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Computer Assisted Existence Proofs of Lyapunov Orbits at L2 and Transversal
Intersections of Invariant Manifolds in the Jupiter–Sun PCR3BP∗
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Abstract. We present a computer assisted proof of existence of a family of Lyapunov orbits which stretches
from L2 (the collinear libration point between the primaries) up to half the distance to the smaller
primary in the Jupiter–Sun planar circular restricted three body problem. We then focus on a
small family of Lyapunov orbits with energies close to comet Oterma and show that their associated
invariant manifolds intersect transversally. Our computer assisted proof provides explicit bounds on
the location and on the angle of intersection.
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1. Introduction. The planar circular restricted three body problem (PCR3BP) has been
extensively studied throughout literature. The model has applications in space mission design
[14, 15], explains symbolic dynamics phenomena observed in trajectories of comets [18], and
can be used for the study of diffusion estimates [16, 17]. All of the above are associated with
dynamics along invariant manifolds of the system. In this paper we discuss how existence
of such manifolds can be proved within explicit bounds using rigorous computer assisted
techniques.

We focus on dynamics associated with the fixed point L2, its associated center manifold,
and stable/unstable manifolds. The problem has been studied by Llibre, Martinez, and Simó
[19], where, under appropriate conditions on parameters of the system, existence and intersec-
tions of such manifolds have been proved analytically. A similar mechanism was considered
by Belbruno and Marsden in [3] to describe the hopping of the comets of Jupiter using the
empirical notion of the weak stability boundary. Later, in the work of Koon et al. [18], in-
variant manifolds and their associated symbolic dynamics were used to numerically explain
a peculiar trajectory of Jupiter’s comet Oterma. Such symbolic dynamics has been proved
using rigorous computer assisted computations by Wilczak and Zgliczyński [23, 24]. In recent
papers of Belbruno, Gidea, and Topputo [4, 5] it is shown that the weak stability boundary
method and the invariant manifold method coincide.

The work presented in this paper can be viewed as an extension of [23, 24]. Results in
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1724 MACIEJ J. CAPIŃSKI

[23, 24] were obtained using purely topological arguments. They focus on homoclinic and
heteroclinic tangle between periodic orbits, without the detection of the manifolds themselves
or angles of their intersections. Here we address these issues.

In this paper we shall first present a method for detecting of families of Lyapunov orbits
in the PCR3BP. It is designed as a tool for rigorous computer assisted proofs. We apply the
method to obtain a family that spans up to half the distance between the fixed point L2 and
the smaller primary in the Jupiter–Sun system. This is our first main result, which is stated
in Theorem 3.2. The method is based on a combination of the interval Newton method and
the implicit function theorem.

We then consider a small family of Lyapunov orbits with energies close to the energy
of the comet Oterma. We prove that the family is normally hyperbolic, and we give a tool
for obtaining rigorous bounds for its unstable and stable fibers. The tool is based on a
topological approach combined with a parameterization method. We then show how fibers
can be propagated to prove transversal intersections between stable and unstable manifolds of
Lyapunov orbits. We investigate an intersection associated with manifolds which span from
the Lyapunov orbit and circle around the larger primary. We obtain explicit bounds on the
location of intersection and also on its angle. This is the second main result of the paper,
which is stated in Theorem 4.1.

Both methods which we propose are tailor-made for the PCR3BP. We make use of the
preservation of energy and reversibility of the system. Thanks to this our rigorous bounds for
the investigated manifolds are quite sharp.

For our method we also develop a more general tool which can be applied for the detection
of unstable/stable manifolds of saddle-center fixed points. It is a generalization of the work
of Zgliczyński [25]. This is the subject of section 6.

The paper is organized as follows. Section 2 includes preliminaries which give an in-
troduction to the PCR3BP, computer assisted proofs, and the interval Newton method and
introduce some notation. In section 3 we present a method for the detection of families of
Lyapunov orbits and apply it to the Jupiter–Sun system. In section 4 we outline the results
for the intersections of invariant manifolds, which are then proved throughout the remainder
of the paper. In section 5 we show how to prove that Lyapunov orbits are hyperbolic and
foliated by energy. In section 6 we give a topological tool for detection of unstable manifolds
of saddle-center fixed points. The method is then combined with a parameterization method
in section 7 to obtain rigorous bounds on the intersections of invariant manifolds. Sections 8
and 9 contain, respectively, closing remarks and the appendix.

2. Preliminaries.

2.1. The PCR3BP. In the planar circular restricted three body problem (PCR3BP) we
consider the motion of a small massless particle under the gravitational pull of two larger
bodies (which we shall refer to as primaries) of mass μ and 1−μ. The primaries move around
the origin on circular orbits of period 2π on the same plane as the massless body. In this
paper we shall consider the mass parameter μ = 0.0009537, which corresponds to the rescaled
mass of Jupiter in the Jupiter–Sun system.

The Hamiltonian of the problem is given by [1]

H(q, p, t) =
p21 + p22

2
− 1− μ

r1(t)
− μ

r2(t)
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Figure 1. The Hill’s region for the energy level h = 1.515 of comet Oterma in the Jupiter–Sun system.

where (q, p) = (q1, q2, p1, p2) are the coordinates of the massless particle and r1(t) and r2(t)
are the distances from the masses 1− μ and μ, respectively.

After introducing a new coordinate system (x, y, px, py),

(2.1)
x = q1 cos t+ q2 sin t, px = p1 cos t+ p2 sin t,
y = −q1 sin t+ q2 cos t, py = −p1 sin t+ p2 cos t,

which rotates together with the primaries, the primaries become motionless (see Figure 1),
and one obtains [1] an autonomous Hamiltonian

(2.2) H(x, y, px, py) =
(px + y)2 + (py − x)2

2
− Ω(x, y),

where

Ω(x, y) =
x2 + y2

2
+

1− μ

r1
+
μ

r2
,

r1 =
√

(x− μ)2 + y2, r2 =
√

(x+ 1− μ)2 + y2.

The motion of the particle is given by

(2.3) q̇ = J∇H(q),

where q = (x, y, px, py) ∈ R
4, J =

(
0 id

−id 0

)
, and id is a two dimensional identity matrix.

The movement of the flow (2.3) is restricted to the hypersurfaces determined by the energy
level h,

(2.4) M(h) = {(x, y, px, py) ∈ R
4|H(x, y, px, py) = h}.

This means that movement in the x, y coordinates is restricted to the so-called Hill’s region
defined by

R(h) = {(x, y) ∈ R
2|Ω(x, y) ≥ −h}.D
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Figure 2. The Lyapunov orbit in red, its unstable manifold in green, and the intersection of the unstable
manifold with section {y = 0} in blue, projected onto x, y, px coordinates. The figure is for the energy of comet
Oterma h = 1.515 in the Jupiter–Sun system.

The problem has three equilibrium points L1, L2, L3 on the x-axis (see Figure 1). We
shall be interested in the dynamics associated with L2 and with orbits of energies higher than
that of L2. The linearized vector field at the point L2 has two real and two purely imaginary
eigenvalues; thus by the Lyapunov theorem (see, for example, [19]) for energies h larger and
sufficiently close to H(L2) there exists a family of periodic orbits parameterized by energy
emanating from the equilibrium point L2. Numerical evidence shows that this family extends
up to and even beyond the smaller primary μ [6].

