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Existence of a Center Manifold in a Practical Domain around L1 in the
Restricted Three-Body Problem∗
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Abstract. We present a method of proving existence of center manifolds within specified domains. The method
is based on a combination of topological tools, normal forms, and rigorous computer-assisted com-
putations. We apply our method to obtain a proof of a center manifold in an explicit region around
the equilibrium point L1 in the Earth–Sun planar restricted circular three-body problem.
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1. Introduction. In this paper we give a method for proving existence of center manifolds
for systems with an integral of motion. The aim of the paper is not to give yet another
proof of the center manifold theorem, but to provide a practical tool which can be applied to
nontrivial systems. There are a number of advantages to the method. First, the method is not
perturbative. We thus do not need to start with an invariant manifold and then perturb it. All
that is required is a good numerical approximation of the position of a center manifold. The
conditions required in order to ensure existence of the manifold in the vicinity of the numerical
approximation are such that it is possible to verify them using (rigorous, interval-based)
computer-assisted computations. This is another advantage, since it allows for application
to problems which cannot be treated analytically. The method gives explicit bounds on the
position and on the size of the manifold. Moreover, under appropriate assumptions we can
also prove that the manifold is unique.

Our proof of existence of the center manifold is performed using purely topological ar-
guments. This means that it can be applied to treat nonanalytic invariant manifolds. The
main disadvantage of using topological tools, though, is that the proof ensures only Lipschitz
continuity of the manifold even for manifolds with higher order regularity.

To apply the method one needs to have a good numerical approximation of the position
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‡Departament de Matemàtica Aplicada I, ETSEIB-UPC, Avda. Diagonal 647, 08028 Barcelona, Spain (pablo.
roldan@upc.edu). This author’s work was supported in part by MICINN-FEDER grant MTM2009-06973 and CUR-
DIUE grant 2009SGR859.

285

http://www.siam.org/journals/siads/11-1/81038.html
mailto:mcapinsk@agh.edu.pl
mailto:pablo.roldan@upc.edu
mailto:pablo.roldan@upc.edu


286 MACIEJ J. CAPIŃSKI AND PABLO ROLDÁN

of the center manifold. In our application we obtain such a numerical approximation using a
normal form around a fixed point. For us the normal form plays a role of a suitable change
of coordinates, which “straightens out” the center manifold. In our approach we are not
concerned with convergence of the normal form. We are also not concerned with estimates
of the high order terms in our normal form expansion. As long as a truncated change of
coordinates to normal form gives an accurate enough approximation of the position of the
manifold, it can be combined with our topological method to give a proof of existence of the
manifold.

To demonstrate that the proposed method is indeed applicable, we use it to prove the
existence of a center manifold around a fixed point L1 in the Earth–Sun planar restricted three-
body problem (RTBP). The system is two degrees of freedom Hamiltonian, and L1 is a saddle
× center fixed point. Existence of the center manifold around L1 is well known and extensively
investigated numerically. Sufficiently close to L1 it is a straightforward consequence of the
Lyapunov–Moser theorem. It is also well known that the center manifold around L1 is foliated
by periodic orbits. In our proof, though, we neither make use of nor prove this fact. Our
objective is to apply our general method, for which such a particular structure is not required.
The aim is to prove existence of the manifold over an explicitly given domain. The size of the
manifold that we prove can be considered as “large” (see Figures 5 and 6). It is well known
from numerical evidence that the manifold is by far larger than this. Nevertheless, to the
best of our knowledge, this is the first rigorous proof of its existence over a given range of
nonnegligible size.

We emphasize that the method is much more general than the considered example. It
is not restricted to two degrees of freedom systems and works in arbitrary dimension. Even
though we apply the method to a well-known and relatively simple system, it can be applied
to situations for which there is no previous proof. All that is required for our method is
an integral of motion and a fixed point. Around the fixed point one can perform a change
of coordinates to a normal form and use it to validate the assumptions of our topological
theorem.

The paper is organized as follows. In section 2 we give the setup of the problem and state
our main theorem (Theorem 2.4). Assumptions of the theorem are based on estimates on the
derivatives of the vector field within the investigated region. Based on these the existence of an
invariant manifold is established. In section 3 we give a topological proof of the existence of an
invariant manifold for maps with saddle-center–type properties. In section 4 we use the result
obtained for maps to prove Theorem 2.4. In section 5 we apply our Theorem 2.4 to prove the
existence of a center manifold around an equilibrium point L1 in the RTBP. To do so we first
introduce the problem and present a procedure of transforming the system into a normal form.
We then discuss how normal forms provide very accurate approximations of center manifolds.
Finally, we combine Theorem 2.4 and normal forms with rigorous interval-arithmetic–based
computer-assisted computations to prove the existence of the manifold. Section 6 contains
concluding remarks and an outline of future work.

2. Setup. We will consider the following problem. Let F : Rn → R
n and

(2.1) x′ = F (x)
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be an ODE (we impose the usual assumptions implying existence and uniqueness of solutions)
with a fixed point x0 and an integral of motion H : Rn → R. By this we mean that for any
solution q(t) of (2.1) we have

(2.2) H(q(t)) = c,

where c is some constant dependent on the initial condition q(0). Since in our applications
we shall deal with the RTBP, which is a Hamiltonian system where H is the Hamiltonian, we
shall refer to H as the energy from now on. We shall use the notation Φ(t,x) for the flow
induced by (2.1).

2.1. Well-aligned coordinates. We will investigate the dynamics of (2.1) in some compact
set D, contained in an open subset U of Rn, such that the fixed point x0 ∈ D, and whose
image by a diffeomorphism

(2.3) φ : U → φ(U) ⊂ R
n

is

(2.4) φ(D) = Dφ = B̄R
c × B̄r

u × B̄r
s ,

where B̄r
i (for i ∈ {c, u, s}) stand for i-dimensional closed balls around zero of radius r. We

assume that n = c + u + s. We will refer to p = φ(x) as the aligned coordinates. In these
coordinates we will use the notation p = (θ, x, y) with θ ∈ B̄R

c , x ∈ B̄r
u, and y ∈ B̄r

s . We will
refer to θ as the central coordinate, to x as the unstable coordinate, and to y as the stable
coordinate (the subscripts c, u, s standing for central, unstable, and stable, respectively).

The motivation behind the above setup is the following. We will search for a center
manifold of (2.1) homeomorphic to a c-dimensional disc inside the set D. Such manifolds
have associated stable and unstable vector bundles, which in the coordinate system φ are given
approximately by the coordinates of the balls B̄r

s and B̄r
u, respectively. We do not assume

though that the coordinates x and y align exactly with directions of hyperbolic expansion and
contraction. It will turn out that it is enough that they point roughly in these directions. The
remaining coordinates θ are the central coordinates of our system. We need to have a good
approximation of where the center manifold is. This approximation is given by φ−1(B̄R

c ×
{0}) ⊂ R

n. The change of coordinates φ can be obtained from some nonrigorous numerical
computation (in our application for the RTBP, normal forms). It is important to emphasize
that we will not assume that φ−1(B̄R

c × {0}) is invariant under the flow (2.1). Allowing for
errors, we expect the true manifold to lie in φ−1(B̄R

c × B̄r
u× B̄r

s). This means that we take an
enclosure of radius r of our initial guess and look for the invariant manifold in this enclosure.

We will search for the part of the center manifold with energy H ≤ h for some h ∈ R. We
assume that the center coordinate is well aligned with the energy H in the sense that we have

(2.5) H(φ−1(B̄R−v
c × B̄r

u × B̄r
s)) < h < H

(
φ−1(∂B̄R

c × B̄r
u × B̄r

s)
)

for some v > 0 (here we use the notation ∂A to denote the boundary of a set A).
Our detection of the center manifold in the RTBP is going to be carried out in two stages.

First we obtain φ as a change of coordinates into a normal form, after which we shall employ
our topological theorem (Theorem 2.4) to prove the existence of the manifold.
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2.2. Local bounds on the vector field and the statement of the main result. We are
now ready to state the main assumptions needed for our method. These will be expressed
in terms of local bounds on the derivative of the vector field (2.1). First, let us introduce a
notation Fφ for the vector field in the aligned coordinates, i.e.,

(2.6) Fφ(p) = Dφ(φ−1(p))F (φ−1(p)),

and a notation [dFφ(N)] for an interval enclosure of the derivative on a set N ⊂ Dφ,

[dFφ(N)] =

{
A ∈ R

n×n|Aij ∈
[
inf
p∈N

dFφ
i

dpj
, sup
p∈N

dFφ
i

dpj

]
for all i, j = 1, . . . , n

}
.

For any point p = (θ, 0, 0) from B̄R
c × {0} × {0} we define a set

(2.7) Np := B̄c(θ, ρ)× B̄r
u × B̄r

s ∩Dφ,

where B̄c(θ, ρ) is a c-dimensional ball of radius ρ > 0 centered at θ. We introduce the following
notation for the bound on the derivatives of Fφ on the sets Np:

(2.8) [dFφ(Np)] ⊂

⎛
⎝ C εc εc

εm A εu
εm εs B

⎞
⎠ .

Here A, B, C, εc, εm, εs, and εu are interval matrices, that is, matrices with interval coef-
ficients. Here we slightly abuse notation since the pairs of matrices εc and εm need not be
equal; they even have different dimension when u �= s. We use the same notation since later
we shall assume uniform bounds for both of matrices εc and both of εm. Let us also note that
the bounds A, B, C, εc, εm, εs, and εu may be different for different p. We do not indicate
this in our notation to keep it relatively simple.

Remark 2.1. If the system possesses a center manifold and the adjusted coordinates are well
aligned in the sense of section 2.1, then the interval matrices εi in (2.8), with i ∈ {c,m, s, u},
should turn out to be small. The matrices A,B,C are the bounds on derivatives of the
vector field in the unstable, stable, and central directions, respectively. If the alignment of our
coordinates is correct, then we expect the contraction/expansion rates associated with C to be
weaker than for A and B.

