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Abstract. We present a topological proof of the existence of a normally hyperbolic

invariant manifold for maps. In our approach we do not require that the map is a

perturbation of some other map for which we already have an invariant manifold.

But a non-rigorous, good enough, guess is necessary. The required assumptions are

formulated in a way which allows for an “a posteriori” verification by rigorous-interval-

based numerical analysis. We apply our method for a driven logistic map, for which

non-rigorous numerical simulation in plain double precision suggests the existence of a

chaotic attractor. We prove that this numerical evidence is false and that the attractor

is a normally hyperbolic invariant curve.
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1. Introduction

In this paper we give a proof of existence of normally hyperbolic invariant manifolds for

maps. The construction is performed in the state space of the map. Assumptions needed

for the proof are of twofold nature. First we require topological conditions which follow

from suitable alignment of the coordinates (these are the so called covering relations).

Next we require that our map satisfies cone conditions. The aim of the paper though is

not to produce yet another proof of the normally hyperbolic invariant manifold theorem.

Our aim is to produce a tool that can be applied in rigorous-computer-assisted proofs.

To show the strength of our approach we apply our theorem to a driven logistic

map introduced in [2]. The map considered is such that standard numerical simulation

gives evidence of a chaotic attractor. Nevertheless we will show that the map in fact

possesses a normally hyperbolic invariant curve. This is apparent also when simulations

are performed using multiple precision computations. The example is a demonstration

of the fact that one has to be careful with the arithmetics in simulations, since the

numerical evidence of an attractor is false. See, e.g., [11] and [19] for other similar

examples. The strength of our method lies in the fact that even for such a simple

example as the one in [2], which defeats standard numerical simulations, we are able to

produce a rigorous proof of existence of a normally hyperbolic invariant curve.

The approach to normally hyperbolic manifolds presented here is in the spirit of [3]

and [6]. In [3] a topological proof of existence of invariant sets with normally hyperbolic

type properties is given. In [6] the result is extended to prove existence of normally

hyperbolic invariant manifolds. In both cases the proofs relied on assumptions that the

first iterate of the map is well aligned with the stable and unstable manifolds. Similar

approach was also used in [4] to give a proof of existence of a center manifold. The

result in [4] is for ODEs and relies also on the fact that hyperbolic dynamics is uniform.

The main difference between our paper and the results mentioned above is that we

assume that hyperbolic expansion and contraction aligns with the tangent spaces of the

invariant manifolds after a suitable (possibly large) number of iterates of the map. This

setting is more general, and also more typical for normal hyperbolicity.

The paper is organised as follows. Section 2 introduces basic notations used

throughout the paper and provides a setup and an outline of our argument. Section

3 contains a geometric construction of a normally hyperbolic manifold. We first give

a construction of a “center-stable” manifold (the term “center-stable” refers to the

normally hyperbolic invariant manifold union its associated stable manifold; analogous

terminology is used by us for the “center-unstable” manifold). A center-unstable

manifold is obtained using a mirror construction to the center-unstable manifold, by

considering the inverse map. The intersection of the center-stable and center-unstable

manifolds gives us the normally hyperbolic invariant manifold. In Section 4 we show

how to verify the assumptions of our theorems using local bounds on derivatives of the

map. In Section 5 we present our example of the driven logistic map and apply our

method to it.
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2. Setup

We start by writing out some basic notations which we shall use throughout the paper.

A notation Bi(q, r) will stand for a ball of radius r centered at q in Ri. We will also

use the notation Bi = Bi(0, 1). For a set A we will denote by A its closure, by intA

its interior and by ∂A its boundary. For a function f we will use the notation dom(f)

to denote its domain. For points p = (x, y) we shall use the notation πx(p), πy(p) to

denote the projection onto the x and y coordinates respectively.

We now introduce the setup of our problem. Let D and U be open subsets in Rn

such that D ⊂ U . Let

f : U → U ,

be a diffeomorphism. Let u, s, c ∈ N be such that u+ s+ c = n. We assume that there

exist a diffeomorphism

φ : U → φ(U) ⊂ Ru × Rs × Λ

such that φ(D̄) = Dφ := Bu × Bs × Λ, and Λ is a compact c dimensional manifold

without boundary. We define fφ : Dφ → Ru × Rs × Λ as

fφ = φ ◦ f ◦ φ−1.

We assume that there exists a finite covering {Ui}i∈I of Λ and an atlas

ηi : U i → Bc.

Throughout the work we will use the notation

B = Bu × Bs ×Bc.

For i, j ∈ I we consider local maps fji : B ⊃ dom(fij) → Ru × Rs ×Bc defined as

fij := η̃j ◦ fφ ◦ η̃−1
i ,

η̃i := (id, id, ηi) for i ∈ I.

Note that the domain of fij can be empty, and will usually be smaller than B. The

following graph depicts the functions defined above and their mutual relations.

D
f→ U

↓ φ ↓ φ

Bu ×Bs × Λ
fφ→ Ru × Rs × Λ

↓ η̃i ↓ η̃j

B
fji→ Ru × Rs ×Bc

Our goal in this paper will be to find a normally hyperbolic invariant manifold,

together with its stable and unstable manifolds within the set D, provided we have

some numerically verifiable conditions.

We will use the following notations for our coordinates: x ∈ Ru, y ∈ Rs, θ ∈ Bc,

λ ∈ Λ. The coordinate x will play the role of a globally unstable direction, and the
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coordinate y will play the role of a stable direction for the map fφ (hence the superscripts

u and s, which stand for “unstable” and “stable” respectively). The coordinate λ will

play the role of the central direction, which globally has weaker contraction than in

the stable coordinate, and weaker expansion than in the unstable one. The notation θ

will also be used for the central direction, but it will be reserved to denote the central

coordinate in the local coordinates; i.e. θ = ηi(λ) for some λ ∈ Λ and i ∈ I.

3. Geometric approach to invariant manifolds

In this section we give the construction of a normally hyperbolic invariant manifold. The

construction is performed in the state space of our map. It is based on the assumptions

of covering relations and cone conditions. We first give an introduction to these tools in

Section 3.1. In Section 3.2 we formulate our assumptions on the map in terms of covering

relations and cone conditions, which will imply the existence of a normally hyperbolic

manifold. In Section 3.3 we show how to construct a center-stable manifold of our

map. The construction of a center-unstable manifold follows from a mirror argument.

The intersection of center-stable and center-unstable manifolds gives us a C0 normally

hyperbolic invariant manifold. Let us write explicitly that for a normally hyperbolic

manifold which does not have an associated stable manifold, the center-stable manifold

will be the the normally hyperbolic manifold itself. An analogous statement holds also

for center-unstable manifolds.

3.1. Covering relations and cones

Covering relations are topological tools used for proofs of nontrivial symbolic dynamics

of dynamical systems. The method is based on the Brouwer degree theory, and the

setting is such that it allows for rigorous numerical verification. The method has been

applied in computer assisted proofs of existence of chaotic dynamics for the Hénon map,

Rössler equations [22], [6], Lorenz equations [8], Chua circuit [7] or for the solitons in

the Kuramoto-Sivashinsky PDE [21], amongst others. The method is based on singling

out a number of regions, called h-sets, which have hyperbolic type properties. Using

these properties one can find orbits of the system, which shadow the h-sets along their

trajectories. The method of covering relations relies on the system having expanding

and contracting coordinates. In this section we generalize covering relations to include

also a central direction. The setup is similar to that of [3], [5], but has been simplified.

Our proofs are now simpler and based only on continuity arguments. They no longer

require the use of degree theory, with little loss of generality.

For any p = (x, y, θ) ∈ B and ru, rs, rc > 0 we introduce a notation

N(p, ru, rs, rc) := Bu(x, ru)× Bs(y, rs)× Bc(θ, rc).

We define

N− = N−(p, ru, rs, rc) := ∂Bu(x, ru)× Bs(y, rs)× Bc(θ, rc) ,
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Figure 1. A ch-set N1 covering a ch-set N2.

N+ = N+(p, ru, rs, rc)

:= Bu(x, ru)× ((Rs × Rc) \ (Bs(y, rs)× Bc(θ, rc))) .

We assume that all boxes N which we are going to consider here are contained in B.

We will refer to a box N as a ch-set (center-hyperbolic set) centered at p.

In the following arguments we shall often consider different ch-sets. To keep better

track of our notations and to make our arguments more transparent we will stick to

the convention that for two ch-sets N1, N2 centered respectively at p1 = (x1, y1, θ1) and

p2 = (x2, y2, θ2) we write

Ni = Ni(pi, r
i
u, r

i
s, r

i
c) := B

i

u(xi, r
i
u)×B

i

s(yi, r
i
s)×B

i

c(θi, r
i
c) for i = 1, 2.

Definition 1. Let g : B → Ru × Rs × Bc be a continuous function. Let pi = (xi, yi, θi)

for i = 1, 2 and let N1, N2 be two ch-sets in B centered at p1 and p2 respectively. We

say that N1 g-covers N2 if

g(p1) ∈ int(N2), (1)

πx(g(N
−
1 )) ∩B

2

u(x2, r
2
u) = ∅, (2)

g(N1) ∩N+
2 = ∅. (3)

In such case we shall write N1
g

=⇒ N2.

Remark 2. Definition 1 is a simplified definition of a covering relation. More general

versions can be found in [8], [9], [22] in the setting of hyperbolicity, or in [3], [5] in a

setting when additionally a central direction is included.

For γ = (a, b, c) ∈ R3, and q = (x, y, θ) ∈ Ru × Rs × Rc we define

Qγ : Ru × Rs × Rc → R ,

Qγ(q) := a ‖x‖2 + b ‖y‖2 + c ‖θ‖2 . (4)

If a > 0 b, c < 0, then for p ∈ Ru × Rs × Rc we will refer to

C(p, γ) := {q : Qγ(p− q) ≥ 0}
as a horizontal cone centered at p (see Figure 2).
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Definition 3. Let N be a ch-set and γ = (a, b, c) be such that a > 0, b, c < 0. We will

refer to a pair (N, γ) as a ch-set with cones.