The PCR3BP admits the following reversing symmetry:

S(x, y, px, py) = (x,−y,−px, py).
For the flow φ(t, q) of (2.3) we have

(2.5) S(φ(t, q)) = φ(−t, S(q)).
We say that an orbit q(t) is S-symmetric when

(2.6) S(q(t)) = q(−t).
Each Lyapunov orbit is S-symmetric. It possesses a two dimensional stable manifold and a

two dimensional unstable manifold. These manifolds lie on the same energy level as the orbit,
and their intersection, when restricted to the three dimensional constant energy manifold
(2.4), is transversal. These invariant manifolds are S-symmetric with respect to each other,
meaning that the stable manifold is an image by S of the unstable manifold (see Figure 2 for
the unstable manifold and Figure 3 for the intersection of manifolds). All these facts are well
known and extensively studied numerically.

Our aim in this paper will be first to provide a rigorous computer assisted proof of existence
of the manifold of Lyapunov orbits over a large radius from L2 (see Figure 4). Second, using
rigorous computer assisted computations, we shall show that for orbits with energies close toD

ow
nl

oa
de

d 
01

/1
4/

13
 to

 1
28

.6
1.

29
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERSECTIONS OF INVARIANT MANIFOLDS IN THE PCR3BP 1727

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

y

x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1

p x

x

Figure 3. The Lyapunov orbit in red, its unstable manifold in green, stable manifold in purple, and their
intersections with section {y = 0} in blue, projected onto x, y coordinates (left) and x, px coordinates (right).
The figure is for the energy of comet Oterma h = 1. 515 in the Jupiter–Sun system.
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Figure 4. The considered family of Lyapunov orbits in green (spanning between two orbits in blue), together
with the Lyapunov orbit for the energy of the comet Oterma h = 1. 515 in red.

the energy of comet Oterma h = 1. 515 their associated stable and unstable manifolds intersect
transversally. Even though such intersections are well known from numerical investigation, to
the best of our knowledge this is the first rigorous proof of their existence.

2.2. Computer assisted proofs. Most computations performed on a computer are bur-
dened with error. Even very simple operations on real numbers (such as adding, multiplying,
or dividing) can result in truncation errors. To make computer assisted computations fully
rigorous, one can employ interval arithmetic, where instead of real numbers one deals with
intervals. Any operation is made rigorous by appropriate rounding, which ensures enclosure
of the true result.

Interval arithmetic can also be used to treat basic functions (such as sin, cos, or exponent).
It can be extended to perform linear algebra on interval vectors and interval matrices. One
can thus design algorithms which give rigorous enclosures for multiplying matrices, inverting
a matrix, computing eigenvectors, or solving linear equations.

The interval arithmetic approach can also be extended to treat functions f : Rn → R
m.

One can implement algorithms which compute interval enclosures for images of the functionD
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f for its derivative and for higher order derivatives.
The interval arithmetic approach can also be used for the integration of ODEs. One can

implement interval arithmetic based integrators, which allow for the computation of enclosures
of the images of points along a flow of an ODE. One can extend such integrators to include the
computation of high order derivatives of a time shift map along the flow, or even to compute
high order derivatives for Poincaré maps [22].

All the above-mentioned tasks can be performed using the single C++ library “Computer
Assisted Proofs in Dynamics” (CAPD). The package is freely available at http://capd.ii.uj.
edu.pl. All the computer assisted proofs in this paper have been performed using the CAPD
package. In section 9.3 we give more detailed comments on the modules of the CAPD library,
which were required for our computations.

2.3. Interval Newton method. Let X be a subset of Rn. We shall denote by [X] an
interval enclosure of the set X, that is, a set

[X] = Πn
i=1[ai, bi] ⊂ R

n,

such that
X ⊂ [X].

Let f : Rn → R
n be a C1 function and U ⊂ R

n. We shall denote by [Df(U)] the interval
enclosure of a Jacobian matrix on the set U . This means that [Df(U)] is an interval matrix
defined as

[Df(U)] =

{
A ∈ R

n×n|Aij ∈
[
inf
x∈U

dfi
dxj

(x), sup
x∈U

dfi
dxj

(x)

]
for all i, j = 1, . . . , n

}
.

Theorem 2.1 (interval Newton method [2]). Let f : Rn → R
n be a C1 function and X =

Πn
i=1[ai, bi] with ai < bi. If [Df(X)] is invertible and there exists an x0 in X such that

N(x0,X) := x0 − [Df(X)]−1 f(x0) ⊂ X,

then there exists a unique point x∗ ∈ X such that f(x∗) = 0.

2.4. Notation. Throughout the paper we shall use the notation φ(t, x) for the flow and
ΦT (x) = φ(T, x) for a time T shift along trajectory map of (2.3). For points p = (x, y) we
shall write πxp and πyp to denote projections onto coordinates x and y, respectively. We shall
also use the following notation for a Cartesian product of sets Πn

i=1Ui = U1 × · · · × Un. For
A,B ⊂ R

n we use the notation A+B = {a+ b|a ∈ A, b ∈ B}.
3. Existence of a family of Lyapunov orbits. In this section we present a method for

proving the existence of Lyapunov orbits far away from L2. The result is in the spirit of
the method applied by Wilczak and Zgliczyński in [23, 24] for a Lyapunov orbit with energy
h = 1. 515 of the comet Oterma. Our result differs from [23, 24] in that we obtain a smooth
family of orbits over a large set, whereas in [23, 24] a single orbit was proved.

We shall consider orbits starting from points of the form (x, 0, 0, py) with x inside of an
interval

Ix = [Ix, Ix] :=

[
1

2
(−1 + μ− 0.933),−0.933

]
(3.1)

≈ [−0.96602315,−0.933] ⊂ R.
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Figure 5. The bound for a curve of points q(x) = (x, 0, 0, κ(x)) on Lyapunov orbits.

Since πxL2 ≈ −0.93237, we see that Ix <
1
2(−1 + μ− πxL2), so the interval Ix stretches from

half the distance between the smaller primary and L2 almost up to L2 (see Figure 4, where the
orbits are depicted in green and stretch between an inner and outer orbit depicted in blue).

Let us consider a section Σ = {y = 0} and a Poincaré map P : Σ → Σ of (2.3). We
shall interpret the Poincaré map as a function from R

3 to R
3 with coordinates x, px, py. If

for a point q = (x, 0, py) ∈ Σ we have πpxP (q) = 0, then by the symmetry property (2.5) the
point q lies on a periodic orbit (the Poincaré map P makes a half turn along the orbit starting
from q).

Let us introduce the following notation:

f : R2 → R,

f(x, py) = πpxP (x, 0, py).

To find a periodic orbit for some fixed x it is sufficient to find a zero of a function

gx(py) := f(x, py).

Let DP = (dPi j)i,j=1,2,3 be the derivative of the map P , with indexes 1, 2, 3 corresponding to
coordinates x, px, py, respectively.