We will use the following notation to express our assumptions about [dFφ(Np)]. Let
δu, δs, cu, cs, εi > 0 denote contraction/expansion rates, such that for any matrix A ∈ A,
B ∈ B, ei ∈ εi for i ∈ {m, c, u, s}, we have

inf{xTAx : ||x|| = 1} > δu,(2.9)

sup{yTBy : ||y|| = 1} < −δs,(2.10)

cs < inf{θTCθ : ||θ|| = 1} ≤ sup{θTCθ : ||θ|| = 1} < cu,(2.11)

||ei|| < εi for i ∈ {m, c, u, s},(2.12)

where ‖ ‖ is the standard Euclidean norm (throughout the paper we shall use no other norms).
Once again, εi, c

s, cu, μ, δu, and δs can depend on p.
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Let γ, αh, αv, βh, βv > 0 be constants such that

(2.13) αh > αv and βv > βh

and such that the radius ρ considered for the central part of the sets Np satisfies

(2.14) ρ > r

√
αh

γ
, ρ > r

√
βv
γ
,

where r is the radius of the balls B̄r
u and B̄r

s in (2.4). Let us define the following constants:

κforwc := cu +
1

2

(
αh

γ
εm +

βh
γ
εm + 2εc

)
,

κforwu := δu − 1

2

(
εm + εu +

γ

αh
εc +

βh
αh

εs

)
,(2.15)

κforws := −δs +
1

2

(
εm +

αh

βh
εu +

γ

βh
εc + εs

)
,

κbackc := cs − 1

2

(
εm

αv

γ
+ εm

βv
γ

+ 2εc

)
,

κbacku := δu − 1

2

(
εm + εu +

γ

αv
εc +

βv
αv

εs

)
,(2.16)

κbacks := −δs +
1

2

(
εm +

αv

βv
εu +

γ

βv
εc + εs

)
.

The superscripts “forw” and “back” in the above constants come from the fact that they shall
be associated with estimates on the dynamics induced by the vector field (2.6) for forward and
backward evolution in time, respectively. At this stage the subscripts v and h in constants
α and β do not have an intuitive meaning. During the course of the proof they shall be
associated with horizontal and vertical slopes of constructed invariant manifolds (hence h for
“horizontal” and v for “vertical”), and then their meaning will become more natural.

Remark 2.2. Even though coefficients (2.15), (2.16) are technical in nature, they have a
quite natural interpretation in terms of the dynamics of the system. The estimates κic, κ

i
u, κ

i
s

for i ∈ {forw,back} are essentially estimates of the contraction/expansion rates associated with
the center, unstable, and stable coordinates, respectively. These estimates take into account
errors εi for i ∈ {s, u, c,m} in the setup of coordinates. Note that when our coordinates are
perfectly aligned with the dynamics, then εi = 0 for i ∈ {s, u, c,m}, and in turn

κforws = κbacks = −δs, κbackc = cs, κforwc = cu, κforwu = κbacku = δu,

which are the bounds on the derivative of the vector field in the unstable, stable, and center
directions given in (2.9), (2.10), (2.11). The key assumptions of Theorem 2.4 are (2.17) and
(2.18). In particular, these assumptions imply

κbacks < κbackc , κforwc < κforwu ,
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which is equivalent to assuming that the dynamics in the center coordinate is weaker than the
dynamics in the stable and unstable directions. These are classical assumptions for center
manifold theorems (see [12], for instance).

Remark 2.3. We have a certain freedom in our choice of the constants γ, αh, αv, βh,
βv. They offer flexibility when verifying assumptions of Theorem 2.4. During the course
of the proof of Theorem 2.4 it will turn out that they also give Lipschitz-type bounds Lc =√

2γ
min(αh−αv,βv−βh)

, Ls =
√

1
αh

max(γ, βh), Lu =
√

1
βv

max(γ, αv) for our center, stable, and

unstable manifolds, respectively (for more details see Corollary 4.4).
We are now ready to state our main tool for detection of center manifolds.
Theorem 2.4 (main theorem). Let h ∈ R. Assume that (2.5) holds for some v > 0. Assume

also that for any p ∈ B̄R
c × {0} × {0}, for the constants κforwc , κforwu , κforws , κbackc , κbacku , κbacks ,

εu, εs, δ
u, δs computed on a set Np (defined by (2.7)) the inequalities

κforwc , κforws < κforwu , 0 < κforwu ,(2.17)

κbacks < 0, κbacks < κbackc , κbacku(2.18)

hold and also that there exist Eu, Es > 0 such that for any q ∈ Np ∩ (B̄R
c × {0} × {0})

(2.19) ||πxFφ(q)|| < rEu, ||πyFφ(q)|| < rEs,

and

Eu + εu < δu,(2.20)

Es + εs < δs.(2.21)

If the above assumptions hold, then there exists a C0 function

χ : B̄R−v
c → Dφ

such that the following hold:
1. For any θ ∈ B̄R−v

c we have πθχ(θ) = θ and

Φ(t, φ−1(χ(θ))) ∈ D for all t ∈ R.

2. If for some x ∈ φ−1(B̄R−v
c × B̄r

u × B̄r
s) we have

Φ(t,x) ∈ D for all t ∈ R,

then there exists a θ ∈ B̄R−v
c such that x = φ−1(χ(θ)).

In subsequent sections we shall present a proof of this theorem, building up auxiliary
results along the way. Before we move on to these results let us make a couple of comments
on the result.

Remark 2.5. Theorem 2.4 establishes uniqueness of the invariant manifold. This is not a
typical scenario in the case of center manifolds, which are usually not unique. Uniqueness in
our case follows from condition (2.5), which by our construction will ensure that for any point
from our center manifold a trajectory starting from it cannot leave the set D. This means
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that dynamics on the center manifold with H ≤ h is contained in a compact set. This is the
underlying reason that allows us to obtain uniqueness.

In the case of the planar RTBP the uniqueness of the manifold could also be shown by
proving that the manifold is foliated by periodic orbits. Our method is more general and can
also similarly be applied to more complicated systems (say, to the spatial RTBP where the fixed
point is a saddle × center × center) where we do not have such foliation.

Remark 2.6. The main strength of our result lies in the fact that it allows us to easily obtain
explicit bounds for the position and size of the manifold. The center manifold is contained in
D = φ−1(B̄R

c × B̄r
u× B̄r

s). Since the manifold is a graph of χ, from point 1 of Theorem 2.4 we
know that it is of the form φ−1

{
(θ, πx,yχ(θ)) |θ ∈ B̄R−v

c

}
, which ensures that it “fills in” the

set D nontrivially. In contrast, the classical center manifold theorem does not provide such
explicit bounds.

Remark 2.7. Since the method uses topological arguments only, it can be applied to mani-
folds with limited differentiability. This makes it more general compared to standard methods
such as the “method of majorants” [18], where analycity is required.

Remark 2.8. It is important to remark that our result only establishes continuity (together
with Lipschitz type conditions) of the center manifold. The center manifold theorem clearly
indicates that in a sufficiently small neighborhood of a saddle-center fixed point we should have
higher order smoothness. We believe, though, that assumptions similar in spirit to those of
Theorem 2.4 will imply higher order smoothness. This will be the subject of forthcoming work.
The result obtained so far should be regarded as a first step toward this end.

In our application for the RTBP, in a neighborhood sufficiently close to the equilibrium
point, our manifold shall inherit all regularity, which follows from the center manifold theorem
(see Remark 5.1).

Let us finish the section with a final comment. In order to verify the assumptions of
Theorem 2.4 it is sufficient to consider some finite covering {

⋃
i∈I Ui} of the set Dφ and to

verify bounds on local derivatives on sets Ui. It is not necessary to consider an infinite number
of points p and their associated sets Np, as long as for any p ∈ B̄R

c ×{0}×{0} we have Np ⊂ Ui

for some i ∈ I. This makes the assumptions of Theorem 2.4 verifiable in practice using rigorous
computer-assisted tools.

3. Topological approach to center manifolds for maps. In this section we will state some
preliminary results, which will next be used for the proof of Theorem 2.4 in section 4. The
results will be stated for maps instead of flows. In section 4 we will take a time shift along a
trajectory map for the flow generated by (2.1) and apply the results to it. The main result
of this section is Theorem 3.7. The result is in the spirit of versions of normally hyperbolic
invariant manifold theorems obtained in [5], [8], and [7]. The main difference is that we do
not deal with a normally hyperbolic manifold without boundary, but with a selected part of a
center manifold (homeomorphic to a disc) with a boundary. In this section the fact that the
dynamics does not diffuse through the boundary along the center coordinate is imposed by
assumption. This assumption will later follow from assuming that (2.2), (2.5) hold for (2.1).

We now give the setup for maps. Let D ⊂ U ⊂ R
n, the change of coordinates φ : U →

φ(U), and Dφ = φ(D) be as in section 2.1. We consider a dynamical system given by a smooth
invertible map f : U → U . In adjusted coordinates we denote the map as fφ := φ ◦ f ◦ φ−1,
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Figure 1. A map f which satisfies covering conditions. The set Dφ is contracted in coordinate y and
expanded in coordinate x. Note that in the θ coordinate the set may be simply shifted, expanded, or contracted,
just as long as conditions (3.3)–(3.7) are satisfied.

fφ : φ(U) → R
n. We assume that

(3.1) H(p) = H(f(p))

for all p ∈ Dφ and also that for some v > 0 condition (2.5) holds.

We introduce the following sets:

D−
φ = B̄R

c × ∂B̄r
u × B̄r

s ,(3.2)

D+
φ = B̄R

c × B̄r
u × ∂B̄r

s .

We now introduce a number of definitions. The first is a definition of a covering relation.

Definition 3.1. We say that a map f : U → U satisfies covering conditions in D if

πx(fφ(D
−
φ )) ∩ B̄r

u = ∅,(3.3)

πy(f
−1
φ (D+

φ )) ∩ B̄r
s = ∅,(3.4)

πy(fφ(Dφ)) ∩
(
R
s \ B̄r

s

)
= ∅,(3.5)

πx(f
−1
φ (Dφ)) ∩

(
R
u \ B̄r

u

)
= ∅,(3.6)

and for any point p ∈ B̄R
c × {0},

(3.7) π(x,y)fφ(p), π(x,y)f
−1
φ (p) ∈ int

(
B̄r

u × B̄r
s

)
.

Conditions (3.5) and (3.4) mean that, in the y (stable) projection, fφ contracts the set Dφ

strictly inside B̄r
s (see Figure 1). Conditions (3.6) and (3.3) mean that, in the x (unstable)

projection, fφ expands the set Dφ strictly outside B̄r
s . The final assumption (3.7) is needed

to ensure that the image of Dφ by fφ intersects Dφ. Without assumption (3.7), all other
assumptions (3.3)–(3.6) could easily follow from having the image of D disjoint with D.

Covering relations are tools which can be used to ensure existence of an invariant set in
D. To prove that this set is a manifold we shall need additional assumptions. These shall be
expressed by “cone conditions.” To introduce these conditions, first we need some notation.

Let Qh, Qv : Rc × R
s × R

u → R be functions defined by

Qh(θ, x, y) = −γ||θ||2 + αh||x||2 − βh||y||2,(3.8)

Qv(θ, x, y) = −γ||θ||2 − αv||x||2 + βv ||y||2,
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A. B.