Definition 4. Let (N, γ) = (N((x, y, θ), ru, rs, rc), γ) be a ch-set with cones. A

continuous function h : Bu(x, ru) → N is called a horizontal disc in (N, γ), iff

πxh(x) = x and for any x∗, x∗∗ ∈ Bu(x, ru),

Qγ(h(x
∗)− h(x∗∗)) ≥ 0, (5)

Lemma 5. Let Ni = Ni((xi, yi, θi), r
i
u, r

i
s, r

i
c) for i = 1, 2 and let (N1, γ1), (N2, γ2) be

two ch-sets with cones. Assume that

N1
g

=⇒ N2 (6)

and that for any q∗, q∗∗ ∈ N1 such that q∗ 6= q∗∗ and Qγ1(q
∗ − q∗∗) ≥ 0 we have

Qγ2(g(q
∗)− g(q∗∗)) > 0. (7)

If h1 is a horizontal disc in (N1, γ1) then there exists a horizontal disc h2 in (N2, γ2)

such that g(h1(B
1

u(x1, r
1
u))) ∩N2 = h2(B

2

u(x2, r
2
u)).

Proof. Without loss of generality we assume that p1 = p2 = 0 and that riκ = 1 for

i = 1, 2 and κ ∈ {u, s, c}. In other words, we assume that for i = 1, 2

Ni = B
i

u ×B
i

s × B
i

c = Bu(0, 1)× Bs(0, 1)× Bc(0, 1).

Let γi = (ai, bi, ci) for i = 1, 2 and let h be any horizontal disc in N1. Then by (4),

(5) and (7) for x∗, x∗∗ ∈ B
1

u, x
∗ 6= x∗∗

a2 ‖πxg(h(x
∗))− πxg(h(x

∗∗))‖2 ≥ Qγ2(g(h(x
∗))− g(h(x∗∗))) > 0, (8)

which means that πx ◦ g ◦ h is injective.

Using the notation h1(x) = (x, h1(x)) ∈ B
i

u × (B
i

s × B
i

c), for α ∈ [0, 1], we define

a family of horizontal discs hα(x) = (x, αh1(x)). Let Fα : B
1

u → Ru be a continuous

family of functions defined as

Fα(x) := πx ◦ g ◦ hα(x).

We shall show that B
2

u ⊂ F1(B
1
u). Functions Fα are injective, hence sets Aα := Fα(B

1
u)

are homeomorphic to balls in Ru; moreover ∂Aα = Fα(∂B
1
u). By Definition 4 of a

horizontal disc, hα(∂B
1
u) ⊂ N−

1 . From assumption (6), by conditions (1), (2) we have:

πxg(0) ∈ B
2

u, (9)

∂Aα ∩ B
2

u ⊂ Fα(N
−
1 ) ∩ B

2

u = ∅. (10)

From the fact that 0 ∈ B1
u we have:

F0(0) ∈ F0(B
1
u) = A0. (11)

Since h0(0) = 0, by (9) we have:

F0(0) = πx ◦ g ◦ h0(0) = πxg(0) ∈ B
2

u. (12)
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N1

f
=⇒ N2 N2

f
=⇒ N3

x

y

θ

C(p, γ1) C(f(p), γ2) C(f2(p), γ3)

Figure 2. Covering relations for two iterates of a map f . For the second iterate of

the map the coordinate x is expanding and y is contracting (for the first iterate of f

they are not). The fact that expansion in x is stronger than expansion in θ is visible

from the fact that the cones C(f2(p), γ3) are ”tighter” than cones C(p, γ1).

From (11), (12) it follows that A0 ∩ B
2

u 6= ∅. This by (10) implies that B
2

u ⊂ A0.

By continuity of Fα with respect to α this means that B
2

u ⊂ Aα for all α ∈ [0, 1]. In

particular B
2

u ⊂ A1 = F1(B
1
u).

Since F1 is injective and B
2

u ⊂ F1(B
1
u), for any v ∈ B

2

u there exists a unique

x = x(v) ∈ B1
u such that F1(x) = v.We define h2(v) = (v, h2(v)) := (v, πy,θ◦g◦h1(x(v))).

For any v∗ 6= v∗∗, v∗, v∗∗ ∈ B
2

u, by (5) and (7) we have

Qγ2 (h2(v
∗)− h2(v

∗)) = Qγ2(g ◦ h1(x(v
∗))− g ◦ h1(x(v

∗∗)))

> Qγ1(h1(x(v
∗))− h1(x(v

∗∗)))

> 0.

Since Qγ2 (h2(v
∗)− h2(v

∗∗)) > 0 we have

a2 ‖v∗ − v∗∗‖
> −b2 ‖πy (h2(v

∗)− h2(v
∗∗))‖2 − c2 ‖πθ (h2(v

∗)− h2(v
∗∗))‖2

≥ min(−b2,−c2) ‖h2(v
∗)− h2(v

∗∗)‖2 ,
and therefore h2 is continuous.

Remark 6. It is important to point out that since we have freedom of choice of the radii

ru, rs and rc it is not necessary for x to be expanding, y to be contracting and θ to have

weaker dynamics for each single iterate of the map. In Figure 2 we have a sketch of a

situation in which x becomes expanding and y contracting only after a second iterate.

In Figure 2 the coordinate θ is expanding. It will turn out that such a scenario is

acceptable for us and can be dealt with by increasing rc for successive iterates.
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3.2. Covering relations and cone conditions for normal hyperbolicity

In this section we formulate our assumptions which will imply the existence of a

normally hyperbolic manifold. The assumptions are in terms of covering relations

and cones and are in the spirit of [5]. There are two major differences though.

The first is that the assumptions used in [5] required the system to have uniform

expansion and uniform contraction for the first iterate of the map. Here we set up our

coordinates in the directions of global contraction and global expansion. In the setting

of normal hyperbolicity the coordinates of global contraction and expansion need not be

contracting and expanding for the first iterates of the map. What is important is that

they dominate after a sufficiently large numbers of iterates. In other words, that the

Lyapunov exponents are negative or positive, respectively. We set up our assumptions

so that they allow for such setting. This way we do not need to use the “adapted norms”

to ensure that contraction/expansion happens in the first iterate. The second difference

is that our setup has been significantly simplified with comparison to [5]. This results

in a slight loss of generality (we do not formulate our assumptions in terms of vector

bundles as in [5]) but we need to consider fewer assumptions.

Let 1 > R > ρ, r > 0. Assume that there exists a finite sequence of points

λk ∈ Λ, k ∈ N such that for any k the set I(k) = {i : Bc(ηi(λk), ρ) ⊂ Bc(0, R)} is

not empty. What is more, assume that there exists a set J ⊂ {(i, k)|i ∈ I(k)} such that

Λ ⊂ ⋃(i,k)∈J η
−1
i (Bc(ηi(λk), ρ)). For points (i, k) ∈ J we define sets

Mi,k := Bu(0, r)× Bs(0, r)×Bc(ηi(λk), ρ).

We will need to assume that the points λk are sufficiently close to each other. We

will also need to assume that R and ρ are sufficiently large in comparison to r. This is

summarized in Assumption 7. The idea behind it is demonstrated in Figure 3, which

might provide some intuition.

Assumption 7. Let m > 1 and let γ0 = (a0,b0, c0) ∈ R3, γ1 = (a1,b1, c1) ∈ R3 satisfy

am > 0, bm, cm < 0 for m = 1, 2. Let us also define a set M ⊂ B as

M := Bu(0, r)× Bs(0, r)×Bc. (13)

We assume that for any horizontal disc h in a ch-set with cones (M,γ1) and for any

i ∈ I there exists (ι, κ) ∈ J such that h(Bu(0, r)) ⊂ dom(η̃ι◦η̃−1
i ). In addition we assume

that for any q∗, q∗∗ in dom(η̃ι ◦ η̃−1
i ) such that Qγ1

(q∗ − q∗∗) > 0 we have

Qγ0
(η̃ι ◦ η̃−1

i (q∗)− η̃ι ◦ η̃−1
i (q∗∗)) > mQγ1

(q∗ − q∗∗) (14)

and

h′ := η̃ι ◦ η̃−1
i ◦ h|Bu(0,r) is a horizontal disc in (Mι,κ,γ0). (15)

Assumption 7 ensures that for h in some local coordinates η̃i we can change to

coordinates η̃ι so that h′ := η̃ι ◦ η̃−1
i ◦h lies close to the middle of the set M . Assumption

7 is also discussed in Section 4.3, where conditions which imply it are given.

Above we use bold font for γi = (ai,bi, ci), i = 0, 1 to distinguish them from other

γ = (a, b, c) in our proofs.
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}

Figure 3. The change of coordinates η̃ι ◦ η̃−1

i , a horizontal disc h, and the cones given

by γ
0
and γ

1
in different local coordinates. Here, for simplicity, the stable coordinate

is neglected s = 0.

=⇒ =⇒ =⇒

N1

N2 N3

N4

Qγ1
= c Qγ2

= c Qγ3
= c

Qγ1
≥ 0

Qγ2
≥ 0

Qγ3
≥ 0

Qγ0
= c

Qγ0
≥ 0

Qγ0
= c

Figure 4. (see Example 9) For the first iterates of the map the ch-sets and cones are

contracted in the x direction. After a number of steps the expansion in x starts to

dominate. Note that the coordinate θ is expanding. Since expansion in x is stronger

than expansion in θ though, the cones eventually become more flat and their level sets

Qγi
= c are pulled away from the origin.

Definition 8. If for any (i, k) ∈ J there exists a sequence of ch-sets with cones

(N1, γ1), . . . , (Nn, γn) (n can depend on (i, k)) and a sequence i0 = i, i1, . . . , in ∈ I

such that

Mi,k =: N0

fi1i0=⇒ N1

fi2i1=⇒ N2

fi3i2=⇒ . . .
finin−1

=⇒ Nn
id

=⇒ M, (16)

then we say that f satisfies covering conditions.