Lemma 3.1. Let I and Ji for i = 0, 1 be closed intervals such that J0, J1 have the same
center point p0y and J0 ⊂ J1. Let x0 be the center point of I. Let a ∈ R and U0, U ⊂ Σ = R

3

be sets defined as (see Figure 5)

U0 = {x0} × {0} × J0,

U =
{
(x, 0, py)|x ∈ I, py = a

(
x− x0

)
+ ι, ι ∈ J1

}
.(3.2)

If

(3.3) N := p0y −
[
πpxP (x

0, 0, p0y)

dP (U0)2 3

]
⊂ J0

and

(3.4) |α− a| < 1

|I| (|J1| − |J0|) for all α ∈ [α,α] :=

[
−dP (U)2 1
dP (U)2 3

]
,
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Figure 6. Numerical plot of κ(x), consisting of 15 000 points q0i on Lyapunov orbits (in red). The point
L2 is in green. The blue line x = −1+ μ gives an indication of the position of the smaller primary along the x
coordinate.

then there exists a smooth function κ : I → R such that for any x ∈ I a point q(x) =
(x, 0, 0, κ(x)) lies on an S-symmetric periodic orbit of (2.3). Moreover, κ′(x) ∈ [α,α] and
q(x) ∈ U for all x ∈ I.

Proof. Existence of a unique point κ(x0) ∈ J0 for which gx0(κ(x0)) = 0 follows from (3.3),
which implies

p0y − [Dgx0(J0)]
−1 gx0(p

0
y) ⊂ N ⊂ J0,

combined with interval Newton method (Theorem 2.1).
For (3.4) to hold we need to have 0 /∈ dP (U)2 3. For (x, 0, py) ∈ U we have ∂f

∂py
(x, py) ∈

dP (U)2 3; hence
∂f
∂py

(x, py) �= 0. This means that we can apply the implicit function theorem

to obtain a curve κ(x) for which f(x, κ(x)) = 0. We now need to make sure that the curve κ
is defined on the entire interval I. At each point x for which (x, 0, κ(x)) ∈ U is defined, by
the implicit function theorem we know that

κ′(x) = −
∂f
∂x(x, κ(x))
∂f
∂py

(x, κ(x))
∈
[
−dP (U)2 1
dP (U)2 3

]
.

This, by assumption (3.4), means that we can continue the curve from κ(x0) to the whole
interval I (see Figure 5).

To apply Lemma 3.1 we first compute numerically a sequence of points (see Figure 6)

q0i = (x0i , 0, 0, p
0
y,i) for i = 0, . . . , 15 000,

x0i = Ix +
i

15000

(
Ix − Ix

)
,

where Ix, Ix are defined in (3.1). The q0i are nonrigorously numerically computed points on
Lyapunov orbits. We then compute (nonrigorously) a sequence of slopes (see Figure 7)

ai ∈ R, i = 0, . . . , 15 000,

define

r =
1

15 000

1

2
(Ix − Ix) ≈ 10−6 · 1.1007716,D
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Figure 7. Numerical plot of κ′(x), consisting of 15 000 points ai.

Ii = x0i + [−r, r] ,
J0,i = p0y,i + 10−13 · [−1, 1],

J1,i = p0y,i + 10−8 · [−5, 5] ,

and consider sets

U0 = {x0i } × {0} × J0,i,

Ui =
{
(x, 0, py)|x ∈ Ii, py = ai

(
x− x0i

)
+ ι, ι ∈ J1,i

}
.

We apply Lemma 3.1 repeatedly 15 000 times and obtain the following theorem.
Theorem 3.2 (first main result). Let Ix be the interval from (3.1). Then there exists a curve

q(x) = (x, 0, 0, κ(x)) of points on Lyapunov orbits with κ : Ix → R, which lies within a 5 ·10−8

distance from the piecewise linear curve joining the 15 000 points q0i on Figure 6.
The proof of Theorem 3.2 took 5 hours and 43 minutes on a single core 2.53 GHz laptop

with 4 GB of RAM.
Remark 3.3. Let us note that the computation of the Poincaré map and of its derivative

cannot be performed analytically. In our application, these are computed using an interval
arithmetic based integrator from the CAPD package (for more details, see section 9.3).

Remark 3.4. Using the above method it is impossible to continue with the orbits to L2. At
the fixed point one would need to apply alternative methods, such as the method of majorants
[21], the Lyapunov theorem by tracing the radius of convergence of the normal form [20], or
topological computer assisted tools such as those in [8, 10].

4. Outline of results for intersections of invariant manifolds. In the remainder of the
paper we shall focus our attention on orbits starting from q(x∗) = (x∗, 0, 0, κ(x∗)) with x∗ ∈ I
for

I = [I, I ] := x0 + [−1, 1] · 10−9,(4.1)

x0 = −0.9510055339445208.

Such orbits have energy close to the energy of the comet Oterma h = 1.515.D
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In the following, we reserve the notation x∗ for the points from the interval I given in
(4.1). We also use the notation Λ for a family of Lyapunov orbits, which start from q(x∗)
with x∗ ∈ I:

(4.2) Λ = {φ(t, q(x∗))|t ∈ R, q(x∗) = (x∗, 0, 0, κ(x∗)), x∗ ∈ I}.

For x∗ ∈ I, let L(x∗) ⊂ Λ denote the Lyapunov orbit which starts from q(x∗).
Throughout the remainder of the paper we shall prove the following theorem.
Theorem 4.1 (second main result). Λ is a normally hyperbolic invariant manifold with a

boundary. Each orbit L(x∗) ⊂ Λ possesses a two dimensional stable manifold W s(L(x∗)) and
a two dimensional unstable manifold W u(L(x∗)). The manifolds W s(L(x∗)) and W u(L(x∗))
intersect, and the intersection, when restricted to the constant energy manifold M(H(L(x∗))),
is transversal (see (2.4) for the definition of M).

Numerical plots of the intersection of manifolds that we shall prove are given in Figure 3.
Theorem 4.1 will be proved with computer assistance. During the proof we shall obtain

rigorous bounds on the region and the angle at which the manifolds intersect (see Figure 14).
The size of interval I (4.1) is very small. When translated to the real-life distance in

the Jupiter–Sun system, its length is just slightly over one and a half kilometers. This is
practically a single point. We need to start with such a small set to obtain our result. Thanks
to this we obtain sharp estimates on the intersection of W s(L(x∗)), W u(L(x∗)). To consider a
larger set of Lyapunov orbits one would need to iterate the procedure a number of times. This
can be done without any difficulty apart from necessary time for computation. The proof of
Theorem 4.1 took 46 minutes on a single core 2.53 GHz laptop with 4 GB of RAM. Using
clusters one could cover a larger interval I in reasonable time.

5. Hyperbolicity of Lyapunov orbits and foliation by energy. In this section we show
that each orbit L(x∗) ⊂ Λ lies on a different energy level. We also show that each orbit L(x∗)
(when considered on its constant energy manifold) is hyperbolic. In other words, we shall
show that Λ is a normally hyperbolic manifold with a boundary.