Figure 2. An example of a function f , which satisfies cone conditions: A. Two points p1, p2 for which
Qh(p1 − p2) = c > 0. B. Difference of the images of the points lies on a cone Qh(fφ(p1) − fφ(p2)) > mc. A
similar condition (but with reversed roles of the x and y coordinates) needs to hold for the inverse map.

with γ, αh, αv , βh, βv > 0, and

(3.9) αh > αv and βv > βh.

Definition 3.2. We say that a map f : U → U satisfies cone conditions in D if there exists
an m > 1 such that the following hold:

1. For any two points p1, p2 ∈ Dφ satisfying p1 �= p2 and Qh(p1 − p2) ≥ 0 we have

(3.10) Qh(fφ(p1)− fφ(p2)) > mQh(p1 − p2).

2. For any two points p1, p2 ∈ Dφ satisfying p1 �= p2 and Qv(p1 − p2) ≥ 0 we have

(3.11) Qv(f
−1
φ (p1)− f−1

φ (p2)) > mQv(p1 − p2).

Definition 3.2 intuitively states that if we have two points that lie horizontally with respect
to each other, then their images are going to be pulled apart in the horizontal, x coordinate
(see Figure 2). If, on the other hand, we have two points that lie vertically with respect to
each other, then their preimages are going to be pulled apart in the vertical, y coordinate.

We now give definitions of horizontal discs and vertical discs. These will be building blocks
in our construction of invariant manifolds.

Definition 3.3. We say that a continuous monomorphism h : B̄r
u → Dφ is a horizontal disc

if πxh(x) = x and for any x1, x2 ∈ B̄r
u

(3.12) Qh(h(x1)− h(x2)) ≥ 0.

Thus, to any point x in the graph h(x) we can attach a horizontal cone, so that the graph
always remains entirely inside the cone (see Figure 3).

Definition 3.4. We say that a continuous monomorphism v : B̄r
s → Dφ is a vertical disc if

πyv(y) = y and for any y1, y2 ∈ B̄r
s

Qv(v(y1)− v(y2)) ≥ 0.

Thus, to any point y in the graph v(y) we can attach a vertical cone, so that the graph always
remains entirely inside the cone.
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Figure 3. A horizontal disc in Dφ.

The following lemma is a key auxiliary result for the proof of Theorem 3.7, which is the
main result of this section. Roughly speaking, it states that under appropriate conditions, an
image of a horizontal disc is a horizontal disc.

Lemma 3.5. Let h1 be a horizontal disc. If f satisfies covering and cone conditions in D,
then there exists a horizontal disc h2 such that

{p : πx,yp ∈ B̄r
u × B̄r

s} ∩ fφ(h1(B̄
r
u)) = h2(B̄

r
u).

Moreover, if H(φ−1(h1(B̄
r
u))) < h, and for any p ∈ Dφ such that H(φ−1(p)) < h we have

(3.13) πθ(fφ(p)) ∈ B̄R
c ,

then
h2(B̄

r
u) ⊂ Dφ and H(φ−1(h2(B̄

r
u))) < h.

Proof. Without loss of generality we can assume that φ is equal to identity. Thus we can
set Dφ = D and fφ = f .

Let h be any horizontal disc; then by (3.8), (3.12), and (3.10) for x1 �= x2

αh ‖πxf(h(x1))− πxf(h(x2))‖2 ≥ Qh(f(h(x1))− f(h(x2)))(3.14)

> mQh(h(x1)− h(x2))

≥ 0,

which means that πx ◦ f ◦ h is injective.
Let us define a function F : B̄r

u → R
u as

F (x) := πx(f(h1(x))).

We shall first show that there exists an x0 ∈ B̄u such that F (x0) ∈ B̄r
u. Using the notation

h1(x) = (hθ(x), x, hy(x)) we can define a family of horizontal discs hα(x) = (αhθ(x), x, αhy(x)).
We define a function l : [0, 1] × B̄r

u → R
u as

l(α, x) := πx ◦ f ◦ hα(x).

By (3.2) and (3.3), since hα(∂B̄
r
u) ⊂ D− for any α ∈ [0, 1], we have l(α, ∂B̄r

u)∩ B̄r
u = ∅. Since,

as shown at the beginning of the proof,

l(α, ·) := πx ◦ f ◦ hα : B̄r
u → R

u
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is a continuous monomorphism, we have either l(α, B̄r
u) ∩ B̄r

u = ∅ or B̄r
u ⊂ int(l(α, B̄r

u)). This
also means that

inf{‖l(α, 0) − x‖ : x ∈ ∂B̄r
u} > 0,

and thus the function δ : [0, 1] → R defined as

δ(α) :=

{
0, l(α, 0) ∈ B̄r

u,
1, l(α, 0) /∈ B̄r

u,

is continuous. We have

πxhα=0(0) = 0,

πyhα=0(0) = 0,

so condition (3.7) implies l(0, 0) = πx ◦ f(hα=0(0)) ∈ Br
u; hence δ(0) = 0. Suppose, to

obtain a contradiction, that F (x) /∈ B̄r
u for all x ∈ B̄r

u. This would mean that, in particular,
F (0) = l(1, 0) /∈ B̄r

u, and hence δ(1) = 1. This contradicts the fact that δ(0) = 0 and δ is
continuous.

We have shown that there exists an x0 ∈ B̄r
u such that F (x0) ∈ B̄r

u. From (3.3) it follows
that F (∂B̄r

u)∩ B̄r
u = ∅. We also know that F = πx ◦f ◦h1 is continuous and injective. Putting

these facts together gives B̄r
u ⊂ F (B̄r

u). This means that for any v ∈ B̄r
u there exists a unique

x = x(v) ∈ Br
u such that F (x) = v. We define

h2(v) = (h2,θ(v), v, h2,y(v)) := (πθ ◦ f ◦ h1(x(v)), v, πy ◦ f ◦ h1(x(v))).

For any v1 �= v2, v1, v2 ∈ Bu, by (3.12) and (3.10) we have

Qh (h2(v1)− h2(v2)) = Qh(f ◦ h1(x(v1))− f ◦ h1(x(v2)))(3.15)

> mQh(h1(x(v1))− h1(x(v2)))

≥ 0.

Since Qh (h2(v1)− h2(v2)) > 0,

αh ‖v1 − v2‖ > βh ‖h2,y(v1)− h2,y(v2)‖2 + γ ‖h2,θ(v1)− h2,θ(v2)‖2

≥ min(βh, γ) ‖(h2,θ, h2,y)(v1)− (h2,θ, h2,y)(v2)‖2 ,

and therefore h2 is continuous.
Finally, let us note that (3.1) and h2(v) = f◦h1(x(v)) implyH(h2(B̄

r
u)) = H(h1(B̄

r
u)) < h.

This by (3.13) implies that h2(B̄
r
u) ⊂ D.

The next lemma follows from mirror arguments.
Lemma 3.6. Let v1 be a vertical disc. If f satisfies covering and cone conditions in D,

then there exists a vertical disc v2 such that

{p : πx,yp ∈ B̄r
u × B̄r

s} ∩ fφ(v1(B̄
r
s)) = v2(B̄

r
s).

Moreover, if H(φ−1(v1(B̄
r
s))) < h, and for any p ∈ Dφ such that H(φ−1(p)) < h we have

(3.16) πθ(f
−1
φ (p)) ∈ B̄R

c ,
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then
v2(B̄

r
s) ⊂ Dφ and H(φ−1(v2(B̄

r
s))) < h.

We are now ready to state our main result for maps, which will be the main tool for the
proof of Theorem 2.4.

Theorem 3.7. If f satisfies covering and cone conditions in D, and in addition for any
p ∈ Dφ with H(φ−1(p)) < h we have

(3.17) πθfφ(p) ∈ B̄R
c and πθf

−1
φ (p) ∈ B̄R

c ,

then there exists a C0 function χ : B̄R−v
c → Dφ such that the following hold:

1. For any θ ∈ B̄R−v
c we have πθχ(θ) = θ and

fn(φ−1(χ(θ))) ∈ D for all n ∈ Z.

2. If for some p ∈ φ−1(B̄R−v
c × B̄r

u × B̄r
s) we have

fn(p) ∈ D for all n ∈ Z,

then there exists a θ ∈ B̄R−v
c such that p = φ−1(χ(θ)).

Proof. Without loss of generality we assume that φ is equal to identity, which means that
Dφ = D and fφ = f .

Let θ0 ∈ B̄R−v
c and y0 ∈ B̄r

s . Let h1 : B̄
r
u → D be a horizontal disc defined by

h1(x) = (θ0, x, y0).

Clearly h1 satisfies cone conditions and also, by (2.5), H(φ−1(h1(B̄
r
u))) < h. Applying induc-

tively Lemma 3.5, we obtain a sequence of horizontal discs h1,h2, . . . such that

f(hi−1(B̄
r
u)) ∩D = hi(B̄

r
u) and H(hi(B̄

r
u)) < h.

This by compactness of B̄r
u ensures existence of a point x∗0 ∈ B̄r

u such that for all n ∈ N

(3.18) fn(h1(x
∗
0)) ∈ D.

Suppose that we have two points x10 and x20 which satisfy (3.18). Then by (3.15) we have

αhr
2 ≥ αh

∥∥πx (fn(h1(x
1
0))− fn(h1(x

2
0))

)∥∥2
> Qh

(
fn(h1(x

1
0))− fn(h1(x

2
0))

)
> mQh

(
fn−1(h1(x

1
0))− fn−1(h1(x

2
0))

)
(3.19)

. . .

> mnQh

(
h1(x

1
0)− h1(x

2
0)
)
,

which since m > 1 cannot hold for all n. This means that functions W cs : B̄R−v
c × B̄r

s → D,
wcs : B̄R−v

c × B̄r
s → B̄r

u, given as

W cs(θ0, y0) = (θ0, w
cs(θ0, y0), y0) := (θ0, x

∗
0, y0),
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are properly defined. Note that by an argument similar to (3.19), for any (θ1, y1) �= (θ2, y2)
we must have

(3.20) 0 > Qh(W
cs(θ2, y2)−W cs(θ1, y1)).

This gives

max(γ, βh) ‖(θ2, y2)− (θ1, y1)‖2 ≥ γ||θ2 − θ1||2 + βh||y2 − y1||2

> αh||wcs(θ2, y2)− wcs(θ2, y2)||2,

which means that wcs is Lipschitz with a constant

(3.21) Ls =

√
max(γ, βh)

αh
.