If in addition for any q1, q2 ∈ Nl−1, q1 6= q2,

Qγl+1
(fil+1il(q1)− fil+1il(q2)) > Qγl(q1 − q2) (17)

for l = 0, . . . , n− 1, and for γn = (a, b, c) we have

a1 > a,
b1

a1

>
b

a
,

c1

a1

>
c

a
, (18)

then we say that f satisfies cone conditions.

Example 9. This example stands behind the pictures from Figure 4. Consider u = c = 1

and s = 0. Assume that fi1i0 = (A1
ij)i,j=1,2 = diag(1

2
, 2), fi2i1 = (A2

ij)i,j=1,2 = diag(2, 1),
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N0

fi1i0

=⇒ N1 N1

fi2i1

=⇒ . . .
finin−1

=⇒ Nn Nn

id
=⇒M in

η̃ι1
◦ η̃−1

in

→

Bc(0, R)

Bu

Bu(0, r)

M
in

Mι0,κ0

Mι1,κ1

{
︸︷︷︸

︷︸︸︷x

θ

h(Bu(0, r))

Figure 5. The sequence of covering relations from Definition 8, together with the sets

Mι0,κ0
and Mι1,κ1

, which are the first step of the inductive construction from the proof

of Theorem 10.

fi2i3 = (A3
ij)i,j=1,2 = diag(5, 2). Let γ0 = (1,−1) and γ1 = (1

4
,−3

8
). We take ch-sets with

cones (Nl((0, 0), r
l
u, r

l
c), γl), for l = 0, 1, 2, 3 with

r0u = r0c = r,

rlu = rl−1
u Al

11 − ε,

rlc = rl−1
c Al

22 + ε,

γ0 = γ0, γ1 = (4δ,−1
4
δ−1), γ2 = (1δ2,−1

4
δ−2), γ3 = ( 1

25
δ3,− 1

16
δ−3), with δ = 1 + ε. For

sufficiently small r and ε we will have (16) and (17). For sufficiently small ε we also

have (18). Assume now that η̃ι ◦ η̃−1
i3

= diag(1, 1 + 1
4
). This η̃ι ◦ η̃−1

i3
is taken just as

a hypothetical example, in order to show that even when a switch to new coordinates

involves an expansion in the central coordinate the Assumption 7 can easily be satisfied.

We have

Qγ0
(η̃ι ◦ η̃−1

i3
(x, y)) = x2 − 5

4
θ2

= 4

(

1

4
x2 − 5

16
θ2
)

≥ 4

(

1

4
x2 − 3

8
θ2
)

= 4Qγ1
((x, y))

which means that (14) holds for m < 4.

We now introduce a notation U ⊂ Dφ for a set

U := Bu(0, r)× Bs(0, r)× Λ. (19)

The set U will be the region in which we will construct an invariant manifold of points,

which stay within the set Dφ for forward iterations of the map fφ.

3.3. Existence of a normally hyperbolic manifold - Main result

In this section we use the assumptions from Section 3.2 to obtain the existence of a

normally hyperbolic invariant manifold inside the set U defined in (19). We start with a

construction of the center-stable manifold. This is given in Theorem 10. The existence

of an center-unstable manifold follows from mirror arguments for the inverse map. The
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normally hyperbolic manifold is obtained by intersecting the center-stable and center-

unstable manifolds. This is done in Theorem 12.

Theorem 10. If f satisfies cone conditions then there exists a continuous injective

function V : Bs(0, r)× Λ → U such that

(i) πyV (y, λ) = y, πλV (y, λ) = λ,

(ii) for any (y, λ) ∈ Bs(0, r)× Λ and any n ∈ N

fn
φ (V (y, λ)) ∈ Dφ,

(iii) for any q ∈ U such that fn
φ (q) ∈ Dφ for all n ∈ N, there exists a (y, λ) ∈ Bs(0, r)×Λ

such that q = V (y, λ),

(iv) if λ∗, λ∗∗ ∈ η−1
i (Bc(ηi(λk), ρ)) for some (i, k) ∈ J then for any y∗, y∗∗ ∈ Bs(0, r)

such that (λ∗, y∗) 6= (λ∗∗, y∗∗)

Qγ0
(η̃i ◦ V (y∗, λ∗)− η̃i ◦ V (y∗∗, λ∗∗)) < 0. (20)

Proof. We take any y0 ∈ Bs(0, r), λ0 ∈ Λ and (ι0, κ0) ∈ J such that λ0 ∈ η−1
ι0
(Bc(λκ0

, ρ))

and define a horizontal disc h0 in Mι0,κ0
as

h0(x) := (x, y0, ηι0(λ0)).

Since f satisfies cone conditions, using assumption (16), applying inductively Lemma 5

gives us the existence of indexes i1, . . . , in1
∈ I and of a horizontal disc h1 in (M, γn1

)

such that

h1(Bu) = {η̃in1
◦ fn1

φ ◦ η̃−1
ι0
(h0(x)) ∈ M : x ∈ Bu(0, r), and

η̃il ◦ f l
φ ◦ η̃−1

ι0
(h0(x)) ∈ Nl for l = 1, . . . , n1}.

By (18), for x∗ 6= x∗∗

Qγ1
(h1(x

∗)− h1(x
∗∗)) > Qγn1

(h1(x
∗)− h1(x

∗∗)) > 0,

which means that h1 is a horizontal disc in (M,γ1). From (14) and (15) we know that

there exists (ι1, κ1) ∈ J such that h′ := η̃ι1 ◦ η̃−1
in1

◦h1 is a horizontal disc in (Mι1,κ1
,γ0).

Let f1 := η̃ι1 ◦ fn1

φ ◦ η̃−1
ι0
. For x for which η̃in1

◦ fn1

φ ◦ η̃−1
ι0
(h0(x)) ∈ h1(Bu) we have:

f1(h0(x)) = η̃ι1 ◦ η̃−1
in1

◦ η̃in1
◦ fn1

φ ◦ η̃−1
ι0
(h0(x))

⊂ η̃ι1 ◦ η̃−1
in1

(h1

(

Bu

)

)

= h′ (Bu

)

.

This by (17) and (14) means that for any x∗ 6= x∗∗ such that h0(x
∗),h0(x

∗∗) ∈ dom(f1)

Qγ0
(f1(h0(x

∗))− f1(h0(x
∗∗))) > mQγ0

(h0(x
∗)− h0(x

∗∗)) > 0. (21)

Repeating the above procedure inductively (starting the second step with the

horizontal disc h′ and local coordinates given by η̃ι1) we obtain a sequence of points

xs ∈ Bu(0, r) and indexes (ιs, κs) for s ∈ N such that for

fs := η̃ιs ◦ fns+...+n1

φ ◦ η̃−1
ι0
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we have

fw(h0(xs)) ∈ Mιw,κw
for w ≤ s.

Since Bu(0, r) is compact, there exists an x0 = x0(y0, λ0) ∈ Bu(0, r) such that

η̃−1
ιs

◦ fs(h0(x0)) ∈ U for all s ∈ N.

For any two points x∗
0, x

∗∗
0 such that η̃−1

ιs
◦ fs(h0(x

∗
0)), η̃

−1
ιs

◦ fs(h0(x
∗∗
0 )) ∈ U for all

s ∈ N, if x∗
0 6= x∗∗

0 then by (21) we have

Qγ0
(fs(h0(x

∗
0))− fs(h0(x

∗∗
0 ))) > mQγ0

(fs−1(h0(x
∗
0))− fs−1(h0(x

∗∗
0 )))

> . . . (22)

> msQγ0
(h0(x

∗
0)− h0(x

∗∗
0 ))

> 0.

Since m > 1, (22) implies in particular that if x∗
0 6= x∗∗

0 , then

‖πx (fs(h0(x
∗
0))− fs(h0(x

∗∗
0 )))‖ → ∞ as s → ∞.

Since fs(h0(x
∗
0)), fs(h0(x

∗∗
0 )) are in Mιs,κs

, which is a subset of B, which is bounded,

we see that we must have x∗
0 = x∗∗

0 . This means that there is only a single point

x0 = x0(y0, λ0) ∈ Bu(0, r) such that η̃−1
ιs

◦ fs(h0(x0)) ∈ U for all s ∈ N. We can thus

define

V (y0, λ0) := η̃−1
ι0
(x0(y0, λ0), y0, λ0).

We now need to show (20). Suppose that V (y∗, λ∗), V (y∗∗, λ∗∗) ∈ Mi,k and

Qγ0
(η̃i ◦ V (y∗, λ∗)− η̃i ◦ V (y∗∗, λ∗∗)) ≥ 0. Applying estimates analogous to (22) we

obtain a contradiction.

Continuity of V will follow from the fact that

Qγ0
(η̃ι0 ◦ V (y∗, λ∗)− η̃ι0 ◦ V (y∗∗, λ∗∗)) < 0. (23)

Since γ0 = (a0,b0, c0) with a0 > 0 and b0, c0 < 0 (23) gives

0 > Qγ0
(η̃ι0 ◦ V (y∗, λ∗)− η̃ι0 ◦ V (y∗∗, λ∗∗))

= a0 ‖πxV (y∗, λ∗)− πxV (y∗∗, λ∗∗)‖2 + b0 ‖y∗ − y∗∗‖2

+ c0 ‖ηι0(λ∗)− ηι0(λ
∗∗)‖2 ,

and therefore

a0 ‖πxV (y∗, λ∗)− πxV (y∗∗, λ∗∗)‖2

< min(−b0,−c0) ‖(y∗, ηι0(λ∗))− (y∗∗, ηι0(λ
∗∗))‖2 .

Now we move to proving the existence of the normally hyperbolic invariant

manifold. First we need a definition.

Definition 11. We say that f satisfies backward cone conditions if f−1 satisfies cone

conditions, with reversed roles of x and y coordinates.
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We assume that Assumption 7 holds for f with γ0 = γforw
0 . We assume also that for

f−1 Assumption 7 holds with γ0 = γback
0 (with reversed roles of the x and y coordinates).