We start with a simple remark.
Remark 5.1. If for all x∗ ∈ I we have d

dxH(q(x∗)) �= 0, then Lyapunov orbits with different
x∗ have different energies. Note that the set U and the bound on the derivative of κ′(x∗) from
Lemma 3.1 can be used to obtain

d

dx
H(q(x∗)) ∈

[
∂H

∂x
(U) +

∂H

∂py
(U)κ′(U)

]
.

We shall now give a simple lemma which can be used to show that our Lyapunov orbits
are hyperbolic.

In what follows in this section, let P 2 : Σ → Σ be a second return Poincaré map for
Σ = {y = 0}. This means that each point q(x∗) = (x∗, 0, 0, κ(x∗)), with x∗ ∈ I, is a fixed
point of P 2. We shall interpret the Poincaré map as a function from R

3 to R
3 with coordinates

x, px, py.
Lemma 5.2. Let U be the set given by (3.2) in Lemma 3.1. Assume that for any 1 × 2D
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matrix A satisfying

(5.1) A ∈
[(

−
(
∂H

∂x

)−1 (
∂H
∂px

∂H
∂py

))
(U)

]

and any 2× 2 matrix B satisfying

(5.2) B ∈
[((

dP 2
2 1

dP 2
3 1

)
A+

(
dP 2

2 2 dP 2
2 3

dP 2
3 2 dP 2

3 3

))
(U)

]

the spectrum of B consists of two real eigenvalues λ1, λ2 satisfying |λ1| > 1 > |λ2|. Then for
any x∗ ∈ I the Lyapunov orbit starting from q(x∗), restricted to the constant energy manifold
M(H(q(x∗))), is a hyperbolic orbit.

Proof. Let us fix some x̂ ∈ I. For our assumptions to hold, A from (5.1) needs to be
properly defined. This means that ∂H

∂x (q(x̂)) �= 0. By the implicit function theorem there
exists a function x(px, py) with x(0, κ(x̂)) = x̂ such that H(x(px, py), 0, px, py) = H(q(x̂)) and

(5.3)
(

∂x
∂px

∂x
∂py

)
(0, κ(x̂)) = −

(
1
∂H
∂x

(
∂H
∂px

∂H
∂py

))
(0, κ(x̂)) .

The Lyapunov orbit starting from q(x̂) is contained in the constant energy manifold
M(H(q(x̂))). Let us consider V = M(H(q(x̂))) ∩ {y = 0} and a Poincaré map P̃ 2 : V → V .
In a neighborhood of q(x̂) the manifold V can be parameterized by (px, py). Since

P̃ 2(px, py) = π(px,py)P
2(x(px, py), px, py),

we have

DP̃ 2 (0, κ(x̂))(5.4)

=

((
π(px,py)

∂P 2

∂x

)(
∂x
∂px

∂x
∂py

)
+

(
dP 2

2 2 dP 2
2 3

dP 2
3 2 dP 2

3 3

))
(x̂, 0, κ(x̂)) .

By (5.3), (5.4), and our assumption about the spectrum of B of from (5.2), it follows that
(0, κ(x̂)) is a hyperbolic fixed point for the map P̃ 2. This means that the Lyapunov orbit start-
ing from q(x̂), restricted to the constant energy manifold M(H(q(x̂))), is hyperbolic.

Remark 5.3. Since B from (5.2) is a 2×2 matrix, estimation of its eigenvalues is straight-
forward. Here we profit from the reduction of dimension made by restricting our attention to
a constant energy manifold.

Since we consider a small part of the family of orbits (4.1), we can obtain a much tighter
enclosure of the curve κ(x∗) for x∗ ∈ I than from Theorem 3.2. Let

(5.5)
p0y = −0.836804179646973, J0 = p0y + [−1, 1] · 10−13,

a = −4.506866203376769, J1 = p0y + [−1, 1] · 10−12,

and

(5.6) U =
{
(x∗, 0, 0, py)|x∗ ∈ I, py = a

(
x∗ − x0

)
+ ι, ι ∈ J1

}
.D
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1734 MACIEJ J. CAPIŃSKI

Proposition 5.4. For x∗ ∈ I, with I from (4.1), we have q(x∗) = (x∗, 0, 0, κ(x∗)) ⊂ U and

κ′(x∗) ∈ [−4.506980818,−4.506751634],(5.7)

d

dx
H(q(x∗)) ∈ [−0.3670937615,−0.3670674516],(5.8)

H(I, 0, 0, a(I − x0) + J1) ∈ [−1.514999999635,−1.514999999631],

H(I, 0, 0, a(I − x0) + J1) ∈ [−1.515000000369,−1.515000000365].

Moreover, the orbits (when considered on their constant energy manifolds) are hyperbolic, and
we have the following bounds for the eigenvalues:

λ1 ∈ [1450.24, 1481.68],(5.9)

λ2 ∈ 10−4 [6.74909, 6.89541].

Proof. The proof was performed with computer assistance. It required no subdivision of
U , and the computation took less than two seconds on a single core 2.53 GHz laptop with 4
GB of RAM.

Existence of q(x∗) ⊂ U was shown using Lemma 3.1. From it also follows the bound (5.7)
for κ′(x∗). The bound (5.8) follows from Remark 5.1. Hyperbolicity and bounds (5.9) follow
from Lemma 5.2.

6. Cone conditions and bounds for unstable manifolds of saddle-center fixed points.
In this section we provide a topological tool that can be used for rigorous computer assisted
detection of unstable manifolds of saddle-center fixed points. The method is a modification
of [25], where, instead of a saddle-center fixed point, a standard hyperbolic fixed point was
considered. The contents of this section are a general result. In section 7 we return to the
PCR3BP and show how to apply it to prove Theorem 4.1.

Let F : R4 → R
4 be a Ck diffeomorphism with a fixed point v∗ ∈ R

4 and k ≥ 1. Assume
that for eigenvalues λ1, λ2, λ3, λ4 from the spectrum of DF (v∗) we have

|Reλ1| > m > 1,(6.1)

|Reλi| < m for i = 2, 3, 4.

Let W u(v∗) denote the unstable manifold of v∗ associated with the eigenvalue λ1:

W u (v∗) =
{
v|∥∥F−n(v)− v∗

∥∥ < Cm−n for all n ∈ N and some C > 0
}
.

Let u = 1 and c = 3. The notation u and c will stand for “unstable” and “central” coordinates
of F at v∗. Consider two balls Bu and Bc, of dimensions u and c, respectively, such that Bu×Bc

is centered at v∗. For a point v∈Ru ×R
c we shall write v = (x, y), with x ∈ R

u, y∈Rc. In this
notation we shall also write the fixed point as v∗ = (x∗, y∗).

Remark 6.1. We do not need to assume that (x, 0) is the eigenvector associated with λ1
and that vectors (0, y) span the eigenspace of λ2, λ3, λ4. For our method to work it is enough
if these vectors are “roughly” aligned with the eigenspaces. This is important for us, since inD
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Figure 8. Construction of the curve (x, wu(x)) which lies on the unstable manifold of v∗.

any computer assisted computation it is usually not possible to compute the eigenvectors with
full precision.