Mirror arguments, involving Lemma 3.6, give existence of functionsW cu : B̄R−v
c ×B̄r

u → D,
wcu : B̄R−v

c × B̄r
u → B̄r

s ,
W cu(θ, x) = (θ, x,wcu(θ, y)),

such that for any point (θ, x) ∈ B̄R−v
c × B̄r

u and all n ∈ N

f−n(W cu(θ, x)) ∈ D.

Also, wcu is Lipschitz with a constant

(3.22) Lu =

√
max(γ, αv)

βv
.

We shall show that for any θ ∈ B̄R−v
c the sets W cs(θ, B̄r

s) and W cu(θ, B̄r
u) intersect. Let

us define Pθ : B̄
r
u × B̄r

s → B̄r
u × B̄r

s as

Pθ(x, y) := (πxW
cs(θ, y), πyW

cu(θ, x)) .

Since Pθ is continuous, by the Brouwer fixed point theorem there exists an (x0, y0) such that
Pθ(x0, y0) = (x0, y0). This means that

W cs(θ, y0) = (θ,wcs(θ, y0), y0) = (θ, x0, w
cu(θ, y0)) = W cu(θ, x0).

Now we shall show that for any given θ ∈ B̄R−v
c there exists only a single point of

such intersection. Suppose that for some θ ∈ B̄R−v
c there exist (x1, y1) , (x2, y2) ∈ B̄r

u × B̄r
s ,

(x1, y1) �= (x2, y2) such that

W cs(θ, y1) = W cu(θ, x1) and W cs(θ, y2) = W cu(θ, x2).

We would then have W cs(θ, ym) = W cu(θ, xm) = (θ, xm, ym) for m = 1, 2.
From (3.20) it follows that

0 > Qh (W
cs(θ, y1)−W cs(θ, y2)) = Qh ((θ, x1, y1)− (θ, x2, y2)) ,
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and by mirror argument

0 > Qv (W
cu(x1, λ)−W cu(x2, λ)) = Qv ((θ, x1, y1)− (θ, x2, y2)) ,

which implies that

0 > (αh − αv) ‖x1 − x2‖2 + (βv − βh) ‖y1 − y2‖2 ,

which contradicts (3.9).

We now define χ(θ) = (θ, χx,y(θ)) := (θ, x0, y0) for x0 = x0(θ), y0 = y0(θ) such that
W cs(θ, y0) = W cu(θ, x0). By previous arguments we know that χ is properly defined. We
need to show continuity. Let us take any θ1, θ2 ∈ B̄R−v

c . From (3.20) it follows that

(3.23) Qh (χ(θ1)− χ(θ2)) = Qh (W
cs(θ1, y0(θ1))−W cs(θ2, y0 (θ2))) < 0,

and by mirror argument

(3.24) Qv (χ(θ1)− χ(θ2)) = Qv (W
cu(θ1, x0(θ1))−W cu(θ2, x0 (θ2))) < 0.

From (3.23), (3.24) it follows that

αh ‖x0 (θ1)− x0 (θ2)‖2 − βh ‖y0 (θ1)− y0 (θ2)‖2 < γ ‖θ1 − θ2‖2 ,
−αv ‖x0 (θ1)− x0 (θ2)‖2 + βv ‖y0 (θ1)− y0 (θ2)‖2 < γ ‖θ1 − θ2‖2 ,

(αh − αv) ‖x0 (θ1)− x0 (θ2)‖2 + (βv − βh) ‖y0 (θ1)− y0 (θ2)‖2 < 2γ ‖θ1 − θ2‖2 ,

which gives

(3.25) ‖χx,y (θ1)− χx,y (θ2)‖ <

√
2γ

min(αh − αv, βv − βh)
‖θ1 − θ2‖

and by (3.9) implies Lipschitz bounds for χx,y and continuity of χ.

4. Proof of the main theorem. In this section we shall show that assumptions of Theorem
2.4 imply that a map induced as a shift along a trajectory of the flow of (2.1) for sufficiently
small time satisfies covering and cone conditions. This will allow us to apply Theorem 3.7 to
prove Theorem 2.4.

We start with a lemma which shows that assumptions of Theorem 2.4 imply covering
conditions for a shift along the trajectory of (2.1).

Lemma 4.1. Assume that for any p ∈ B̄R−v
c ×{0}×{0} assumptions (2.20), (2.21), (2.19)

of Theorem 2.4 hold; then for sufficiently small τ > 0 and all t ∈ (0, τ ] a function

f(x) := Φ(t,x)

satisfies covering conditions.
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Proof. Without loss of generality we assume that φ = id. Let q ∈ BR
c × {0} × {0} ∩Np.

By (2.19), for sufficiently small t

‖πxΦ(t, q)‖ =

∥∥∥∥πx
(
Φ(0, q) +

d

dt
Φ(0, q)t+ o(t)

)∥∥∥∥
= ‖0 + tπxF (q) + o(t)‖
< |t| rEu.(4.1)

Analogous computation yields

(4.2) ‖πyΦ(t, q)‖ < |t| rEs.

In later parts of the proof we shall use the fact that for any q1, q2 ∈ Np

(4.3) F (q1)− F (q2) =

∫ 1

0
dF (q2 + s (q1 − q2)) ds (q1 − q2) .

Now we shall prove (3.3). Let q = (θ, x, y) ∈ D−
φ ∩Np, which means that ‖x‖ = r. Using

d
dtΦ(t, q)|t=0 = F (q), Φ(0, q) = q, and (4.3), we have

d

dt
‖πx (Φ(t, q)− Φ(t, (θ, 0, 0)))‖2 |t=0

=
d

dt

(
πx (Φ(t, q)− Φ(t, (θ, 0, 0)))T πx (Φ(t, q)− Φ(t, (θ, 0, 0)))

)∣∣∣
t=0

= 2πx (q − (θ, 0, 0))T πx (F (q)− F (θ, 0, 0))

= 2xTπx

(∫ 1

0
dF (θ, sx, sy)ds (0, x, y)

)
= 2xT (Ax+ euy) ,

where

A =

∫ 1

0

∂(πxF )

∂x
(θ, sx, sy)ds, eu =

∫ 1

0

∂ (πxF )

∂y
(θ, sx, sy)ds.

From bounds (2.9) and (2.12) we thus obtain

(4.4)
d

dt
‖πx (Φ(t, q)−Φ(t, (θ, 0, 0)))‖2 |t=0 > 2

(
r2δu − ‖x‖ ‖eu‖ ‖y‖

)
> 2r2 (δu − εu) .

Using the same arguments, we can also show that for any q = (θ, x, y) ∈ Np

(4.5)
d

dt
‖πy (Φ(t, q)− Φ(t, (θ, 0, 0)))‖2 |t=0 < 2 ‖y‖ (εsr − ‖y‖ δs) .
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Combining (4.1), (4.4), and (2.20) for sufficiently small t > 0 gives

‖πxf(q)‖ = ‖πxΦ(t, q)‖
≥ ‖πx (Φ(t, q)− Φ(t, (θ, 0, 0)))‖ − ‖πxΦ(t, (θ, 0, 0))‖

>

√
‖πx (Φ(t, q)− Φ(t, (θ, 0, 0)))‖2 − trEu(4.6)

>

√
‖πx (Φ(0, q) −Φ(0, (θ, 0, 0)))‖2 + t2 (δu − εur2)− trEu

=
√

r2 + t2r2 (δu − εu)− trEu

> r.

This establishes (3.3). Now we shall show (3.5). For any q = (θ, x, y) ∈ Dφ and sufficiently
small t > 0, derivation analogous to (4.6) (for these computations we use estimates (4.2),
(4.5)) gives

(4.7) ‖πyf(q)‖ <

√
‖y‖2 + t2 ‖y‖ (εsr − ‖y‖ δs) + trEs.

Since ‖y‖ ≤ r by (2.21), for sufficiently small t > 0, inequality (4.7) implies that ‖πyf(q)‖ < r
and hence establishes (3.5).

Proof of (3.4) and (3.6) follows from arguments analogous to t < 0.
Conditions (3.7) hold for sufficiently small t. This follows from continuity of Φ(p, t) with

respect to t since
f(p) = Φ(t, p), f−1(p) = Φ(−t, p),

and for p ∈ B̄R
c × {0} × {0}

π(x,y)Φ(0, p) = π(x,y)p = (0, 0) ∈ int
(
B̄r

u × B̄r
s

)
.

Now we shall show that assumptions of Theorem 2.4 imply cone conditions for a shift
along trajectory of (2.1). Let us start with a simple technical lemma.

Lemma 4.2. Let C = (Cij)i,j=1,2,3 be a (c + u + s)× (c + u+ s) matrix. Assume that for
ai, bi ∈ R, i = 1, 2, 3, we have

inf{xTi Ciixi : ‖xi‖ = 1} ≥ ai for i = 1, 2, 3,(4.8)

sup{xTi Ciixi : ‖xi‖ = 1} ≤ bi for i = 1, 2, 3;(4.9)

then for any x = (x1, x2, x3) ∈ R
c+u+s

xTCx ≥ (a1 − c1) ‖x1‖2 + (a2 − c2) ‖x2‖2 + (a3 − c3) ‖x3‖2 ,(4.10)

xTCx ≤ (b1 + c1) ‖x1‖2 + (b2 + c2) ‖x2‖2 + (b3 + c3) ‖x3‖2 ,(4.11)

where

c1 =
1

2
(‖C21‖+ ‖C31‖+ ‖C12‖+ ‖C13‖) ,

c2 =
1

2
(‖C21‖+ ‖C23‖+ ‖C12‖+ ‖C32‖) ,

c3 =
1

2
(‖C31‖+ ‖C23‖+ ‖C13‖+ ‖C32‖) .
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Proof. The estimate (4.10) follows by direct computation from (4.8) and the fact that for
any i, j

±2qTj Cjiqi ≥ −||Cji||
(
||qj ||2 + ||qi||2

)
.

Similarly (4.11) follows from (4.9) and

±2qTj Cjiqi ≤ ||Cji||
(
||qj||2 + ||qi||2

)
.

Let Ik denote a k × k identity matrix. Let

Q1 = diag(−γIc, αhIu,−βhIs),

Q2 = diag(−γIc,−αvIu, βvIs)

be matrices associated with quadratic forms Qh and Qv, respectively. Now we are ready
to prove that assumptions of Theorem 2.4 imply cone conditions for a time shift along a
trajectory map.