Theorem 12. (Main Theorem) Assume that f satisfies cone conditions for γforw
0 =

(

af
0,b

f
0, c

f
0

)

and backward cone conditions with γback
0 =

(

ab
0 ,b

b
0 , c

b
0

)

. If
∣

∣af
0

∣

∣ >
∣

∣ab
0

∣

∣ and
∣

∣bf
0

∣

∣ <
∣

∣bb
0

∣

∣ (24)

then there exist continuous injective functions W s : Bs(0, r)× Λ → U, W u : Bu(0, r)×
Λ → U and χ : Λ → U, such that

πy,λW
s(y, λ) = (y, λ), πx,λW

u(y, λ) = (x, λ), πλχ(λ) = λ, (25)

and Λφ := χ(Λ) is an invariant manifold for fφ, with stable manifold W s(Bs(0, r)× Λ)

and unstable manifold W u(Bu(0, r)× Λ).

Proof. Since f satisfies cone conditions, applying Theorem 10 we obtain W s(y, λ) as V .

Since f satisfies backward cone conditions, once again from Theorem 10 for f−1 we also

obtain W u(x, λ) as function V . From point (i) in Theorem 10 it follows that (25) holds

for W s and W u.

We show that for any λ ∈ Λ the sets W s(Bs(0, r), λ) and W u(Bu(0, r), λ) intersect.

Let us define F : Bu(0, r)× Bs(0, r) → Bu(0, r)× Bs(0, r) as

F (x, y) := (πxW
s(y, λ), πyW

u(x, λ)) .

Since F is continuous, from the Brouwer fixed point theorem follows that there exists

an (x0, y0) such that F (x0, y0) = (x0, y0) . By (25) this means that

W s(y0, λ) = (πxW
s(y0, λ), y0, λ) = (x0, πyW

u(x0, λ), λ) = W u(x0, λ). (26)

Now we show that for any given λ ∈ Λ there exists only a single (x0, y0) satisfying

(26). Suppose that for some λ ∈ Λ there exist (x∗, y∗) , (x∗∗, y∗∗) ∈ Bu(0, r)× Bs(0, r),

(x∗, y∗) 6= (x∗∗, y∗∗) such that

W s(y∗, λ) = W u(x∗, λ) and W s(y∗∗, λ) = W u(x∗∗, λ).

From (25) we have W s(ym, λ) = W u(xm, λ) = (xm, ym, λ) for m = 1, 2. From point (iv)

in Theorem 10 follows that

Q
γ
forw
0

(η̃i ◦W s(y∗, λ)− η̃i ◦W s(y∗∗, λ)) =

Q
γ
forw
0

((x∗, y∗, ηi(λ))− (x∗∗, y∗∗, ηi(λ))) < 0,

Q
γ
back
0

(η̃i ◦W u(x∗, λ)− η̃i ◦W u(x∗∗, λ)) =

Q
γ
back
0

((x∗, y∗, ηi(λ))− (x∗∗, y∗∗, ηi(λ))) < 0.

which implies that

af0 ‖x∗ − x∗∗‖2 + bf0 ‖y∗ − y∗∗‖2 < 0, (27)

ab0 ‖x∗ − x∗∗‖2 + bb0 ‖y∗ − y∗∗‖2 < 0. (28)
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From (24) and (28) (keeping in mind that af0 > 0, bf0 < 0 and that ab0 < 0, bb0 > 0 due

to the reversion of the roles of x and y for the inverse map) it follows that

af0 ‖x∗ − x∗∗‖2 > −ab0 ‖x∗ − x∗∗‖2 > bb0 ‖y∗ − y∗∗‖2 > −bf0 ‖y∗ − y∗∗‖2 ,
which contradicts (27).

We now define χ(λ) := (x0, y0, λ) for x0, y0 such that W s(y0, λ) = W u(x0, λ). By

the above arguments we know that χ is a properly defined function. We need to show

that this function is continuous. Let us take any λ∗, λ∗∗ ∈ η−1
i (Bc(ηi(λk), ρ)) for some

(i, k) ∈ J. From point (iv) in Theorem 10 it follows that

Q
γ
forw
0

(η̃i ◦ χ(λ∗)− η̃i ◦ χ(λ∗∗)) < 0, (29)

Q
γ
back
0

(η̃i ◦ χ(λ∗)− η̃i ◦ χ(λ∗∗)) < 0.

Let us adopt the notations η̃i ◦χ(λ∗) = (x∗, y∗, θ∗) and η̃i ◦χ(λ∗∗) = (x∗∗, y∗∗, θ∗∗) . Note

that from the construction of χ follows that ηi(λ
∗) = θ∗ and ηi(λ

∗∗) = θ∗∗. From (29) it

follows that
(

af0 + ab0
)

‖x∗ − x∗∗‖2 +
(

bf0 + bb0
)

‖y∗ − y∗∗‖2 (30)

< −
(

cf0 + cb0
)

‖θ∗ − θ∗∗‖2

= −
(

cf0 + cb0
)

‖ηi(λ∗)− ηi(λ
∗∗)‖2

From (24) it follows that af0 + ab0 =
∣

∣af0
∣

∣ −
∣

∣ab0
∣

∣ > 0 and bf0 + bb0 = −
∣

∣bf0
∣

∣ +
∣

∣bb0
∣

∣ > 0. By

the fact that ηi is continuous and the fact that cf0 < 0 and cb0 < 0, from (30) follows the

continuity of χ.

We will now show that for any p ∈ W s(Bs(0, r)×Λ), fn
φ (p) converges to χ(Λ) as n

goes to infinity. Let us consider the limit set of the point p

ω(fφ, p) = {q| lim
k→∞

fnk

φ (p) = q for some nk → ∞}.

If we can show that ω(fφ, p) is contained in W u ∩W s = χ(Λ), then this will conclude

the proof of Theorem 12. We take any q = limk→∞ fnk

φ (p) from ω(fφ, p). By continuity

of W s we know that q ∈ W s. Suppose now that q /∈ W u. This would mean that there

exists an n > 0 for which f−n
φ (q) /∈ Bu(0, r)× Bs(0, r)× Λ. Since

lim
k→∞

fnk−n
φ (p) = f−n

φ (q),

we have that f−n
φ (q) ∈ ω(fφ, p), but this contradicts the fact that ω(fφ, p) ⊂ Bu(0, r)×

Bs(0, r)× Λ.

Showing that all backward iterations of points in W u(Bu(0, r) × Λ) converge to

χ(Λ) is analogous.

Remark 13. Let us note that during the course of the proof of Theorem 12 we have

established more than just continuity of W u, W s and χ. From our construction we
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know that for i ∈ I

η̃i ◦W u(x, η−1
i (θ)) = (x, wu

i (x, θ), θ) ,

η̃i ◦W s(y, η−1
i (θ)) = (ws

i (y, θ), y, θ) ,

η̃i ◦ χ(η−1
i (θ)) = (κi(θ), θ) ,

for continuous wu
i : Bu(0, r) × Bc → Bs(0, r), ws

i : Bs(0, r) × Bc → Bu(0, r) and

κi : Bc → Bu(0, r) × Bs(0, r). The inequality (20) from Theorem 10 can be used to

obtain explicit Lipschitz bounds for functions wu
i , w

s
i . Also estimates (30) can be used

to obtain Lipschitz bounds for κi. This means that we can get Lipschitz estimates for

the invariant manifold χ(Λ) together with Lipschitz estimates for its stable and unstable

manifold.

4. Verification of covering and cone conditions

In this section we show how covering relations and cone conditions can be verified with

the use of local bounds on derivatives. The idea is to develop a simple automatised

scheme which could be applied in computer assisted proofs. In our approach we set up

our verification so that we do not need to compute images of large sets (which in case of

rigorous numerics is always troublesome). The scheme is based on iterates of a number

of single points, combined with estimates on derivatives around their neighbourhoods.

For any set V ⊂ Rn we define the interval enclosure of the derivative of f on V as

[df(V )] :=
{

A ∈ Rn×n|Aij ∈
[

inf
q∈V

dfi
dqj

(q), sup
q∈V

dfi
dqj

(q)

]

for all i, j = 1, . . . , n

}

.

Let Ui1 , Ui2 ⊂ Λ be such that domfi2i1 is nonempty (here we use domfi2i1 to denote the

domain of fi2i1). Assume that for any (c+ u+ s)× (c+ u+ s) matrix

A ∈ [dfi2i1(domfi2i1)] (31)

we have the following bounds

sup {‖Aklvl‖ : ‖vl‖ = 1} ≤ Akl, (32)

inf {‖Aklvl‖ : ‖vl‖ = 1} ≥ Akl,

with k, l ∈ {x, y, θ} and vx, vy, vθ representing the variables x, y, θ respectively (note

that Akl, Akl depend on the choice of i2i1). In this section we shall use the bounds (32),

together with pointwise bounds on the function f , for verification of covering and cone

conditions.

4.1. Verifying covering conditions

We define a 3× 3 matrix Ti2i1 as

Ti2i1 := (tkl)k,l∈{x,y,θ}
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txx = Axx, txy = −Axy, txθ = −Axθ,

tyx = Ayx, tyy = Ayy, tyθ = Ayθ,

tθx = Aθx, tθy = Aθy, tθθ = Aθθ.

(33)

We will use notations R = (ru, rs, rc) ∈ R3 and for q = (x, y, θ) ∈ Ru×Rs×Rc and

write

N(q, R) := N(q, ru, rs, rc).

We give a lemma, which can be used in order to verify that N1

fi2i1=⇒ N2.

Lemma 14. Let ε > 0 be a small number. Let N1 = N(q1, R1) ⊂ domfi2i1 be a ch-set.

If for R2 = (r2u, r
2
s , r

2
c ) := Ti2i1R1+(−ε, ε, ε) we have r2u, r

2
s , r

2
c > 0 and for q2 := fi2i1(q1)

‖πxq2‖+ r2u ≤ 1, ‖πyq2‖+ r2s ≤ 1, ‖πθq2‖+ r2c ≤ 1, (34)

then for N2 := N(q2, R2) we have N1

fi2i1=⇒ N2.