Let α ∈ R, α > 0, and consider a function Q : Ru × R
c → R:

Q(x, y) = αx2 − ‖y‖2 .
For v0 ∈ R

u × R
c we shall use the notation Q+(v0) for a cone

Q+(v0) = {v|Q(v − v0) ≥ 0} .
Let us assume that α is chosen sufficiently small so that Q+(v∗)∩Bu ×Bc does not intersect
with Bu × ∂Bc (see Figure 8).

Definition 6.2. We shall say that h : Bu → Bu×Bc is a horizontal disk in Bu×Bc for cones
given by Q if h(x∗) = v∗, πxh(x) = x, and for any x1 �= x2 we have Q (h(x1)− h(x2)) > 0.

Lemma 6.3. Assume that, for any v1, v2 ∈ Q+(v∗) such that Q(v1 − v2) ≥ 0, we have

(6.2) Q(F (v1)− F (v2)) > 0.

Let m be the constant from (6.1). If for any v ∈ Bu × Bc, v �= v∗, and Q(v − v∗) ≥ 0 the
condition

(6.3) ‖F (v) − v∗‖ > m ‖v − v∗‖
holds, then W u (v∗) ⊂ Q+(v∗). Moreover, there exists a function wu : Bu → Bc such that
(id, wu)(Bu) =W u(v∗) ∩Bu ×Bc, and for any x1, x2 ∈ Bu, x1 �= x2,

(6.4) Q((x1, w
u (x1))− (x2, w

u (x2))) > 0

and

(6.5)
∥∥(wu)′ (x)

∥∥ ≤ √
α for all x ∈ Bu.

Proof. We shall first show that for any x0 ∈ Bu\{x∗} there exists a point v0 = (x0, w
u(x0)) ∈

Q+(v∗) such that v0 ∈ W u(v∗). Let h0(x) = (x, y∗) be a horizontal disk (see Figure 8).
Observe that F (h0(x

∗)) = F (x∗, y∗) = v∗. By assumptions (6.2) and (6.3) the curve F (h0(x))
is contained in Q+(v∗) and F (h0(∂Bu)) ∩ Bu × Bc = ∅. Moreover, since by the definition of
h0 we see that for any x1, x2 ∈ Bu, x1 �= x2,

Q(h0(x1)− h0(x2)) > 0,D
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1736 MACIEJ J. CAPIŃSKI

by assumption (6.2) we obtain

Q(F (h0(x1))− F (h0(x2))) > 0,

which means that {F (h0(x))|x ∈ Bu} ∩Bu ×Bc is a graph of a horizontal disk. Let us denote
this disk by h1 and observe that h1(x

∗) = v∗. In other words, let h1 be the graph transform
of the disk h0.

Taking F (h1(x)) and applying an identical argument, we observe that

{F (h1(x))|x ∈ Bu} ∩Bu ×Bc

is a graph of a horizontal disk h2. Repeating this procedure, we can construct a sequence of
horizontal disks h0, h1, h2, . . . . For a fixed x0, due to the compactness of closure of Bc, there
exists a subsequence hki(x0) convergent to some point v0 ∈ Bu × clBc. For any i, n ∈ N with
ki > n the point F−n(hki(x0)) lies on the graph of hki−n and hence is also in Q+(v∗). This
means that for any n ∈ N

F−n(v0) = lim
i→∞

F−n(hki(x0)) ∈ Q+(v∗).

By assumption (6.3) we have

∥∥F−n(v0)− v∗
∥∥ < 1

mn
‖v0 − v∗‖ ,

which means that v0 ∈ W u (v∗). By construction πxv0 = x0; hence we can define wu(x0) :=
πyv0.

By the stable/unstable manifold theorem (see, for instance, [7]), there exists a small
interval Iε = (x∗ − ε, x∗ + ε) in which {(x, wu(x))|x ∈ Iε} is a Ck curve which gives a full
description of W u (v∗). Since (x, wu(x)) ⊂ Q+(v∗) we have (1, (wu)′(x∗)) ∈ Q+(0). Since for
sufficiently small ε the vector (1, (wu)′ (x)) is arbitrarily close to (1, (wu)′(x∗)), for x1, x2 ∈ Iε

(6.6) Q ((x1, w
u(x1))− (x2, w

u(x2))) > 0.

Iterating the curve (x, wu(x)) through F , by (6.2) and (6.3) we obtain our function wu : Bu →
Bc. Note that by our construction for any x1, x2 ∈ Bu inequality (6.6) holds. This implies
that for any x1, x2 ∈ Bu

‖wu(x1)− wu(x2)‖2
|x1 − x2|2

< α,

which in turn gives (6.5).
Remark 6.4. Lemma 6.3 can easily be generalized to higher dimensions of W u(v∗) and to

F : Rl → R
l with l > 4. The proof would be identical, taking Q(x, y) = α‖x‖2 −‖y‖2. Here we

have set up our discussion so that W u(v∗) is one dimensional and l = 4 simply because this
is what we shall need for our application to the PCR3BP.

Remark 6.5. By taking the inverse map, Lemma 6.3 can be used to prove existence of stable
manifolds.D
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To verify assumptions (6.2) and (6.3) in practice, it is best to make use of an interval
matrix A = [DF (Q+(v∗))]. Then for any v1, v2 ∈ Q+(v∗) we have

(6.7) F (v1)− F (v2) =

∫ 1

0
DF (v2 + t (v1 − v2)) dt · (v1 − v2) ∈ A (v1 − v2) .

This means that

(6.8) F (v)− v∗ ⊂ A (v − v∗) .

To verify (6.3) using (6.8) we can apply Lemma 9.1 from the appendix.
Let us now turn to the verification of (6.2). Let CQ be a diagonal matrix such that

vTCQv = Q(v). Equation (6.7) gives an estimate

(6.9) Q (F (v1)− F (v2)) ⊂ (v1 − v2)
T ATCQA (v1 − v2) .

To verify (6.2) using (6.9) we can apply Lemma 9.2 from the appendix.
We see that the assumptions of Lemma 6.3 follow from bounds on the derivative of the

map.
Remark 6.6. Let us note that to apply the lemma we do not need hyperbolicity of the fixed

point. The fixed point can, in particular, be a saddle center. We can also apply the lemma for
a set of fixed points in Bu × Bc, provided that we know that such a set exists, and provided
that for each fixed point v∗ from the set, its unstable fiber will lie in Q+(v∗). Existence of
unstable fibers for the set of fixed points can follow from the same interval matrix estimate on
the derivative of the map on Bu ×Bc.

7. Rigorous bounds for invariant manifolds associated with Lyapunov orbits. In this
section we give a proof of Theorem 4.1. In sections 7.1 and 7.2 we shall show how to apply the
method from section 6 to detect fibers of unstable manifolds of Lyapunov orbits. In section
7.3 we shall show how to prove that the manifolds intersect. Using these results, in section
7.4 we give a computer assisted proof Theorem 4.1.

7.1. Parameterization method. The method from section 6 requires a good change of
coordinates which “straightens out” the unstable manifold. We shall obtain such a change of
coordinates using a parameterization method. In this subsection we give an outline of this
procedure.