Lemma 4.3. Assume that for any p ∈ B̄R−v
c ×{0}×{0} assumption (2.17) of Theorem 2.4

holds; then for sufficiently small τ > 0 and all t ∈ (0, τ ] a function

f(x) := Φ(t,x)

satisfies cone conditions with a coefficient m = 1 + th, with some constant h > 0..
Proof. Let p1, p2 ∈ Dφ be such that pi = (θi, xi, yi) for i = 1, 2, p1 �= p2, and Qh(p1−p2) ≥

0. Let p = (θ1, 0, 0) ∈ B̄R
c ×{0}×{0}. Condition (2.14) implies that p1, p2 ∈ Np. We compute

d

dt

(
(Φ(t, p1)− Φ(t, p2))

TQ1(Φ(t, p1)− Φ(t, p2))
)
|t=0

= 2(p1 − p2)
TQ1(F (p1)− F (p2))(4.12)

= 2(p1 − p2)
TQ1B(p1 − p2),

where

B =

∫ 1

0
dF (p2 + t(p1 − p2))dt ∈ [dF (Np)].

For C = Q1B, from (2.11), (2.9), (2.10) we have

inf{xT1 C11x1 : ‖x1‖ = 1} ≥ −γcu,

inf{xT2 C22x2 : ‖x2‖ = 1} ≥ αhδ
u,(4.13)

inf{xT3 C33x3 : ‖x3‖ = 1} ≥ βhδ
s.

Using (4.10) from Lemma 4.2 with (4.13) and (2.12), for κforwc , κforwu , κforws given by (2.15) and
μ1 ∈ (max(κforwc , κforws ), κforwu ) we have

xTCx ≥ −κforwc γ ‖x1‖2 + κforwu αh ‖x2‖2 − κforws βh ‖x3‖2

> μ1

(
−γ ‖x1‖2 + αh ‖x2‖2 − βh ‖x3‖2

)
= μ1x

TQ1x.(4.14)
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The constant μ1 ∈ (max(κforwc , κforws ), κforwu ) can be chosen to be greater than zero thanks to
assumption (2.17). This means that by (4.12) and (4.14)

d

dt

(
(Φ(t, p1)− Φ(t, p2))

TQ1(Φ(t, p1)− Φ(t, p2))
)
|t=0 > 2μ2Qh(p1 − p2).

For sufficiently small τ > 0 and t ∈ (0, τ) we therefore have

Qh(f(p1)− f(p2)) = Qh(Φ(t, p1)− Φ(t, p2))

= Qh(p1 − p2) + t
d

dt
Qh(Φ(t, p1)− Φ(t, p2))|t=0 + o(t)

> (1 + t2μ1)Qh(p1 − p2),

which establishes (3.10) with m = 1 + t2μ1 > 1.
The proof of (3.11) is obtained analogously with m = 1 + t2μ2 > 1 for some μ2 < 0,

μ2 ∈
(
κbacks ,min(κbackc , κbacku )

)
, with negative time t < 0.

So far the entire argument has been done for points inNp. We can choose hp = min{2 |μ1| , 2 |μ2|}
so that (3.10) and (3.11) hold for any p1, p2 ∈ Np with a constant m = 1 + |t| hp. By com-
pactness of Dφ we can now choose an h > 0 such that (3.10) and (3.11) hold with a constant
m = 1 + |t| h for all p1, p2 ∈ Dφ.

We are now ready for the proof of our main result.
Proof of Theorem 2.4. By Lemmas 4.1 and 4.3 we know that assumptions of Theorem 2.4

imply cone and covering conditions for a map induced by the flow by a small time shift. Now
we just need to show that for a map

f(x) := Φ(t,x),

with sufficiently small t > 0, for any p ∈ Dφ with H(φ−1(p)) < h we have (3.17). This
follows from (2.5) and continuity of Φ(t,x) with respect to t. The claim now follows from
Theorem 3.7.

By applying Theorem 3.7 in our proof of Theorem 2.4 we have established more than just
continuity of our center manifold. We have also obtained existence of its stable and unstable
manifolds, together with explicit Lipschitz-type bounds on their slopes. This is summarized
in the following corollary.

Corollary 4.4. During the course of the proof of Theorem 3.7 we have shown that in local
coordinates given by φ the stable, unstable, and center manifolds obtained by our argument
are given in terms of functions

W cs : B̄R−v
c × B̄r

s → Dφ,

W cu : B̄R−v
c × B̄r

u → Dφ,

χ : B̄R−v
c → Dφ,

respectively. We have also shown that these functions are of the form

W cs(θ, y) = (θ,wcs(θ, y), y),

W cu(θ, x) = (θ, x,wcu(θ0, y)),

χ(θ) = (θ, χx,y(θ)),
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with functions wcs : B̄R−v
c × B̄r

s → B̄r
u, w

cu : B̄R−v
c × B̄r

u → B̄r
s , and χx,y : B̄R−v

c → B̄r
u × B̄r

s

by (3.21), (3.22), and (3.25) satisfying Lipschitz conditions with constants

Ls =

√
max(γ, βh)

αh
,

Lu =

√
max(γ, αv)

βv
,

Lc =

√
2γ

min(αh − αv, βv − βh)
.

Thus our method gives explicit Lipschitz-type bounds for our invariant manifolds of (2.1).

5. Center manifold around L1 in the restricted three-body problem. In the following
we specialize our study to the center manifold of the equilibrium point L1 in the RTBP. In
our approach we use normal forms to align coordinates. This is a standard approach used to
approximate the center manifold around the equilibrium points of the RTBP (see, for example,
[4, 3, 14, 10]). Our implementation of normal forms is based on [13].

We shall provide a rigorous estimate on the size of the manifold. It is important to
emphasize that the manifold extends much further beyond our bound, as has been numerically
investigated in [2].

Section 5.1 describes the RTBP, presents its equations of motion, and specifies the equi-
librium point L1 around which we shall later prove existence of the center manifold. A general
reference for this section is Szebehely’s book [19]. Section 5.2 constructs “aligned coordinates”
(described in section 2.1) around L1 in the RTBP using a suitable normal form procedure. A
general reference for this section is the paper by Jorba [13] on computation of normal forms
with application to the RTBP. In section 5.3 we show how normal forms can be used to obtain
a very accurate numerical estimate on where the center manifold is positioned. In section 5.4
we apply Theorem 2.4 to obtain a rigorous enclosure of the center manifold.

5.1. Restricted three-body problem. The problem is defined as follows: two main bodies
rotate in the plane about their common center of mass on circular orbits under their mutual
gravitational influence. A third body moves in the same plane of motion as the two main
bodies, attracted by the gravitation of the previous two but not influencing their motion. The
problem is to describe the motion of the third body.

Usually, the two rotating bodies are called the primaries. We will consider as primaries the
Sun and the Earth. The third body can be regarded as a satellite or a spaceship of negligible
mass.

We use a rotating system of coordinates centered at the center of mass. The plane X,Y
rotates with the primaries. The primaries are on the X axis; the Y axis is perpendicular to
the X axis and contained in the plane of rotation.

We rescale the masses μ1 and μ2 of the primaries so that they satisfy the relation μ1+μ2 =
1. After such rescaling the distance between the primaries is 1. (See Szebehelly [19, sec-
tion 1.5].)
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Figure 4. Notation for the rotating system of coordinates with origin at the center of mass. The Sun has
the mass 1− μ and is fixed at P1 = (μ, 0). The Earth has the mass μ and is fixed at P2 = (μ− 1, 0). The third
massless particle moves in the XY plane.

Let the smaller mass be μ2 = μ ∈ [3.04041, 3.04043]×10−6 and the larger one be μ1 = 1−μ,
corresponding to the values of the Earth and the Sun, respectively. We use a convention in
which in the rotating coordinates the Sun is located to the right of the origin at P1 = (μ, 0),
and the Earth is located to the left at P2 = (μ− 1, 0).

The equations of motion of the third body are

Ẍ − 2Ẏ = ΩX ,(5.1a)

Ÿ + 2Ẋ = ΩY ,(5.1b)

where

Ω =
1

2
(X2 + Y 2) +

1− μ

r1
+

μ

r2
and r1, r2 denote the distances from the third body to the larger and the smaller primary,
respectively (see Figure 4),

r21 = (X − μ)2 + Y 2,

r22 = (X − μ+ 1)2 + Y 2.

These equations have an integral of motion [19] called the Jacobi integral:

C = 2Ω − (Ẋ2 + Ẏ 2).

The equations of motion take Hamiltonian form if we consider positionsX, Y and momenta
PX = Ẋ − Y , PY = Ẏ +X. The Hamiltonian is

(5.2) H =
1

2
(P 2

X + P 2
Y ) + Y PX −XPY − 1− μ

r1
− μ

r2
,

with the vector field given by

F = J∇H,

J =

(
0 id

−id 0

)
, id =

(
1 0
0 1

)
.
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The Hamiltonian and the Jacobi integral are simply related by H = −C
2 .

Due to the Hamiltonian integral, the dimensionality of the space can be reduced by one.
Trajectories of (5.1) stay on the energy surface M given by H(X,Y, PX , PY ) = h = constant,
a three-dimensional submanifold of R4. Equivalently, M is the level surface

(5.3) M ≡ {C(X,Y, Ẋ, Ẏ ) = c = −2h}

of the Jacobi integral.
The RTBP in a rotating frame, described by (5.1), has five equilibrium points (see [19]).

Three of them, denoted L1, L2, and L3, lie on the X axis and are usually called the “collinear”
equilibrium points (see Figure 4). Notice that we denote L1 the interior collinear point, located
between the primaries.

At this point we would like to make it clear that in this paper we focus only on the
equilibrium point L1, though other collinear equilibria points could be investigated in the
same manner.

The Jacobian of the vector field at L1 has two real and two purely imaginary eigenvalues.
Since the three-body problem is Hamiltonian it can be shown by the Lyapunov–Moser theorem
[15] that in a sufficiently small neighborhood of L1 there exists a family of periodic orbits which
is parameterized by energy. This family of orbits forms a center manifold. Our aim shall be
to prove the existence of this manifold in a neighborhood which is far from L1. As mentioned
before, close to L1 the existence of this manifold follows from the center manifold theorem (or
in this case also from the Lyapunov–Moser theorem). The hard task is to prove its existence
far from the equilibrium point.

Remark 5.1. Since the center manifold around L1 is foliated by periodic orbits, it has to
be identical to the invariant manifold obtained through Theorem 2.4 due to point 2 of the
theorem. The Lyapunov–Moser theorem ensures the existence of periodic orbits locally. In
such a local domain we are guaranteed that the manifold χ from Theorem 2.4 is analytic.
Outside of this domain Theorem 2.4 establishes only Lipschitz continuity of χ.

By showing that the entire manifold is foliated by periodic orbits we would prove that it is
analytic. Our method, though, does not provide such result. In a forthcoming publication [6]
we shall present an alternative method, based on continuation techniques, that will prove the
foliation.