Proof. Condition (1) holds by the choice of q2 and N2. Let q ∈ N−
1 , then for

A :=

∫ 1

0

Dfi2i1(q1 + t(q − q1))dt ∈ [dfi2i1(domfi2i1)],

we have estimates

‖πx(fi2i1(q)− q2)‖ = ‖πx(fi2i1(q)− fi2i1(q1))‖

=

∥

∥

∥

∥

πx

(
∫ 1

0

Dfi2i1(q1 + t(q − q1))dt · (q − q1)

)
∥

∥

∥

∥

= ‖πxA(q − q1)‖
= ‖Axxπx(q − q1) + Axyπy(q − q1) + Axθπθ(q − q1)‖
≥ Axxr

1
u − Axyr

1
s −Axθr

1
c

> r2u,

hence (2) holds. Analogous computations for q ∈ N1 give

‖πy(fi2i1(q)− q2)‖ = ‖πyA(q − q1)‖ ≤ Ayxr
1
u + Ayyr

1
s + Ayθr

1
c < r2s ,

‖πθ(fi2i1(q)− q2)‖ = ‖πθA(q − q1)‖ ≤ Aθxr
1
u + Aθyr

1
s + Aθθr

1
c < r2c ,

which proves (3). Conditions (34) ensure that N2 ⊂ B.

Example 15. We return to our Example 9. The ch-sets from the example follow from

Lemma 8 as Nl = N(0, Rl) where R0 = (r, r) and Rl+1 = Til+1ilRl + (−ε, ε, ε) with

Til+1il = diag(Al+1
11 , Al+1

22 ).

Remark 16. When the x coordinate is strongly expanding, for practical reasons it might

be beneficial to set r2u significantly smaller than πxTi2i1R1. In such case the covering

N1

fi2i1=⇒ N2 will still take place, but N2 will be a smaller set. This might give better

bounds for next iterations of the map f and also keep the later constructed Ni within

B. Without reducing ru, in the case when x is rapidly expanding, it might turn out

that the sets Ni blow up quickly.
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4.2. Verifying cone conditions

Now we shall present some lemmas, which will show how one can obtain condition (17),

from bounds on derivatives (32). The aim is to present a simple mechanism in which

successive γl are constructed.

Let C = (cij)i,j={x,y,θ} be a 3× 3 matrix with coefficients

cxx=A2
xx−

∑

k 6=x

AxxAxk, cxy=
∑

k∈{x,y,θ}
AyxAyk, cxθ=

∑

k∈{x,y,θ}
AθxAθk,

cyx=A2
xy−

∑

k 6=y

AxyAxk, cyy=
∑

k∈{x,y,θ}
AyyAyk, cyθ=

∑

k∈{x,y,θ}
AθyAθk,

cθx=A2
xθ−

∑

k 6=θ

AxθAxk, cθy=
∑

k∈{x,y,θ}
AyθAyk, cθθ=

∑

k∈{x,y,θ}
AθθAθk,

(35)

(note that C depends on the choice of i2, i1).

We start with a technical lemma

Lemma 17. Let γ = (a, b, c) ∈ R3 and let A : Ru+s+c → Ru+s+c be a matrix for which

the bounds (32) hold. If a ≥ 0, b ≤ 0, c ≤ 0 then for any p = (px, py, pθ) ∈ Rc ×Ru ×Rs

Qγ(Ap) ≥ QCγ (p) .

Proof. Using the estimate

±2 〈Aklpl, Akjpj〉 ≥ −AklAkj

(

‖pl‖2 + ‖pj‖2
)

we obtain (below, for inequality < between indexes we use alphabetic order x < y < θ)

Qγ(Ap)

= a
∑

l,j∈{x,y,θ}
〈Axlpl, Axjpj〉+ b

∑

l,j∈{x,y,θ}
〈Aylpl, Ayjpj〉+ c

∑

l,j∈{x,y,θ}
〈Aθlpl, Aθjpj〉

= a
∑

k∈{x,y,θ}
||Axkpk||2 + b

∑

k∈{x,y,θ}
||Aykpk||2 + c

∑

k∈{x,y,θ}
||Aθkpk||2

+ 2
∑

l<j

a 〈Axlpl, Axjpj〉+ 2
∑

l<j

b 〈Aylpl, Ayjpj〉+ 2
∑

l<j

c 〈Aθlpl, Aθjpj〉

≥ ‖px‖2 (aA2
xx + bA

2

yx + cA
2

θx) + ‖py‖2 (aA2
xy + bA

2

yy + cA
2

θy)

+ ‖pθ‖2 (aA2
xθ + bA

2

yθ + cA
2

θθ)

− a
∑

l<j

AxlAxj

(

||pl||2 + ||pj||2
)

+ b
∑

l<j

AylAyj

(

||pl||2 + ||pj||2
)

+ c
∑

l<j

AθlAθj

(

||pl||2 + ||pj||2
)

= (Cγ)x ‖px‖
2 + (Cγ)y ‖py‖2 + (Cγ)θ ‖pθ‖

2 .

Now we give a lemma which will be the main tool in the construction of γl from

Definition 8.
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Lemma 18. Let Ui1 , Ui2 ⊂ Λ and let N be a ch-set N ⊂ dom(fi2i1). Let ε > 0 be a

small number. Let C be defined by (35) and ε > 0. Assume that C is invertible and

define

Gi2i1 = C−1. (36)

If for γ′ = (a, b, c) := Gi2i1γ+(ε, ε, ε), we have a > 0, and b, c < 0 then for any q1, q2 ∈ N

Qγ′(fi2i1(q1)− fi2i1(q2)) > Qγ(q1 − q2).

Proof. For

A :=

∫ 1

0

Dfi2i1(q2 + t(q1 − q2))dt ∈ [dfi2i1(domfi2i1)]

applying Lemma 17 gives

Qγ′(fi2i1(q1)− fi2i1(q2)) > QGi2i1
γ(fi2i1(q1)− fi2i1(q2))

≥ QCGi2i1
γ(q1 − q2)

= Qγ(q1 − q2).

Example 19. We return to Example 9. The cones γl follow from Lemma 18 as

γ0 = (1,−1) and γl+1 = (1+ε, (1+ε)−1) ·Gil+1ilγl with Gil+1il = diag

(

1

(Al+1
11 )

2 ,
1

(Al+1
22 )

2

)

,

where · stands for the scalar product.

4.3. Setting up local maps

In this section we shall introduce conditions, which ensure that the assumptions from

Section 3.2 hold. Below we give a Lemma which ensures (14) and (15) hold under

conditions easier to check.

Let us note that in some cases conditions (14) and (15) will follow from easier

arguments or directly from the setup of the problem. Such is the case in our example

from Section 5.

Lemma 20. Let m > 1, ∆ > 0 and ρ >
√

a0

−c0
r +∆. Assume that

(i) for any ι ∈ I and any λ ∈ Uι there exists a λκ such that (ι, κ) ∈ J and

‖ηι(λ)− ηι(λκ)‖ < ∆, (37)

(ii) for any θ ∈ Bc and any i ∈ I there exists an ι ∈ I such that

Bc

(

θ,

√

a1

−c1
r

)

∩ Bc ⊂ dom
(

ηι ◦ η−1
i

)

, (38)

ηι ◦ η−1
i (θ) ∈ Bc (0, R− ρ−∆) , (39)
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(iii) For i, ι ∈ I for which (39)–(38) hold, and for Cι i defined as in (35), constructed

for [d(η̃ι ◦ η̃−1
i )(dom(ηι ◦ η−1

i ))], we assume that Cι i is invertible and also that for

γ = (a, b, c) = C−1
ι i γ1 we have

a0 > ma, b0 > mb, c0 > mc. (40)

Then for any horizontal disc h in a ch-set with cones (M,γ1) and for any i ∈ I

there exists (ι, κ) ∈ J such that h(Bu(0, r)) ⊂ dom(η̃ι ◦ η̃−1
i ). Also for any q1, q2 in

dom(η̃ι ◦ η̃−1
i ) such that Qγ1

(q1 − q2) > 0 we have (14). Furthermore condition (15)

holds.

Proof. Let h be a horizontal disc in a ch-set with cones (M,γ1). Take θ0 = πθ(h(0)).

For any x ∈ Bu(0, r) we have Qγ1(h(x)− h(0)) ≥ 0, which implies that

a1r
2 ≥ a1 ‖πx(h(x)− h(0))‖2 ≥ −c1 ‖πθ(h(x))− θ0‖2 ,

hence πθ(h(Bu(0, r))) ⊂ Bc(θ0,
√

a1

−c1
r) ∩ Bc. Taking ι from assumption (ii) for θ = θ0,

condition (38) implies that h(Bu(0, r)) ⊂ dom(η̃ι ◦ η̃−1
i ) and also

∥

∥ηι ◦ η−1
i (θ0)

∥

∥ < R − ρ−∆. (41)

Take now any q1, q2 in dom(η̃ι ◦ η̃−1
i ) such that Qγ1

(q1 − q2) > 0. Applying (40) and

Lemma 18 gives

Qγ0
(η̃ι ◦ η̃−1

i (q1)− η̃ι ◦ η̃−1
i (q2)) > mQγ(η̃ι ◦ η̃−1

i (q1)− η̃ι ◦ η̃−1
i (q2))

≥ mQCι iC
−1
ι i γ1

(q1 − q2)

= mQγ1
(q1 − q2) (42)

> 0,

which proves (14). Applying the bound in (42) for q1 = h(x1), q2 = h(x2) gives

Qγ0
(h′(x1)− h′(x2)) ≥ 0, (43)

which means that to prove (15) it is sufficient to show that h′(Bu(0, r)) ⊂ Mι,κ for some

κ. Let λ = η−1
i (θ0). We now take κ from assumption (i). For any x ∈ Bu(0, r), by (43)

we have

a0r
2 ≥ a0 ‖πx(h

′(x)− h′(0))‖2

≥ −c0 ‖πθ(h
′(x)− h′(0))‖2

= −c0 ‖πθ(h
′(x))− ηι(λ)‖2 .