In this section we shall fix some x∗ ∈ I (see (4.1) for I) and show how to find an unstable
fiber of a point

q0 = q(x∗) = (x∗, 0, 0, κ(x∗)) ∈ L(x∗).
We shall use the notation τ = τ(q0) for the return time along the trajectory. The point q0 is
a saddle-center fixed point for a τ -time map Φτ : R4 → R

4.
Let C denote a matrix which brings DΦτ (q0) to real Jordan form. By Φ̃τ : R4 → R

4 we
shall denote the time τ map in the linearized local coordinates

Φ̃τ (v) := C−1 (Φτ (q0 + Cv)− q0) .D
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Figure 9. The nonlinear change of coordinates ψ.

We know that DΦ̃τ (0) has a single eigenvalue λ with real part greater than one. We use
W u(Φ̃τ , 0) to denote the unstable manifold of Φ̃τ at zero associated with λ. If we can find a
function

K = (K0,K1,K2,K3) : R → R
4,

which for all x in an interval I0 = [x, x], x < 0 < x, is a solution of a cohomology equation

(7.1) Φ̃τ (K(x)) = K(λx),

then K(x) ⊂W u(Φ̃τ , 0) for x ∈ I0.
Once K is established we can consider a nonlinear change of coordinates

ψ = (ψ0, ψ1, ψ2, ψ3) : R
4 → R

4

defined as

ψ0 (x, y1, y2, y3) = K0(x)−
(
y1K

′
1(x) + y2K

′
2(x) + y3K

′
3(x)
)
,(7.2)

ψi (x, y1, y2, y3) = Ki(x) + yiK
′
0(x) for i = 1, 2, 3.

Note that ψ(x, 0) = K(x) gives points on the unstable manifold of the fixed point for the map
Φ̃τ . The intuitive idea behind (7.2) is to arrange the coordinates so that ψ (x, y1, y2, y3)−K(x)
is orthogonal to K ′(x) (see Figure 9).

Let us define a local map
F = ψ−1 ◦ Φ̃τ ◦ ψ.

Such map will play the role of F from section 6. Observe that

{Cψ (K(x)) + q0|x ∈ I0} ⊂ Cψ (W u (F, 0)) + q0 =W u (Φτ , q0) ⊂W u(L(x0)).

7.2. Bounds for unstable fibers through parameterization and cone conditions. The
map ψ (7.2) gives us a change of coordinates which locally “straightens out” the unstable
manifold. The problem with applying the procedure from section 7.1 in practice lies in the
fact that usually finding an analytic formula for K satisfying (7.1) is impossible. The best that
can be done is to find a K which is a polynomial approximation of a solution of (7.1). This
can be done by expanding Φ̃τ into a Taylor series and inductively comparing the coefficients
in (7.1) (for a detailed description of this method we refer the reader to [7]; see, in particular,
section 4 and Theorem 4.1). If we find such an approximate solution of (7.1), then the set
{(x, 0)|x ∈ I0} is no longer the unstable manifold for F (defined by (7.3)) but its approximation.D

ow
nl

oa
de

d 
01

/1
4/

13
 to

 1
28

.6
1.

29
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERSECTIONS OF INVARIANT MANIFOLDS IN THE PCR3BP 1739

Even though our description of the unstable fiber is then not entirely accurate, we can apply
the method from section 6 to obtain a rigorous enclosure of W u (F, 0). This enclosure can
then be transported to the original coordinates.

In this section we shall assume that q0 is an arbitrary point close to q(x∗) = (x∗, 0, 0, κ(x∗))
for x∗ ∈ I, for I from (4.1). We also assume that C is some given matrix, that K : R → R

4 is
some given polynomial, and that ψ is defined by (7.2).

Remark 7.1. Let us stress that the point q0 is a numerical approximation of q(x∗), and the
matrix C will be a (nonrigorous) numerically obtained estimate for the change into Jordan
form of the map Φτ . We do not assume that this change is rigorously computed. This is
practically impossible due to the fact that we do not have an analytic formula for DΦτ (q0).
For us the matrix C is simply some approximation of the matrix which takes DΦτ (q0) into
Jordan form. Let us note that it is not difficult to find an interval matrix C−1 such that the
inverse matrix of our C is contained in C−1.

Remark 7.2. In our setting the polynomial K is an approximation of the solution of (7.1).
In practice we cannot obtain a fully rigorous solution of (7.1). It is important to emphasize
that we also do not have an inverse of ψ. It is also not simple to find good rigorous estimates
for the function ψ−1 due to the fact that K is a vector of polynomials of degree 4. We shall
therefore set up all our subsequent computations so that we will never need to use the inverse
function of ψ.

For x∗ ∈ I, let τ(x∗) be the period of an orbit L(x∗) ⊂ Λ. We define a map

(7.3) F = ψ−1 ◦ Φ̃τ(x∗) ◦ ψ.

Note that for each x∗ ∈ I we have a different map F . We omit this in our notation for
simplicity, and also because the methods described below for obtaining rigorous bounds for F
and its derivative shall work for all x∗ ∈ I.

Recall that in Proposition 5.4 we have shown that for I defined in (4.1) and for U defined
in (5.6)

{q(x∗) = (x∗, 0, 0, κ(x∗)) : x∗ ∈ I} ⊂ U.

We shall first be interested in computing rigorous bounds for F (U). It turns out that (7.3) is
impossible to apply since we do not have a formula for ψ−1. Even if we did, direct application
of (7.3) in interval arithmetic would provide very bad estimates due to strong hyperbolicity
of the map. We use a more subtle method.

We shall first need the following notation. Let T denote an interval such that τ(x∗) ∈ T
for all x∗ ∈ I. Let λ̃ ∈ R be some number close to an unstable eigenvalue of DΦτ(x∗)(q(x

∗))
for some x∗ ∈ I. We shall slightly abuse notation and also consider λ̃ : R4 → R

4 as a function
defined on v = (x, y) ∈ R× R

3 as

λ̃(x, y) := (λ̃x, y).

The following lemma allows us to obtain rigorous bounds on preimages of F from (7.3).
Lemma 7.3. Let U1 ⊂ R

4 be a given set. Let G : R× R
4 × R

4 → R
4 be defined as

(7.4) G(τ, v1, v2) = Φτ (Cψ (v1) + q0)−
(
Cψ(λ̃(v2)) + q0

)
.D
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Let U2 ⊂ R
4 be a set and A (U2) be an interval matrix defined as

A (U2) = −
[
CDψ

(
λ̃ (U2)

)
Dλ̃
]
.

If for some v0 ∈ U2

(7.5) N(T, v0, U1, U2) := v0 − [A (U2)]
−1 [G(T, U1, v0)] ⊂ U2,

then

(7.6) F (U1) ⊂ λ̃ (U2) .

Proof. The proof is given in the appendix in section 9.2. See also Remark 9.4 for comments
on the practical application of the lemma.