5.2. Normal form. The linearized dynamics around the equilibrium point L1 is of type
saddle × center for all values of μ. In this section we use a normal form procedure to approx-
imate the nonlinear dynamics locally around L1.

For the purpose of this paper, the normal form coordinates will be used precisely as the
well-aligned coordinates described in section 2.1.

The goal of the normal form procedure is to simplify the Taylor expansion of the Hamil-
tonian around the equilibrium point using canonical, near-identity changes of variables. This
procedure is carried up to a given (finite) degree in the expansion. The resulting Hamiltonian
is then truncated to (finite) degree. Such a Hamiltonian is said to be in normal form.

We compute a normal form expansion that is as simple as possible, i.e., one that has
the minimum number of monomials. This is sometimes called a full, or complete, normal
form. The equations of motion corresponding to the truncated normal form can be integrated
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exactly. As a result, locally the normal form gives a very accurate approximation of the
dynamics.

In particular, here we use the normal form to approximate the local center manifold by a
one-parameter family of periodic orbits with increasing energy.

The normal form construction proceeds in three steps. First we perform some convenient
translation and scaling of coordinates and expand the Hamiltonian around L1 as a power series.
Then we make a linear change of coordinates to put the quadratic part of the Hamiltonian in
a simple form, which diagonalizes the linear part of equations of motion. Finally we use the
so-called Lie series method to perform a sequence of canonical, near-identity transformations
that simplify nonlinear terms in the Hamiltonian of successively higher degree.

The transformation to well-aligned coordinates φ : U → φ(U) ⊂ R
n is the composition of

all the transformations performed during these three steps.
A similar full normal form expansion has been used for the spatial RTBP in a previous

paper [10]. We refer the reader to the previous paper for the fine details of the normal form
construction, which will be left out of the current paper.

5.2.1. Hamiltonian expansion. We start by writing the Hamiltonian (5.2) as a power
series expansion around the equilibrium point L1. First we translate the origin of coordinates
to the equilibrium point. In order to have good numerical properties for the Taylor coefficients,
it is also convenient to scale coordinates [17]. The translation and scaling are given by

(5.4) X = −γx+ μ− 1 + γ, Y = −γy,

where γ is the distance from L1 to its closest primary (the Earth).

Since scalings are not canonical transformations, we apply this change of coordinates to
the equations of motion to obtain

ẍ− 2ẏ = Ωx,(5.5a)

ÿ + 2ẋ = Ωy,(5.5b)

where

Ω =
1

2
(x2 + y2)− μ− 1 + γ

γ
x+

1

γ3

(
1− μ

r1
+

μ

r2

)

and r1, r2 denote the (scaled) distances from the third body to the larger and the smaller
primaries, respectively.

Defining px = ẋ− y, py = ẏ+x, the libration-point centered equations of motion (5.5) are
Hamiltonian, with Hamiltonian function

(5.6) H =
1

2
(p2x + p2y) + ypx − xpy +

μ− 1 + γ

γ
x− 1

γ3

(
1− μ

r1
+

μ

r2

)
.

Our first change of coordinates can therefore be summarized as R : R4 → R
4,

(X,Y, PX , PY ) = R(x, y, px, py)(5.7)

= (−γx+ μ− 1 + γ,−γy,−γpx,−γpy + μ− 1 + γ) .
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The Hamiltonian is then rewritten in the form [13, 14]

(5.8) H =
1

2
(p2x + p2y) + ypx − xpy −

∑
n≥2

cn(μ)ρ
nPn

(
x

ρ

)
,

where Pn is the nth Legendre polynomial, and the coefficients cn(μ) are given by

cn(μ) =
1

γ3

(
μ+ (−1)n

(1− μ)γn+1

(1− γ)n+1

)
.

This expansion holds when ρ < min (|P1|, |P2|) = |P2| = 1; i.e., it is valid in a ball centered at
L1 that extends up to the Earth.

5.2.2. Linear changes of coordinates. Now we transform the linear part of the system
into Jordan form, which is convenient for the normal form procedure. This particular trans-
formation is derived in [13, 14], for instance.

Consider the quadratic part H2 of the Hamiltonian (5.8),

(5.9) H2 =
1

2
(p2x + p2y) + ypx − xpy − c2x

2 +
c2
2
y2,

which corresponds to the linearization of the equations of motion. It is well known [14] that
the linearized system has eigenvalues of the form ±λ,±iν, where λ, v are real and positive.

One can find [14, section 2.1] a symplectic linear change of variables

C =

⎛
⎜⎜⎜⎝

2λ
s1

−2λ
s1

0 2v
s2

λ2−2c2−1
s1

λ2−2c2−1
s1

−v2−2c2−1
s2

0
λ2+2c2+1

s1
λ2+2c2+1

s1
−v2+2c2+1

s2
0

λ3+(1−2c2)λ
s1

−λ3−(1−2c2)λ
s1

0 −v3+(1−2c2)v
s2

⎞
⎟⎟⎟⎠ ,

where

s1 =
√

2λ
(
(4 + 3c2)λ2 + 4 + 5c2 − 6c22

)
,

s2 =
√

v
(
(4 + 3c2) v2 − 4− 5c2 + 6c22

)
,

that puts the linear terms of the vector field at L1 into a real Jordan form. This means that
the change from position-momenta to new variables (x1, y1, x2, y2) ∈ R

4,

(5.10) (x, y, px, py) = C(x1, y1, x2, y2),

casts the quadratic part of the Hamiltonian into

(5.11) H2 = λx1y1 +
ν

2
(x22 + y22).

The linear equations of motion (ẋ, ẏ) = A(x, y) associated to (5.11) decouple into a hy-
perbolic part and a center part,

(ẋ1, ẏ1) = Ah(x1, y1),(5.12a)

(ẋ2, ẏ2) = Ac(x2, y2),(5.12b)
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with

Ah =

(
λ 0
0 −λ

)
and Ac =

(
0 v
−v 0

)
.

Notice that the matrix A of the linear equations (5.12) is in block-diagonal form. It is
convenient to diagonalize the matrix A over C. Consider the symplectic change T−1 : R4 → C

4

to complex variables (q, p) = (q1, p1, q2, p2) ∈ C
4:

(q1, p1, q2, p2) = T−1(x1, y1, x2, y2)(5.13)

=

(
x1, y1,

1√
2
(x2 − iy2),

1√
2
(−ix2 + y2)

)
.

This change casts the quadratic part of the Hamiltonian into

(5.14) H2 = λq1p1 + iνq2p2.

Equivalently, this change carries A to diagonal form:

T−1AT = Λ = diag(λ,−λ, iν,−iν).

5.2.3. Nonlinear normal form. Assume that the symplectic linear changes of variables
(5.10) and (5.13) have been performed in the Hamiltonian expansion (5.8) so that the quadratic
part H2 is already in the form (5.14).

Let us thus write the Hamiltonian as

(5.15) H(q, p) = H2(q, p) +H3(q, p) +H4(q, p) + · · · ,

where Hj(q, p) are homogeneous polynomials of degree j in the variables (q, p) ∈ C
4.

As shown in a previous paper [10], we can remove most monomials in the series (5.15) by
means of formal coordinate transformations in order to obtain an integrable approximation
of the dynamics close to the equilibrium point.

Proposition 5.2 (complete normal form around a saddle×center [10]). For any integer N ≥
3, there exists a neighborhood U (N) of the origin and a near-identity canonical transformation

(5.16) T (N) : C
4 ⊃ U (N) �→ C

4

that puts the system (5.15) in normal form up to order N , namely,

H(N) := H ◦ T (N) = H2 + Z(N) +R(N),

where Z(N) is a polynomial of degree N that Poisson-commutes with H2,

{Z(N),H2} ≡ 0,

and R(N) is small:

|R(N)(z)| ≤ CN ||z||N+1 ∀z ∈ U (N).
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Moreover, the truncated Hamiltonian H2 + Z(N) depends only on the basic invariants

I1 = q1p1 = x1y1,(5.17a)

I2 = iq2p2 = q2q̄2 =
x22 + y22

2
.(5.17b)

The equations of motion associated to the truncated normal form H2 + Z(N) can be
integrated exactly.

Remark 5.3. The reminder R(N) is very small in a small neighborhood of the origin. Hence,
close to the origin, the exact solution of the truncated normal form is a very accurate approx-
imate solution of the original system H.

Remark 5.4. In fact, Giorgilli [11] showed that the normal form procedure is convergent;
i.e., the power series associated to the canonical transformation T (N) as N → ∞ converges
in a neighborhood of the origin.

Remark 5.5. Let φ1, φ2 be the symplectic conjugate variables to I1, I2, respectively. The
basic invariant I2 is usually called an action variable, and its conjugate variable φ2 is usually
called an angle variable. They are given in symplectic polar variables (5.17b).

We can now write our function φ for our change into the well-aligned coordinates (2.3).
To do so we compose the inverse transformations given in (5.7), (5.10), (5.13), and (5.16),
which gives us

(5.18) φ =
(
T (N)

)−1
◦ T−1 ◦ C−1 ◦R−1.

Remark 5.6. The above-described method of obtaining normal form coordinates is per-
formed by passing through complex variables. It is possible, though, to arrange the changes
so that the combined change of coordinates (5.18) passes from real to real coordinates. The
change of coordinates φ is a high order polynomial. It is possible to arrange the normal form
change of coordinates so that the coefficient of φ is real (see [13]). In setting up our change
of coordinates for the application of Theorem 2.4 to the RTBP in section 5.4 we have adopted
such a procedure.

Remark 5.7. In practice, one usually computes a normal form of degree N = 16. In our
application to the RTBP in section 5.4 we use a normal form of degree N = 4. This turns
out to be sufficient, since we investigate a relatively close neighborhood of the invariant point,
where degree of order four gives us a sufficiently good approximation.

5.3. Approximating the center manifold in normal form coordinates. In normal form
coordinates given by (5.18) the Hamiltonian, by Proposition 5.2, is of the form

(5.19) H(N) = H2 + Z(N) +R(N), {Z(N),H2} ≡ 0.

In this section we shall show that when we neglect the reminder term R(N), and thus consider
an approximation of the system, the normal form coordinates given by (5.18) give us a very
good understanding of where the center manifold is positioned and of the dynamics on it.

Let U be some small neighborhood of the fixed point (in our discussion for the RTBP this
will be L1), and let φ : U → φ(U) ⊂ R

4 be the transformation to normal form coordinates
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(5.18). Consider the normal form (5.19) up to order N with associated equations of motion

(5.20) ṗ = Fφ(p) := J∇H(N)(p).

Consider now the truncated normal form up to order N ,

Ĥ(N) = H2 + Z(N),

with associated equations of motion

(5.21) ṗ = F̂φ(p) := J∇Ĥ(N)(p).