This means that

πθ(h
′(Bu(0, r))) ⊂ Bc(ηι(λ), r

√

a0

−c0
)
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and hence

‖πθ(h
′(x))− ηι(λκ)‖ ≤ ‖πθ(h

′(x))− ηι(λ)‖+ ‖ηι(λ)− ηι(λκ)‖

< r

√

a0

−c0
+∆

< ρ,

which gives h′(Bu(0, r)) ⊂ Mι,κ. The last property that needs to be verified is that

Mι,κ ⊂ B. From our construction πθMι,κ = Bc(ηι(λκ), ρ). For θ ∈ Bc(ηι(λκ), ρ), using

(37) and (41)

‖θ‖ ≤ ‖θ − ηι(λκ)‖+ ‖ηι(λκ)− ηι(λ)‖+ ‖ηι(λ)‖
= ‖θ − ηι(λκ)‖+ ‖ηι(λκ)− ηι(λ)‖+

∥

∥ηι ◦ η−1
i (θ0)

∥

∥

< ρ+∆+ (R− ρ−∆),

hence πθMι,κ ⊂ Bc.

4.4. Normally hyperbolic manifolds from bounds on derivatives

In Section 4.1 we have shown how covering relations from the chain (16) can be

constructed using point-wise bounds together with bounds on derivatives of local maps.

In Section 4.2 we have shown how the cones can be set up, using bounds on derivatives

of local maps, so that the condition (17) holds. Here we shall combine these results

together in Theorem 12.

We shall use the notations Ti2i1 and Gi2i1 introduced in Sections 4.1, 4.2 through

equations (33), (35) and (36). We will also assume that the assumptions from Section

3.2 hold. Here we introduce a definition which contains conditions which can be verified

using computer assistance. We will later show that the conditions imply cone conditions.

Definition 21. Assume that for any (ι0, κ0) ∈ J there exists an n ∈ N, a sequence

ι0 = i0, i1, . . . , in = ι1 and κ1 such that (ι1, κ1) ∈ J and for

qm = (xm, ym, θm) := fimim−1
◦ . . . ◦ fi1i0(0, 0, ηi0(λκ0

)),

Rm = (rmu , r
m
s , r

m
c ) := Timim−1

◦ . . . ◦ Ti1i0(r, r, ρ),

γm := (am, bm, cm) := Gimim−1
◦ . . . ◦Gi1i0γ0

with m ≤ n we have

rmu + ‖xm‖ < 1, rms + ‖ym‖ < 1, rmc + ‖θm‖ < 1,

rnu > r + ‖xn‖ , rns + ‖yn‖ < r, (44)

and

am > 0, 0 > bm, 0 > cm,

an > a1, bn > b1, cn > c1.

Then we say that f satisfies forward bounds.
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Remark 22. To verify that f satisfies forward bounds on needs to compute qm, Rm

and γm. Let us note that in the case of qm it is enough to obtain bounds on a finite

number of successive iterates of a single point. We therefore do not need to obtain

bounds on images of large sets, which in practise would accumulate large errors. The

Rm and γm are constructed using local bounds on derivatives and are easily computable

with computer assistance. Let us also note that to verify forward bounds we do not

need to compute the composition function fn or its derivative (though there are ways

of overcoming this, it could likely cause big difficulties for high n due to complexity of

such computations and also due to the fact that errors would accumulate quickly).

Lemma 23. If f satisfies forward bounds in the sense of Definition 21, then f satisfies

cone conditions.

Proof. We take any (ι0, κ0) ∈ J , a sequence ι0 = i0, i1, . . . , in = ι1 and an index κ1 such

that (ι1, κ1) ∈ J from Definition 21. We define R0 = R0
ε := (r, r, ρ) and

Rm
ε := Timim−1

Rm−1
ε + (−ε, ε, ε),

Nm := N(qm, Rm
ε ).

By (44), taking ε sufficiently small, we will ensure that Nm ⊂ B. By Lemma 14 we

obtain Nm−1

fimim−1

=⇒ Nm for m = 1, . . . , n and Nn
id

=⇒ M.

Now we define γ0 = γ0
ε := γ0 and

γm
ε := Gimim−1

γm−1
ε + (ε, ε, ε).

Taking ε > 0 small enough and applying Lemma 18 we obtain (17).

From now on let us assume that f satisfies forward bounds with γ0 = γforw
0 .

Definition 24. Let γback
0 =

(

ab
0 ,b

b
0 , c

b
0

)

∈ R3 be such that ab
0 , c

b
0 < 0 and bb

0 > 0. We

say that f satisfies backward bounds if f−1 satisfies forward bounds, with reversed roles

of the x and y coordinates.

Theorem 25. Assume that f satisfies forward bounds for γforw
0 =

(

af
0,b

f
0, c

f
0

)

and

backward bounds for γback
0 =

(

ab
0 ,b

b
0 , c

b
0

)

. If in addition inequality (24) holds then there

exists a normally hyperbolic invariant manifold in U , together with its stable and unstable

manifolds W s, W u.

Proof. This follows directly from Lemma 23 and Theorem 12.

5. Example of applications

Consider a driven logistic map

T : S1 × R → S1 × R,

T (θ, x) = (θ + α, 1− a(θ)x2), a(θ) = a0 + ε sin(2πθ) (45)

which differs from the well-known logistic map in the fact that the parameter a has

been replaced by a0 + ε sin(2πθ) and θ has a quasiperiodic dynamics. Concretely we
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Figure 6. Misleading numerical plot of the attractor for T , obtained using double

precision (consisting of points), and the true invariant curves computed with 128bit

accuracy.

consider the parameter values a0 = 1.31, ε = 0.3 and α = g

200
, where g is the golden

mean g =
√
5−1
2

. Hence the dynamics on the base of the skew-product is slow. Numerical

simulations in double precision (say, with mantissa of 52 binary digits) suggest that

the map possesses a chaotic global attractor (see Figure 6). We will prove that this

guess is not correct. When the same simulations are done with multiple precision, one

can guess that the attractor consists of two invariant curves (see Figure 6). We will use

the method introduced in the previous sections to prove that T possesses a contracting

invariant manifold and, in particular, that the plot obtained using double precision

(Figure 6) does not shows the true dynamics. The same example was considered for

other values of α and in a non-rigorous way in [2] to illustrate that one has to be careful

with the arithmetics in simulations. We can refer to [11] for additional examples in a

similar context.

5.1. Explaining the observed behaviour

To explain the reasons of the observed behaviour it is worth to mention that in the

example the parameter a of the logistic map ranges in [a0 − ε, a0 + ε] = [1.01, 1.61].

For that range the attractor starts as a recently created (at a = 1) period-2 sink,

followed by the full period-doubling cascade. Then one finds from several-pieces strange

attractors to a single piece, interrupted by some periodic sinks and its corresponding

cascades. When a moves with θ one can question which is the “averaged” behaviour.

In particular the period-2 orbit is only attracting until a = 5/4.

To this end we can consider what happens for “frozen” values of a, denoting as Ta

the corresponding logistic map. The orbit of period two, x1(a), x2(a) is given by the

solutions of x2 − x/a + (1− a)/a2. In particular

x1(a) = (1−
√
4a− 3)/(2a). (46)

The differential of T 2
a on it is 4(1 − a). To average with respect to θ along the range,
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Figure 7. The integrand h(θ) in (47) for the parameter values: a0 = 1.31, ε = 0.30.

and noting that a − 1 > 0 for the full range, we have to consider the average of the

Lyapunov exponent given as

Λ∞ =
1

2

∫ 1

0

ln(4(a0 − 1 + ε sin(2πθ)))dθ

=
1

2
ln(2(a0−1+

√

(a0−1)2−ε2)) (47)

which for a0 = 1.31, ε = 0.3 gives Λ∞ ≈ −0.12666931. The integrand is shown in Figure

7. For the skew product, assuming α /∈ Q and sufficiently small, the two curves which

form the attractor, as will be proved later, are very close to the curves x1(a), x2(a) of

the frozen system. Figure 8 displays the lower one. Also the Lyapunov exponent of the

driven map with α = g/N,N = 200, computed using 105 iterates after a transient also

of 105 iterates is Λ200 ≈ −0.12680. Using other values of N , like 100, 400, 800, 1600 the

respective values ΛN obtained are −0.12725, −0.12670, −0.126696, −0.126689, tending

to the limit Λ∞.
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 0

 0  0.2  0.4  0.6  0.8  1

Figure 8. The lower part of the attractor, the graph of x1(a(θ)), for the parameter

values: a0 = 1.31, ε = 0.30.

The numerical difficulties are easy to understand. To compute the Lyapunov

exponents, starting at a point x0 and an initial vector v0 = 1 and setting S0 = 0,
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we compute recurrently

v̂j+1 = DTa(xj)(vj), xj+1 = Ta(xj), nj+1 = |v̂j+1|, vj+1 = v̂j+1/nj+1,

Sj+1 = Sj + log(nj+1).

The values Sj are denoted as Lyapunov sums and the average slope as a function of

j (if it exists) gives the Lyapunov exponent Λ. For details and generalisations of this

approach, or different alternatives see, e.g., [20], [15] and [18] and references therein.

Even when a Lyapunov exponent is negative it can happen that partial sums have

strong oscillations. Given the values of Sj, j = 0, . . . , k let (Sk)min be the minimum of

these values and introduce Ok = Sk − (Sk)min. We define the maximal oscillation of

the Lyapunov sums as OS = max{Ok}. The Figure 9 shows the behaviour of Sj for

α = g/200 and also some of the initial oscillations for α = g/1600. A non-rigorous

computation of OS for N = 100, 200, 400, 800, 1600 with 105 iterates after a transient

gives the values 28.845, 56.761, 112.632, 224.379, 447.874, respectively. This implies a

loss in the number of decimal digits equal to these values divided by ln(10). In particular,

between 24 and 25 digits for N = 200, which explains the misleading calculations seen

in Figure 6. For small α the maximal oscillation tends to be

1

α

∫ θ1

θ2−1

h(θ)dθ, (48)

where h(θ) is the function which appears as integrand in (47) and it is extended by

periodicity outside [0, 1] while θ1 = 3
4
− 1

2π
cos−1(0.2), θ2 = 3

4
+ 1

2π
cos−1(0.2) are the

values at which h becomes equal to zero (see Figure 7). The value of the maximal

oscillation in (48) is ≈ 0.172660185/α for small α, that if α = g/N becomes ≈ 0.27937N

in good agreement with the previous results.
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Figure 9. Oscillations of the Lyapunov sums. Left: the Lyapunov sums for N = 200.

