) be a time t = 1/2 shift along the trajectory of (56).

First we consider ε = 0. For x, y ∈ B(0, 1
2 ) we have

f0
u(θ, x, y) =


1q
1
x2
−1

for x > 0

0 for x = 0
− 1q

1
x2
−1

for x < 0
f0
s (θ, x, y) =


1q
1
y2

+1
for y > 0

0 for y = 0
− 1q

1
y2

+1
for y < 0.

Taking u = s = 1 and N := Bu(0, 1
2 )×Bs(0, 1

2 ) we have that for any θ ∈ Tn(
f0
u , f

0
s

)
(θ,N) = Bu(0,

1√
3

)×Bu(0,
1√
5

), (58)

which means that

N
f0
θ=⇒ N.

Let φε(t) = (θε(t), xε(t), yε(t)) be a solution of (56) with an initial condition

(θ0, x0, y0) ∈ Tn ×B(0,
1
2

)×B(0,
1
2

).

Using (57) and the fact that f0
u and f0

s are Lipschitz with a constant L = 3 we have

|xε(1)− x0(1)| < M

L
(eL − 1) =

1√
5
− 1

2
, (59)

|yε(1)− y0(1)| < M

L
(eL − 1) =

1√
5
− 1

2
. (60)

This means that for ε satisfying (57), from (58), (59) and (60) we have N
fεθ=⇒ N.

A mirror argument can be applied to show that N
(fε)−1

θ=⇒ N, which by Theorem 3.1
establishes our result.

Remark 14. The invariant set obtained in Example 5.2 does not need to be a
single torus. We can for example take

ε2(θ, x, y) = −εx,
ε3(θ, x, y) = εy,

with small ε. Both the flows on x and y are now independent. Looking at the x
coordinate, for ε ≤ 0 we have a single fixed point at zero. For ε > 0 we have three
fixed points: −

√
ε, 0 and

√
ε. An analogous discussion can be made for fixed points

on the y coordinate.
Looking now at the full system, for ε ≤ 0 we have a single invariant torus Tn×{0},

but for ε > 0 the invariant set is Tn × [−
√
ε,
√
ε]2 (see Figire 2).

Remark 15. We can see that in Example 5.2, Theorem 3.1 allowed us to obtain an
explicit bound on the size of the perturbation under which the invariant set persists.
Let us also note that we have made no strong assumptions about the functions g
and ε1.
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Figure 2. The invariant set for the system in Example 5.2 with
ε2(θ, x, y) = −εx, ε3(θ, x, y) = εy and ε > 0.
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