Recall that the corresponding linearization around the origin is (5.12),

(5.22) ṗ = Ap, p = (x1, y1, x2, y2) ∈ R
4,

where x1, y1 are the hyperbolic normal form coordinates (5.17a), and x2, y2 are the center
normal form coordinates (5.17b). In order to match the notation from section 2, let us denote
the center normal form coordinates x2, y2 as θ1, θ2, the unstable normal form coordinate x1
as x, and the stable normal form coordinate y1 as y. Note that to match the notation we
need to swap the order in which the coordinates are written, passing from (x1, y1, x2, y2) to
(θ1, θ2, x, y).

The truncated system F̂φ has several invariant subspaces. Specifically, the next proposi-
tion follows from [16, section 5.1].

Proposition 5.8. Let

Ec = {(θ1, θ2, 0, 0): (θ1, θ2) ∈ R
2},(5.23)

Eu = {(0, 0, x, 0): x ∈ R},(5.24)

Es = {(0, 0, 0, y) : y ∈ R}.(5.25)

Then, Ec, Eu, and Es are invariant subspaces of the flow of F̂φ.

Remark 5.9. These subspaces are invariant under the nonlinear truncated system (5.21)
and not just under the linearized system (5.22). It is important to stress here, though, that
these subspaces need not be invariant under the full system (5.20).

Next we claim that Ec is approximately equal to the center manifold W c of the full system
Fφ. This is formulated in the next proposition, which follows from [16, section 5.2].

Proposition 5.10. For each integer r with N ≤ r < ∞, there exists a (not necessarily
unique) local invariant center manifold W c of Fφ of class Cr such that the following hold:

• W c is expressible as a graph over Ec; i.e., there exist a neighborhood V ⊂ Ec and a
map χ : V → Eu ⊕ Es such that

W c = {(θ1, θ2, x, y) ∈ Ec ⊕ Eu ⊕ Es : (θ1, θ2) ∈ V, (x, y) = χ(θ1, θ2)}.

• W c has N th order contact with Ec; i.e., χ and its derivatives up to order N vanish at
the origin.
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Hence, in normal form coordinates, the center manifold W c of Fφ is approximated very
accurately (to order N) around the origin by the subspace Ec.

Remark 5.11. When applying Proposition 5.10 we are faced with a problem for which it
is usually very hard to obtain a rigorous bound on the size of the set V . According to the
work [11], one can obtain a rigorous bound on the size of the higher order terms of χ on the
set V . However, we have not pursued this possibility.

Let us now briefly discuss the dynamics of the system (5.21) on Ec. To do so we shall
use the center normal form coordinates (5.17b) in action angle form; i.e., from now on we will
use (I, ϕ) ∈ R× T for the center part. Proposition 5.2 states that the truncated Hamiltonian
Ĥ(N) depends only on the action I and not on the angle ϕ. Thus the restriction of F̂φ to its
invariant subspace Ec is

(5.26) İ = 0, ϕ̇ =
∂Ĥ(N)

∂I
=: ω(I).

The solutions inside Ec with initial conditions I(0) = I0 and ϕ(0) = ϕ0 are I(t) = I0,
ϕ(t) = ω(I0)t + ϕ0. In the case of the RTBP Ec is two-dimensional, and so the dynamics of
the truncated system on Ec is foliated by periodic orbits of increasing action I. Notice from
(5.11) that H grows linearly with respect to I (close to the origin), so the periodic orbits also
have increasing energy H.

The properties discussed above motivate the use of the normal form coordinates θ1, θ2, x, y
as the well-aligned coordinates in the sense of section 2.1. They provide a good approximation
of the location of the center manifold (locally around the origin). Taking B̄R

c = {(θ1, θ2) ∈
R
2 : ‖θ1, θ2‖ ≤ R}, the approximation is given by φ−1(B̄R

c × {0}) ⊂ R
4. Notice also that the

center coordinate I is well aligned with the energy (in sense of (2.5)). Let

CR =
{
(θ1, θ2) ∈ R

2 : ‖θ1, θ2‖ = R
}

be the invariant circle of radius R for the system (5.21). By (5.26) we have Ĥ(N)(CR1×{0}) <
Ĥ(N)(CR2 × {0}) whenever R1 < R2. Hence, given an energy h, we can find R1, R2 > 0 such
that

Ĥ(N)(CR1 × {0}) < h < Ĥ(N)(CR2 × {0}).

Taking R1, R2 sufficiently far (in practice they are still close) from one another and taking
sufficiently small r > 0, since Ĥ(N) and H(N) are close, we expect also that

H(N)(BR1
c ×Br

u ×Br
s) < h < H(N)(CR2 ×Br

u ×Br
s).

Since H(N) = H ◦ φ−1, this will mean that that the bound (2.5) shall be satisfied.

5.4. Application of the main theorem to the center manifold around L1. In this section
we shall show how to apply Theorem 2.4 in practice.

As described in section 5.2 the change of coordinates to well-aligned coordinates can be
done using a change to normal coordinates (5.18). We obtain the function φ using the algo-
rithm of Jorba [13]. The algorithm allows us to obtain φ as a real polynomial, passing from
R
4 to R

4.
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5.4.1. Methodology. To apply Theorem 2.4 it is enough to derive a rigorous bound on
the derivative of Fφ. Let us now outline how such a bound can be obtained. Using (2.6), for
any p ∈ R

4 we have

D
(
Fφ(p)

)
= D2φ(φ−1(p))D(φ−1)(p)F (φ−1(p))(5.27)

+Dφ(φ−1(p))DF (φ−1(p))D(φ−1)(p).

In our computer-assisted proof we apply the above formula using an interval-arithmetic–based
software called CAPD (Computer Assisted Proofs in Dynamics1). This software in particular
allows for rigorous interval-enclosure–based computation of high order derivatives of functions
on sets. In our application we obtain a global bound for the derivative (2.8) on the entire
set Dφ. Computing [DFφ(Dφ)] applying (5.27) requires only computing images of functions,
derivatives of functions, and a second derivative on a set Dφ. All such computations can be
performed in CAPD.

Before specifying the size of the set Dφ and giving rigorous interval-based numerical re-
sults, we have to stress one problem encountered when applying formula (5.27). We take
our change to well-aligned coordinates φ to be a high order polynomial obtained from non-
rigorous computations. To apply formula (5.27) directly we would need to know its inverse
φ−1. Let us stress that one cannot use a numerical approximation of an inverse change and
use it as φ−1 (such a numerical approximate inverse is readily available from algorithms of
[13]). To apply (5.27) directly one would have to use a rigorous analytic inverse. Since φ is
a polynomial in high dimension and of high order, its analytic inverse is next to impossible
to obtain in practice. To remedy this problem we slightly modify (5.27). Using the fact that

D(φ−1)(p) =
(
Dφ(φ−1(p))

)−1
, we can rewrite (5.27) as

DFφ(p) = D2φ(φ−1(p))(Dφ(φ−1(p)))−1F (φ−1(p))

+Dφ(φ−1(p))DF (φ−1(p))
(
Dφ(φ−1(p))

)−1
.

This in interval arithmetic notation gives us the following formula for the interval enclosure
of DFφ on some set I ⊂ Dφ:

[DFφ(I)] ⊂ [D2φ(
[
φ−1(I)

]
)(Dφ(

[
φ−1(I)

]
))−1F (

[
φ−1(I)

]
)(5.28)

+Dφ(
[
φ−1(I)

]
)DF (

[
φ−1(I)

]
)
(
Dφ(

[
φ−1(I)

]
)
)−1

].

To compute the right-hand side of the above equation there is no need to invert the function
φ. It is enough to find a set

[
φ−1(I)

]
which contains the preimage of I, i.e.,

φ−1(I) ⊂
[
φ−1(I)

]
,

and for this we do not need to compute the inverse function. For a set B ⊂ R
4 the following

lemma can be used to verify that φ−1(I) ⊂ B.

1http://capd.ii.uj.edu.pl

http://capd.ii.uj.edu.pl
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Lemma 5.12. Let φ : R
n → R

n be a homeomorphism, and let I, B ⊂ R
n be two sets

homeomorphic to n-dimensional balls. If φ(∂B) ∩ I = ∅ and for some point p ∈ B we have
φ(p) ∈ I, then

φ−1(I) ⊂ B.

Proof. This follows from elementary topological arguments.
To apply the lemma in practice it is convenient to first have a nonrigorous approximation

of the inverse function; let us denote it by φ̂−1. This means that

φ̂−1φ ≈ id.

A function φ̂−1 is readily available from algorithms of Jorba [13]. We can then choose λ > 1
and set B = λ[φ̂−1(I)] (in our application we choose λ = 3, which we find is large enough for
our problem). Then we divide the boundary ∂B into smaller sets and verify that the image
by φ of each smaller set is disconnected with I. We also check that for the middle point p in
B we have φ(p) ∈ I. This by Lemma 5.12 guarantees that φ−1(I) ⊂ B.

Remark 5.13. Once a set B such that φ−1(I) ⊂ B is found, there is a useful trick that can
be used to refine this initial guess on the preimage. One can take a very small set I0 ⊂ I and
using Lemma 5.12 find a small set B0 such that φ−1(I0) ⊂ B0. The set

[
φ−1(I)

]
can then be

chosen as [
φ−1(I)

]
= B0 +

[
(Dφ(B))−1

]
[I− I0].

Such a choice guarantees that φ−1(I) ⊂
[
φ−1(I)

]
. It is also usually tighter than the initial

guess B, which is true especially when the function φ is close to identity.
Proof. This follows from the mean value theorem.
In a fashion similar to the method from Remark 5.13, to compute the energy for a set

I ⊂ Dφ, we take some small set I0 ⊂ I and compute

(5.29) [H(φ−1(I))] ⊂ H([φ−1(I0)]) +
[
DH([φ−1(I)])

] [
[φ−1(I)]− [φ−1(I0)]

]
.

Remark 5.14. When applying the above tools to compute [DFφ(I)] using (5.28), it pays to
use the fact that φ is composed of linear changes of coordinates, together with a nonlinear
change T (N) which is close to identity. Keeping track of both linear and nonlinear changes
allows us to tighten the interval bounds of computations.

To prove the existence of a fixed point (in case of the RTBP we take the point L1) inside
of our set Dφ we use the interval Newton method.

Theorem 5.15 (see [1]). Let F : Rn → R
n be a C1 function. Let I = Πn

i=1[ai, bi], ai < bi.
Assume that the interval enclosure of DF (I), denoted by [DF (I)], is invertible. Let x0 ∈ I,
and define

N(F, x0, I) = − [DF (I)]−1 F (x0) + x0.