Right: some initial sums for N = 1600. Parameter values: a0 = 1.31, ε = 0.30 and

α = g/N.

Using these ideas one can even predict when we shall observe that the attractor

produced by simulations with not enough digits seems to indicate that it is not a period-

2 curve. Assume that we do computations with d decimal digits and that in a plot like

the one in Figure 6 one can distinguish pixels which are a a distance of 10−p. In our

example reasonable values of d, p are 16 and 4. This means that from θ2 − 1, when h
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becomes positive, till some unknown θd when the “departure” of the iterates from the

curve become visible, the factor of amplification of errors is 10d−p or, in logarithmic

scale (d− p) ln(10). This requires

1

α

∫ θd

θ2−1

h(θ)dθ = (d− p) ln(10).

In our example one finds θd ≈ 0.258 in good agreement with the observed numerics in

Figure 6 . In a similar way one can predict the “landing” value θl at which the points

seen as chaotic in Figure 6 are close enough to the real invariant curves. As the distance

from the chaotic points to the true attractor is of the order of 1, the condition is now

1

α

∫ θl

θ1

h(θ)dθ = p ln(10).

For the example one obtains θl ≈ 0.629, again in good agreement with the observed

numerics.

This “delayed” observation of the expanding and compressing regimes is similar,

but now due to purely numerical reasons, to the delay of bifurcation that can be observed

in systems depending on a parameter which has slow dynamics (see [17] and references

therein).

5.2. Some limit cases

Now we discuss two limit cases. First one is the case in which a(θ) covers a wide range.

Second one aims at describing the differences between the union of the curves x1(a(θ))

and x2(a(θ)) and the true attractor for α small enough.

According to (47) and assuming that for α sufficiently small the attractor is close

to the union of the curves x1,2(a(θ)) it is enough to take a0 = 1.5− δ1, ε = 0.5− δ1 − δ2
with 0 < δ2 ≤ δ21 to have a negative limit averaged Lyapunov exponent Λ∞. If δ1 is small

the values of a almost cover the full range (1, 2). The Figure 10 displays results of the

observed behavior using double precision for the values δ1 = 0.005, δ2 = 10−6, α =

g/60000. The figure is reminiscent of the “bifurcation diagram” of the logistic map. In

fact, a typical way to compute the diagram consists of taking a sample of values of a,

do some transient iterates and display some of the next iterates. Now the value of a is

changed at every step according to (45) but very slowly, and the transient is discarded.

From θ = 3/4 (for which the minimum of a(θ) is achieved) to θ = 5/4 (mod 1) (for which

one achieves the maximum) the plot looks like that diagram, except for the bifurcation

delays at the period doublings from period 2 to period 4 and successive ones. In the

range θ ∈ [1/4, 3/4] the reverse situation is seen, but now with much smaller bifurcation

delays. The authors do not know if, for the above values of the parameter, the attractor

will become close to the union of x1(a(θ)) and x2(a(θ)) for computations done with a

huge number of digits.

To look for the expression of the attractor as the union of two smooth curves,

assuming it is of that type, we restrict our attention to the lower part of it, close to

x1(a(θ)) as given in (46). In principle it is convenient to work with T 2 but, as the
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Figure 10. Simulations in double precision for values of a0, ε such that a(θ) almost

covers the range (1, 2) and α very small. See the text for the numerical values used.

eigenvalues of T 2 along the points of period 2 are negative, we prefer to work with T 4.

We look for the attractor as the graph of a function expanded in powers of α

G(θ) = G0(θ) + αG1(θ) + α2G2(θ) + . . . , (49)

where G0(θ) = x1(a(θ)) is the zeroth order approximation. The map T 4(θ, G(θ)) is

O(α) close to the identity. Hence, it can be approximated by a smooth flow (see [1] for

proofs, an example of application and additional references, as well as [16] for general

results) and the curve we are looking for is a periodic solution of this flow. But we shall

proceed by imposing directly the invariance condition.

Starting at a point of the form (θ, G(θ)) and doing four iterations using the values

a(θ), a(θ + α), a(θ + 2α), a(θ + 3α) we should have

T 4(θ, G(θ))− (θ + 4α,G(θ + 4α)) = 0. (50)

Given values of a0, ε it is a cumbersome but elementary task to obtain in a recurrent

way the expressions of G1, G2, . . . from (50). It is essential to reduce the dependence

in G0(θ), using the equation satisfied by x1(a), to decrease the order of the powers of

G0 which appear to just the first one. We note also that in the computation of all the

terms Gj there appears 16a2 − 32a + 15 = (4a− 5)(4a− 3) in the denominator, which

cancels for a = 5/4, but a careful examination allows to show that the factor 4a− 5 is

also present in the numerator.

In this way one obtains

G1(θ) =
3− 2a− (8a− 9)/

√
4a− 3

2a2(4a− 3)
2πε cos(2πθ), (51)

where a stands for a(θ) as introduced in (45).

The computation of G2 is much more involved. The simplest expression is given

as a rational function depending on a(θ), G0(θ), G1(θ) and up to the second derivatives

of these functions with respect to θ. Instead, Figure 11 displays the graph of G1 and
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Figure 11. Graphs of G1(θ) (left) and G2(θ) (right) for a0 = 1.31, ε = 0.30.

G2 for a0 = 1.31, ε = 0.30. The graph of G0(ε) is very close to the attractor shown in

Figure 8.

To see tiny details on the attractor Figure 12 displays the differences between the

lower part of the attractor, computed with enough digits, and the approximation in (49)

up to order 2 in α.
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-2e-08

 0

 2e-08

 0  0.2  0.4  0.6  0.8  1

Figure 12. Differences between the attractor and the second order approximation for

a0 = 1.31, ε = 0.30 and α = g/N . Left: N = 200. Right: N = 1000.

The left part shows tiny oscillations which were not visible in Figure 8. They reach

a maximum at the value θ = θ1 for which h(θ) in (48) changes from positive to negative.

As one can expect the shape of these oscillations is a bump function multiplied by a

periodic function (close to a sinus) with period 4α. A similar behaviour is observed

for many other values of a0, ε and α. When the oscillations start at a larger distance

from θ1 they can amplify is such a way that the attractor is no longer the union of the

two curves. One can suspect that it becomes a non-chaotic strange attractor (see, e.g.,

[10], [11] and [13]). In contrast, with the same values of a0, ε but for N = 1000 the

oscillations are not observed and the very small differences in the plot on the right hand

side of Figure 12 are mainly due to the third order term in (49).

5.3. Computer assisted proof of existence of invariant curves

In this section we apply our method from Sections 3 and 5.3.1 to prove that for

parameters a0 = 1.31, ε = 0.3 and α = g

200
, with g =

√
5−1
2

the map T has an invariant
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curve.

Around a neighbourhood of the numerical guess for the attractor, the map T 2 is

locally invertible. This is due to the fact that our curve is separated from the x-axis.

For our proof we consider

f = T−2.

The attractor is first computed (non-rigorously) by iterating T forwards in time.

We then choose a set V around the attractor (see Figure 13). For most θ the set is a

0.001 radius neighbourhood of the attractor. Close to the angle θ = 3
4
we choose V to

be tighter, so that we are sure that it lies within the domain of f (see Figure 13). Our

aim is to prove that inside of V we have an invariant normally hyperbolic curve of f.

The map f is not uniformly expanding in the x direction. Over one part of the set

V the map f is strongly expanding, elsewhere it is contracting. The expansion region

lies between two dashed lines on Figure 13. On this set we place ch-sets N5, . . . , N280 of

width α
2
, starting with N5 on the left and finishing with N280 on the right. To the left

of them we position additional four ch-sets N1, . . . , N4, also of width α
2
(see Figure 13).

These lie between two small black lines which point towards the θ-axis in Figure 13 (see

also Figure 15). The θ projection of Ni, for i = 1, . . . , 280, is [θ0 + (i − 1)α
2
, θ0 + iα

2
],

where θ0 =
53
100

. We shall use a notation

Uk,l =

l
⋃

i=k

Ni.

Our ch-sets are parallelograms. The coordinate x is globally expanding for f and

coordinate θ is normal (our map does not posses a globally contracting coordinate y).

The exits sets N−
i for the ch-sets are the top and bottom edges of the parallelograms.

The map f moves the ch-sets to the left. Since the width of the ch-sets is α
2
, for

k ∈ 5, . . . , 280 we have

πθf(Nk) ⊂ πθNk−4.

In Section 5.3.1 we shall show that (see Figures 14–15)

Nk
f

=⇒ Nk−4 for k ∈ {5, . . . , 280}, (52)

and also that (see Figure 14)

Nk
f128

=⇒ Uk+135,k+136 for k ∈ {1, . . . , 4}.
In Section 5.3.2 we show how to verify cone conditions. In Section 5.3.3 we briefly

describe the tools that were used to conduct the proof.

5.3.1. Verification of covering conditions To describe how covering conditions are

verified we start with a seemingly unrelated discussion. Consider a polynomial p :

[0, r] → R of degree n

p(θ) =

n
∑

j=0

ajθ
j ,
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Figure 13. The set V (between two outer lines), positioning of the ch-setsN5, . . . , N280

(between two dashed lines), and ch-sets N1, . . . , N4 (between two very small black lines

pointing towards the θ-axis, on the left of N5, . . . , N280), all plotted relative to the

attractor (on the θ-axis).
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Figure 14. Left: The ch-sets: N−

5
, ..., N−

280
(two long dashed lines; red for colour

plots online), N−

1
, . . . , N−

4
(two very short black lines left of N−

5
, ..., N−

280
) plotted

relative to the attractor, together with f(N−

5
), ..., f(N−

280
) (two long outer curves; blue

for colour plots online) and f128(N−

1
), ..., f128(N−

4
) (two short dashed curves). Right:

Magnification close to f128(N−

1
), ..., f128(N−

4
).

and a function g : R → R. Using Taylor expansion and defining two polynomials p and

p, of degree n

p(θ) = g ◦ p(0) +
n−1
∑

j=1

(

1

j!

dj (g ◦ p)
dθj

(0)

)

θj (53)

+
1

n!