Remark 7.4. The choice of the function G is motivated by the following diagram:

R
4 Φτ−→ R

4

↑ C + q0 ↑ C + q0

R
4 Φ̃τ−→ R

4

↑ ψ ↑ ψ
R
4

(
λ̃−→
)

R
4

The diagram is not fully commutative; hence we have the parentheses for λ̃. Intuitively, for
v = (x, 0) ∈ R × R

3 the diagram should “almost commute.” Even though this statement is
nowhere close to rigorous, it might make the method and proof of Lemma 7.3 more intuitive.

We now turn to the computation of rigorous bounds for the derivatives of (7.3). For any
(x, y) contained in a set B ⊂ R

4 we have the following estimates:

DF (x, y) = (Dψ (F (x, y)))−1 C−1DΦτ(x∗) (Cψ(x, y) + q0)CDψ(x, y)(7.7)

⊂
[
(Dψ (F (B)))−1

]
· [C−1

] · [DΦT (Cψ(B) + q0)] · C · [Dψ (B)]

=: [DF (B)] .

Note that to compute [DF (B)] from (7.7) we do not need to use ψ−1.
Remark 7.5. Using Lemma 7.3 and (7.7), we can in practice compute rigorous bounds

for [F (B)] and [DF (B)]. We perform such computations in section 7.4.1 with the use of
the CAPD library. The library allows for computation of rigorous estimates for ΦT and its
derivative and for rigorous-enclosure operations on maps and interval matrices.

Proposition 5.4 gives a bound on a set U (5.6) which contains all fixed points q(x∗), with
x∗ ∈ I, of the map Φτ(x∗). This set can be transported to local coordinates (x, y). Let B0 ⊂ R

4

be a set such that

{ψ−1(C−1(q(x∗)− q0))}|x∗ ∈ I} ⊂ B0.

Such set can easily be computed using, for example, technical Lemma 9.5 from the appendix.D
ow

nl
oa

de
d 

01
/1

4/
13

 to
 1

28
.6

1.
29

.5
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Figure 10. Local bound on the unstable manifold. Each fixed point ψ−1(C−1(q(x∗) − q0)) for x∗ ∈ I lies
in B0, and its unstable manifold is contained in B =

⋃
v∈B0

Q+(v).

Taking a four dimensional set (see Figure 10)

B =
⋃

v∈B0

Q+(v) ⊂ R
4

and using (7.7) and Lemmas 9.1 and 9.2 to verify the assumptions of Lemma 6.3, we can obtain
a bound for the unstable fibers of all q(x∗) for x∗ ∈ I. The obtained bound is computed in local
coordinates (x, y) but can easily be transported back to the original coordinates (x, y, px, py)
of the system. Detailed results of such a computation will be presented in section 7.4.1.

Remark 7.6. Let us emphasize that to apply the method it is enough to use a single point
q0, single matrix C, and single nonlinear change ψ. It is not necessary to use different changes
to local coordinates for different x∗ ∈ I.

Remark 7.7. Let us note that from the fact that W s(L(x∗)) is S-symmetric to W u(L(x∗)),
without any effort we also obtain mirror bounds for fibers of W s(L(x∗)).

7.3. Transversal intersections of manifolds. In this section we discuss how the bounds
for fibers of q(x∗) discussed in section 7.2 can be used to prove transversal intersections of
manifolds W u(L(x∗)) and W s(L(x∗)) for L(x∗) ⊂ Λ (see (4.2) for definition of Λ).

Let xl, xr ∈ R be such that xl < xr and πxB0 < xl, xr. Let Bc ⊂ R
3 be such that πyB ⊂ Bc.

Let BE , B
l
E , B

r
E be defined as (see Figure 10)

BE = [xl, xr]×Bc,

Bl
E = {xl} ×Bc,

Br
E = {xr} ×Bc,

and let

V + = {(x, y1, y2, y3) ∈ R
4|x = 1, yi ∈ [−√

α,
√
α] for i = 1, 2, 3},

V − = {(x, y1, y2, y3) ∈ R
4|x = −1, yi ∈ [−√

α,
√
α] for i = 1, 2, 3},

V = {γv|v ∈ V +, γ ≥ 0} ∪ {γv|v ∈ V −, γ ≥ 0}.

Note that

Q+(0) ⊂ V.

Consider a section

Σ = {y = 0} ∩ {x > 0} ∩ {p2x < 2 (H(L(x)) + Ω(x, y))}.D
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This shall be a section where we detect the intersection of W u(L(x∗)) and W s(L(x∗)) (see
Figures 2 and 3). Let φ be the flow of (2.3), and define

τu(q) = inf{t > 0 : φ(t, q) ∈ Σ},
G : BE → Σ,

G (x, y) = φ(τu(Cψ(x, y) + q0), Cψ(x, y) + q0).

Lemma 7.8. Assume that for F defined in (7.3), the assumptions of Lemma 6.3 hold. If
also

(7.8) πpxG (Bl
E) < 0, πpxG (Br

E) > 0,

then for any x∗ ∈ I (with I defined in (4.1)) the manifolds W u(L(x∗)) and W s(L(x∗)) inter-
sect.

Moreover, if for any v+ ∈ V + and v− ∈ V −

πx [DG (BE)] v
+ > 0, πpx [DG (BE)] v

+ > 0,(7.9)

πx [DG (BE)] v
− < 0, πpx [DG (BE)] v

− < 0,

then for each fixed x∗ ∈ I the intersection is transversal on the constant energy manifold
M(H(L(x∗))) (see (2.4) for the definition of M).

Remark 7.9. Computer assisted verification of the assumptions of Lemma 6.3 can be per-
formed for the whole family of maps, defined through (7.3), for all x∗ ∈ I at the same time.
To do so we need to conduct our interval computations taking Φ̃τ with an interval τ = [τ(I)],
which encloses all τ(x∗) for x∗ ∈ I. We can thus use the same point q0, C, and ψ for all
x∗ ∈ I.

Proof of Lemma 7.8. Let us fix an x∗ ∈ I. First let us observe that because energy (2.2)
is preserved, the manifold M(L(x∗)) ∩ Σ can be parameterized by x, px since

(7.10) py = py (x, px) =
√

2(H(L(x)) + Ω(x, y))− p2x + x

is well defined.
By Lemma 6.3 we know that in local coordinates x, y the unstable fiber of q(x∗) is a

horizontal disk in B. This disk is a graph of a function wu
x∗ : Bu → Bc, and for any x1, x2 ∈ Bu

such that x1 �= x2,
(x1, w

u
x∗(x1))− (x2, w

u
x∗(x2)) ∈ Q+(0) ⊂ V.

The disk also passes through the set BE (see Figure 10).
In the statement of our lemma we implicitly assume that G (x, y) is well defined for (x, y) ∈

BE. This means that

(7.11) W u(L(x∗)) ∩ Σ ∩ G (BE) = {G (x, wu
x∗(x)) |x ∈ [xl, xr]}.