If N(x0, I) ⊂ I, then there exists a unique point x∗ ∈ I such that F (x∗) = 0.

5.4.2. Rigorous interval-based numerical results. For our proof we use a normal form
(5.18) of order N = 4 as the change of coordinates. At this point we stress once again
that φ obtained by (5.18) does not need to perfectly align the coordinates of the system. In
particular, φ was numerically obtained for a single mass parameter from the interval m =
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[3.04041, 3.04043] × 10−6 and is applied to all parameters μ ∈ m. A numerically obtained
polynomial, provided that it aligns its coordinates well enough, is sufficient to prove the
existence of a center manifold using our method, provided that the assumptions of Theorem
2.4 can be verified.

We investigate a set
Dφ = B̄R

c × B̄r
u × B̄r

s

with

R =
√
2 · 155 · 10−4 ≈ 0.176,(5.30)

r = 5 · 10−4.

Our choice of R by (5.17a) implies that we consider actions I ∈ [0, 0.0155].
We first prove that we have a fixed point in Dφ applying Theorem 5.15. We take I =

Π4
i=1[−25 · 10−5, 25 · 10−5] ⊂ intDφ and compute

N(Fφ, 0, I) ⊂ 10−5([−6.420, 6.535]× [−6.535, 6.418]× [−6.336, 6.336]× [−5.524, 5.461]).

Clearly N(Fφ, 0, I) ⊂ I, which establishes that for any μ ∈ m the fixed point L1 is in the
interior of Dφ.

Next we verify condition (2.5). We take v =
√
2 · 155 · 10−4 −

√
2 · 150 · 10−4, which is

equivalent to the ball BR−v
c having actions I ∈ [0, 0.015]. We subdivide B̄r

u × B̄r
s into 9 pieces

and cover ∂B̄R
c by 500 small boxes in R

2. Taking the 9 · 500 sets, using (5.29), we obtain a
bound on the energy

H(φ−1(∂B̄R
c × B̄r

u × B̄r
s)) > −1.500445782331.

Taking the same type of subdivision, we then show that

H(φ−1(B̄R−v
c × B̄r

u × B̄r
s)) < −1.500445786588,

which establishes (2.5).
To compute [DFφ(Dφ)], we cover B̄

R
c by 31 000 boxes in R

2, B̄R
c ⊂

⋃31 000
i=1 Ic,i. Taking Ii =

Ic,i×B̄r
u×B̄r

s , we compute the bound on [DFφ(Dφ)] as an interval hull of all matrices [DFφ(Ii)]
(this means that we take an interval matrix [DFφ(Dφ)] so that [DFφ(Ii)] ⊂ [DFφ(Dφ)] for
i = 1, . . . , 31 000). Each interval matrix [DFφ(Ii)] is computed using (5.28). Thus for all
μ ∈ m we obtain a bound for [DFφ(Dφ)] (displayed below with three-digit rough accuracy,
rounded up to ensure true enclosure):

[DFφ(Dφ)]

=

⎛
⎜⎜⎝

[−0.0336, 0.0335] [2.06, 2.11] [−0.0526, 0.0521] [−0.0521, 0.0526]
[−2.15,−2.03] [−0.0422, 0.0422] [−0.0826, 0.0827] [−0.0825, 0.0827]
[−0.0783, 0.0782] [−0.0559, 0.0566] [2.43, 2.64] [−0.0974, 0.0962]
[−0.0782, 0.0783] [−0.0559, 0.0566] [−0.0962, 0.0974] [−2.64,−2.43]

⎞
⎟⎟⎠.(5.31)

We take αh = βv = 2 and αv = βh = γ = 1, which clearly satisfy (2.13). In our application
we deal with a single set Np = N0 = Dφ, which means that for this set ρ = R. With our
choice of parameters condition (2.14) clearly holds.
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Figure 5. A rough sketch of πX,Y,PXφ−1(B̄R−v
c × B̄r

u × B̄r
s ), which gives us an idea of the actual size and

thickness of the investigated region in which we have proved existence of the center manifold.

Based on (5.31), using (2.9)–(2.12), (2.15), and (2.16), we compute the constants κforwc ,
κforwu , κforws , κbackc , κbacku , κbacks , εu, εs, δ

u, δs needed for the verification of the assumptions of
Theorem 2.4. The computed constants are written in (7.1) and (7.4) in section 7.

Finally, using the boxes Ic,i we also compute [πx,yF (B̄R
c × {0} × {0})] as the interval hull

of all
[
πx,yF

φ(Ic,i × {0} × {0})
]
for i = 1, . . . , 31 000 (displayed below with rough accuracy),

[πx,yF (B̄R
c × {0} × {0})](5.32)

= [−0.000960689, 0.000822881]× [−0.000960693, 0.000822879],

from which Eu, Es are computed using (2.19) (see (7.1) in section 7). For computation of
each

[
πx,yF

φ(Ic,i × {0} × {0})
]
we in fact need to further subdivide each box Ic,i into nine

parts (this is because Eu and Es turn out to be our most sensitive estimates). Based on all
the computed constants we verify assumptions (2.17)–(2.21) of Theorem 2.4.

The computer-assisted part of the proof has taken 3 hours and 38 minutes of computation
on a standard laptop (it is possible to conduct much shorter proofs, but for less accurate
enclosures of the manifold than above). Looking at the constants (7.1), (7.4) written in section
7 it is apparent that assumptions (2.17), (2.18) of Theorem 2.4 hold by a large margin. The
bottleneck lies in conditions (2.20) and (2.21). This follows from the fact that the bounds
computed in (5.32) are large in comparison to r (see (2.19), which binds the two together).
This is because far away from the origin the fourth order normal form no longer gives an
accurate enough estimate on the position of the manifold, and hence the vector-field in the
expansion/contraction direction becomes noticeably nonzero. A simple remedy would be to
use a higher order normal form, which would allow for obtaining a tighter enclosure and also
a larger domain. This would require longer computations and use of more capable hardware
than a standard laptop. Such computations, though, can easily be performed on clusters.

Finally, let us note that the size of the region in which the manifold is found is not
negligible. In Figures 5 and 6 we see our region together with the smaller mass (Earth) in
the original coordinates of the system. Our set Dφ is a four-dimensional “flattened disc,” and
in Figure 5 we can see that the disc is not too thick. On our plot the set πX,Y,PX

(
φ−1 (Dφ)

)
lies between the two colored flat discs (the blue disc below, and the green disc above; in this
resolution they practically merge with one another).
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Figure 6. A rough sketch of πX,Y

(
φ−1(∂B̄R−v

c × B̄r
u × B̄r

s )
)
in blue and πX,Y

(
φ−1(∂B̄R

c × B̄r
u × B̄r

s )
)
in

red. We have proved that the manifold is contained in φ−1(B̄R−v
c × B̄r

u × B̄r
s) and that orbits starting from it

never leave φ−1(B̄R
c × B̄r

u × B̄r
s ) when going forward or backward in time.

6. Closing remarks and future work. In this paper we have given a method for detection
and proof of existence of center manifolds in a given domain of the system. The method is
quite general. It can be applied to any system with an integral of motion which allows for
a computation of a normal form around a fixed point. The method also works for arbitrary
dimension, which makes it a tool which can be applied to a large family of systems.

The strength of our approach lies in the fact that we can investigate and prove existence of
manifolds within large domains, and not only locally around a fixed point. The weakness so far
is that the method establishes only Lipschitz-type continuity of the manifold. In forthcoming
work we plan to remedy this deficiency. In our view, since we already have established
Lipschitz continuity, similar tools combined with standard cohomology equation arguments
can be applied to prove higher order smoothness.

We have successfully applied the method to the RTBP. We have not shown, though, that
the manifold around L1 is foliated by periodic orbits. The manifold also is much larger than
the domain in which we can prove its existence. We are currently preparing an alternative
continuation-type approach which will detect the orbits. This approach will also allow for
proofs over a much larger domain.

We would also like to mention that our method allows for rigorous enclosure of the asso-
ciated stable and unstable manifolds through cone conditions used in the proof. This means
that it can be used as a starting point for computation of foliations of stable/unstable man-
ifolds and next as a scattering map associated with splitting of separatrices. In our future
work we plan to conduct rigorous computer-assisted computations of the scattering map for
the RTBP in the spirit of [10]. Such computations can then be used in the study of structural
stability or diffusion as in [9].

7. Appendix. Here we list the bounds needed for the verification of the assumptions of
Theorem 2.4. Below constants were computed using (5.32), (5.31) combined with (2.19), (2.9),
(2.10), and (2.12):
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(7.1)

Eu = 1.921376952576923, Es = 1.921385550593898,
δu = 2.434891033094052, δs = 2.43489806870965,
εc = 0.0979681005281105, εm = 0.09657492960501532,
εu = 0.0973872211974159, εs = 0.09736755110221817.

Note that [DFφ(Dφ)] and [πx,yF (B̄R
c × {0} × {0})] in (5.31), (5.32) are displayed with very

rough accuracy. The above numbers follow from their precise version from the CAPD software.
From (2.8) we have obtained the bounds cu, cs (see (2.11)) using the following simple

estimates. Our matrix C from (2.8) is of the form (see (5.31))

C =

(
ε1 r1
r2 ε2

)
.

For any matrix C = ( ε1 r1
r2 ε2 ) ∈ C and any θ = (θ1, θ2) for which ‖θ‖ = 1, using

−1

2
= −θ21 + θ22

2
≤ θ1θ2 ≤

θ21 + θ22
2

=
1

2
,

we have

θTCθ

= (r1 + r2) θ2θ1 + ε1θ
2
1 + ε2θ

2
2

∈
[
− max

r1∈r1,r2∈r2
|r1 + r2|

2
+ min

εi∈εi,i=1,2
εi, max

r1∈r1,r2∈r2
|r1 + r2|

2
+ max

εi∈εi,i=1,2
εi

]
.(7.2)

The bound (7.2) is easily computable using interval arithmetic and (5.31):

(7.3) cu = 0.08051326990530001, cs = −0.08047205618419317.
Here once again the very rough rounding in (5.31) is evident when compared with (7.3).

Estimates (7.1), (7.3) give us

(7.4)
κforwc = 0.3233437648409335, κbackc = −0.3233025511198267,
κforwu = 2.289076044785254, κbacku = 2.191558356326563,
κforws = −2.191555556894562, κbacks = −2.289087997924652.
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[7] M. J. Capiński and C. Simó, Computer Assisted Proof for Normally Hyperbolic Manifolds, preprint,
http://arxiv.org/abs/1105.1277, 2011.
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