(

dn (g ◦ p)
dθn

(0) +
1

n+ 1
sup

v,w∈[0,r]

dn+1 (g ◦ p)
dθn+1

(v)w

)

θn,

p(θ) = g ◦ p(0) +
n−1
∑

j=1

(

1

j!

dj (g ◦ p)
dθj

(0)

)

θj (54)

+
1

n!

(

dn (g ◦ p)
dθn

(0) +
1

n + 1
inf

v,w∈[0,r]

dn+1 (g ◦ p)
dθn+1

(v)w

)

θn,
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Figure 15. Closeup of the covering Ni
f

=⇒ Ni−4 for i = 5, 6, 7, 8 (plotted relative

to the attractor). The sets f(N−

5
), . . . , f(N−

8
) are the two outer lines (blue for colour

plots online), and the sets N−

1
, . . . , N−

4
are the two inner lines, lying left to the dashed

line.

for any θ ∈ [0, r] we have

p(θ) ≤ g(p(θ)) ≤ p(θ). (55)

For any i = 1, ..., 280, the exit set N−
i consists of two lines and can be expressed

using two polynomials (in fact these are affine functions) pui , p
d
i : [0, α

2
] → R, pdi (θ) =

adi,0 + adi,1θ, p
u
i (θ) = aui,0 + aui,1θ and a point qi ∈ [0, 1),

N−
i = N−

d ∪N−
u ,

N−
i,d = {(pdi (θ), qi + θ)|θ ∈ [0,

α

2
]},

N−
i,u = {(pui (θ), qi + θ)|θ ∈ [0,

α

2
]},

pdi (θ) < pui (θ) for θ ∈ [0,
α

2
].

We will now show how to construct a ch-set M such that

Ni
f

=⇒ M. (56)

We first verify that for any point (θ, x) ∈ Ni we have ∂f

∂x
(x, θ) < 0. We then take

gu(θ) := f(qi + θ, pdi (θ)), gd(θ) := f(qi + θ, pui (θ)), (57)

and construct pu(θ) = p(θ) using (53) and pd(θ) = p(θ) using (54), taking g as functions

gu and gd respectively. Formula (55) guarantees that f(N−
i,d) lies above the graph of

pu(θ) and that f(N−
i,u) lies below the graph of pd(θ). If we now set

M− = M−
d ∪M−

u ,

M−
d = {(pd(θ), qi − 2α+ θ)|θ ∈ [0,

α

2
]}, (58)

M−
u = {(pu(θ), qi − 2α + θ)|θ ∈ [0,

α

2
]},

and take M to be the set of points between M−
d and M−

u then (56) holds.
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For i = 5, ..., 280, after applying the above procedure to obtain M which is covered

by Ni, we compute bounds on the images of sets

pu
([

jα

100
,
(j + 1)α

100

])

, pd
([

jα

100
,
(j + 1)α

100

])

for j = 0, ..., 49, (59)

to verify that we have (52) (subdividing [0, α
2
] into fifty intervals turns out to be sufficient

for all i ∈ {5, ..., 280}).
For i = 1, ..., 4 we need to iterate the procedure (58) many times to obtain a

sequence of covering relations

Ni
f

=⇒ Mi,1
f

=⇒ Mi,2
f

=⇒ . . .
f

=⇒ Mi,127
f

=⇒ Ui+135,i+136.

During our construction we make sure that all sets Mk for k ∈ {1, ..., 127} lie in V, which
readily holds since the sets are very strongly contracted. Each covering Mi,k

f
=⇒ Mi,k+1

holds by construction. Verifying that Mi,127
f

=⇒ Ui+135,i+136 is done analogously to (59).

In our computer assisted proof we take the degrees of polynomials for the edges

of the sets Mi,k as sixteen, which means that we need compute derivatives of the map

up to order seventeen. We refer to this as making “C17 computations”. Let us note

that computationally this is not as heavy as might seem, since the C17 computations

are performed for one dimensional functions gu(θ) and gd(θ) (see (57)). The reduction

of dimension truly pays off, since the difference between C17 computations in one and

two dimensions is substantial.

The estimates obtained by us are very accurate. In Figure 16 we give a plot of the

curves M−
i,128, for i = 1, . . . , 4, and compare them with points from the exit sets of Ni,

for i = 1, . . . , 4, iterated non-rigorously with high precision computation (depicted with

crosses). The curve M−
i,128,u lies below the upper points and the curve M−

i,128,d lies above

the lower points, as they should, but they are so close that it is impossible to distinguish

this by looking at the plot. The right hand side of Figure 16 shows the difference of the

rigorous bound and non-rigorous computation. They turn out to be very close.

Remark 26. Taking 128 iterates of the map turns out to be just the right number for

the chosen ch-sets. If we choose less, then we will not obtain the covering. After the

128-th iterate the sets fall out of the domain of f , and it is impossible to take further

iterates without ”trimming” them (see Remark 16).

Remark 27. The high order computations and multi-precision in current approach seem

essential. The sets Mi,k constructed with our procedure are very strongly contracted.

The distance between the two curves of M−
i,k at the tightest spot is of order 1.125×10−25,

which is extremely thin when compared to the width of the curves α
2
≈ 1.545×10−3; and

yet, with our multi-precision C17 approach, with little effort we are able to rigorously

keep them apart. Any standard approach, such as performing C0 computations on sets

or careful linearization with C1 techniques through local coordinates, is likely to fail.

Remark 28. We believe that using a “parallel shooting” type approach it should be

possible to conduct the proof using double precision and Cr computations for smaller

values of r (for this we would need an good a priori guess for the position of the
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Figure 16. Left: Rigorous bound on the curves M−

i,128, for i = 1, . . . , 4 (lower and

upper curves), together with non-rigorous computations using multi-precision (crosses).

The curve in the middle is the attractor. Right: The difference between rigorous

bounds and non-rigorous computations.

curve). Such approach could produce a rigorous-computer-assisted proof using double

precision of an invariant a curve, which is not detectable numerically with double

computations. This shall be a subject of forthcoming work.

5.3.2. Verification of cone conditions To verify cone conditions let us first rescale our

coordinates by

γβ(θ, x) = (βθ, x).

Taking β sufficiently large, choosing sufficiently many points λi ∈ [0, β) and taking

hi :=
1
2

(

cu (λi)− cd (λi)
)

, qi := (λi, c
d (λi) + hi) and Vi := V ∩ ([λi − hi, λi + hi]× R)

we can construct local maps

η̃i : Vi → Bc × Bu,

for which η̃i(Vi ∩ cu) = Bc×{1}, η̃i(Vi ∩ cd) = Bc×{−1} and which are arbitrarily close

to a linear map q → 1
hi
(q − qi). In these local coordinates, by taking sufficiently large

β, we have the following bound on derivatives of local maps (assuming that we choose

i, j and p such that p ∈ dom(fij) 6= ∅)
Dfij = D

(

η̃i ◦ γβ ◦ f ◦ γ−1
β ◦ η̃−1

j

)

(p)

≈
(

1
hi

0

0 1
hi

)(

β 0

0 1

)(

df1
dθ
(γ−1

β (η̃−1
j (p)) 0

df2
dθ
(γ−1

β (η̃−1
j (p)) df2

dx
(γ−1

β (η̃−1
j (p))

)

(

β−1 0

0 1

)(

hj 0

0 hj

)

=
hj

hi

(

df1
dθ
(γ−1

β (η̃−1
j (p)) 0

1
β

df2
dθ
(γ−1

β (η̃−1
j (p)) df2

dx
(γ−1

β (η̃−1
j (p))

)

,

which in turn is arbitrarily close to
hj

hi
diag(df1

dθ
, df2
dx
). This means that by using the artificial

rescaling γβ (without the actual need to apply it in practice for our computer assisted
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proof), we can divide the region V into a finite number of sets U1, . . . , UN (V ⊂ ⋃N

i=1 Ui),

and verify cone conditions using interval matrices diag(
[

df1
dθ
(Ui)

]

,
[

df2
dx
(Ui)

]

) and applying

Lemma 18. For our proof we take γ0 = (a, b) = (1,−1) , which means that the quadratic

form for our cones is simply

Qγ0(θ, x) = x2 − θ2.

If we take γ1 = ((1− ε), 1) for any small parameter ε > 0 then by choosing sufficiently

large β Assumption 7 is satisfied (since any switch to new coordinates is arbitrarily close

to identity). This means that we can take γ1 = γ0, provided that all the inequalities in

our verification of cone conditions in the computer assisted proof are strict.

5.3.3. Tools used for the proof The source code for the proof is available at the

web page of MC (http://wms.mat.agh.edu.pl/∼mcapinsk/papers.html) and also on the

Nonlinearity depositories. It has been conducted with the use of the CAPD library

(http://capd.ii.uj.edu.pl) developed by the Computer Assisted Proofs in Dynamics

group. We have used the multi-precision version of the library running at 128

mantissa bits accuracy (which is approximately equivalent to tracking 40 digits). The

C17 computations have been performed with assistance of the Flexible Automatic

Differentiation Package FADBAD++ (www.fadbad.com). The proof took 36 seconds

running on a 2.67 GHz laptop with 4GB of RAM.

6. Final comments

In this paper we have presented a version of a normally hyperbolic invariant manifold

theorem, which can be applied for rigorous-computer-assisted proofs. We have

successfully applied our method to an example in which standard double precision

simulations brake down and produce false results. This demonstrates the strength of our

method, that it can handle numerically difficult cases. It needs to be noted that to apply

our method we have used multiple precision for our computer assisted computations. For

our proof we also needed to apply a high order method which relied on C17 computations.

We believe that it should be possible to devise a similar in spirit method, which would

give proofs without multiple precision and using Cr computations only for a smaller

value of r. This will be the subject of our future work.
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[2] H. Broer, C. Simó, R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,

DCDS B 14 (2010), 871–905.
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