Let us introduce the notation

wu
Σ,x∗ : [xl, xr] → R

2,

wu
Σ,x∗(x) = πx,pxG (x, wu

x∗(x)) .D
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By (7.10) and (7.11) the curve wu
Σ,x∗ (x) parameterizes a fragment of the intersection of the

manifold W u(L(x∗)) with Σ. By assumption (7.8)

πpxw
u
Σ,x∗ (xl) = πpxG (xl, wu

Σ,x∗(xl)) ∈ πpxG ({xl} ×Bc) = πpxG (Bl
E) < 0,

πpxw
u
Σ,x∗ (xr) = πpxG (xr, wu

x∗(xr)) ∈ πpxG ({xr} ×Bc) = πpxG (Br
E) > 0;

hence we have an xm ∈ (xl, xr) such that

πpxw
u
Σ,x∗ (xm) = 0.

The stable manifoldW s(L(x)) is S-symmetric to W u(L(x∗)). This means that a fragment
of the intersection of W s(L(x∗)) with Σ is parameterized by

ws
Σ,x∗ : [xl, xr] → R

2,

ws
Σ,x∗(x) =

(
πxw

u
Σ,x∗ (x) ,−πpxwu

Σ,x∗ (x)
)
.(7.12)

Since wu
Σ,x∗ (xm) = ws

Σ,x∗ (xm), manifolds W u(L(x∗)) and W s(L(x∗)) intersect at

q∗ = G (xm, wu
x∗(xm)) .

Now we turn to proving transversality of the intersection at q∗. By (7.10), around q∗ the
manifold M(H(L(x∗))) is parameterized by x, y, px. Therefore, in the proof of transversality
we restrict our attention to these coordinates. Since G is well defined, W u(L(x∗)) must
transversally cross {y = 0}. By symmetry so does W s(L(x∗)). We therefore need only prove
that wu

Σ,x∗ (x) and ws
Σ,x∗ (x) intersect transversally in R

2.

Let x+ ∈ (xm, xr], γ = 1/ (x+ − xm), and

v = γ
((
x+, wu

x∗(x+)
)− (xm, wu

x∗(xm))
) ∈ V +.

By the mean value theorem

wu
Σ,x∗
(
x+
)− wu

Σ,x∗ (xm) ∈ πx,px
1

γ
[DG(BE)] v.

By (7.9) this implies that

(7.13) πx(w
u
Σ,x∗
(
x+
)− wu

Σ,x∗ (xm)) > 0, πpx(w
u
Σ,x∗
(
x+
)− wu

Σ,x∗ (xm)) > 0.

By mirror arguments, for x− ∈ [xl, xm),

(7.14) πx(w
u
Σ,x∗
(
x−
)− wu

Σ,x∗ (xm)) < 0, πpx(w
u
Σ,x∗
(
x−
)− wu

Σ,x∗ (xm)) < 0.

From (7.13), (7.14), and (7.12) we see that wu
Σ,x∗ (x) and ws

Σ,x∗ (x) intersect transversally
at wu

Σ,x∗ (xm) = ws
Σ,x∗ (xm), which concludes our proof.

Remark 7.10. From the proof of Lemma 7.8 it follows that we have the following estimate
on the slope of the curves wu

Σ,x∗ (x):

a =

[
πpxDG(BE)V

+

πxDG(BE)V +

]
∪
[
πpxDG(BE)V

−

πxDG(BE)V −

]
.

By S-symmetry of W u(L(x∗)) and W s(L(x∗)) the slope of ws
Σ,x∗ (x) is in −a.

Once we verify (7.8), then by checking that a > 0 we know that assumption (7.9) needs to
hold.D
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7.4. Proof of Theorem 4.1. In this section we write the computer assisted rigorous
bounds, which we obtain using the method from sections 7.2 and 7.3. As a result, we obtain
rigorous bounds for the position of fibers of W u(L(x∗)) and for the transversal intersection of
W u(L(x∗)) with W s(L(x∗)). By this we obtain the proof of Theorem 4.1.

7.4.1. Bounds for unstable fibers. We start by writing our changes of coordinates needed
for application of Lemma 7.3 to the map (7.3) from section 7.2.

We first choose the point q0 = (x0, 0, 0, p0y) with x
0, p0y given in (4.1) and (5.5), respectively,

i.e.,

x0 = −0.9510055339445208,

p0y = −0.8368041796469730.

We choose a matrix C as

C =

⎛
⎜⎜⎝

0.197841 −0.197841 0 0.221884
−0.221884 −0.221884 0.773671 0
1 1 −1 0
−0.255717 0.255717 0 −1

⎞
⎟⎟⎠ .

We then choose four polynomials,

K0(x) = 0.1x − 0.0621591x2 + 0.0375888x3 − 0.0200645x4 ,

K1(x) = 0.000533561x2 − 0.00723085x3 + 0.00827176x4 ,

K2(x) = −0.0151949x2 + 0.009304476x3 − 0.00427633x4 ,

K3(x) = 0.0269670x2 − 0.0275820x3 + 0.0203022x4 ,

which define the nonlinear change of coordinates ψ (see (7.2)). All of the above choices are
dictated by (nonrigorous) numerical investigation. The above choices ensure that Cψ(x, 0)+q0
gives a sufficiently accurate approximation of the position of the unstable fibers of q(x∗) for
x∗ ∈ I for I given in (4.1).

Now our computations start. We first compute the interval enclosure T such that τ(q(x∗))
∈ T for all x∗ ∈ I. The obtained result is

T = [3.058882598, 3.058883224].

Next we compute a set B0 such that (see Figure 10)

ψ−1(C−1(q(x∗)− q0)) ⊂ B0.

Such a set can be obtained using technical Lemma 9.5 included in the appendix. We thus
obtain

B0 =

⎛
⎜⎜⎝

[−7.91575 · 10−12, 7.91575 · 10−12]
[−7.91575 · 10−12, 7.91575 · 10−12]
[−9.29424 · 10−19, 9.29424 · 10−19]
[−4.50827 · 10−8, 4.50827 · 10−8]

⎞
⎟⎟⎠ .
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Remark 7.11. Note that the set is flat along the third coordinate and stretched along the
last coordinate. This is because we set up C and ψ so that the third coordinate is associated
with the section {y = 0} (on which lie q(x∗)) and that the last coordinate is associated with
the direction of the curve q(x∗) = (x∗, 0, 0, κ(x∗)).

We now choose the size of our investigated set B in local coordinates and choose the
parameters for our cones (see Figure 10). We take

α = 2.56 · 10−6

and consider only one branch of the unstable manifold considering

(7.15) B =
⋃

v∈B0

Q+(v) ∩ {x ∈ [x, x]}

with
x = −1 · 10−11, x = 4.5 · 10−6.

The choice of x is dictated by the size of the fiber we later need to consider to prove
intersections of stable/unstable manifolds.

To compute a rigorous enclosure of [DF (B)] using (7.7), we subdivide B into N = 1200
parts Bi along the x coordinate

B =
N⋃
i=1

Bi.

Using Lemma 7.3 to obtain enclosures of F (Bi), combined with (7.7) we compute estimates
for [DF (Bi)]. Combining the estimates [DF (Bi)] we obtain the following global estimate
for [DF (B)] (the result is displayed with very rough accuracy, ensuring true enclosure in
rounding):

[DF (B)] =

⎛
⎜⎜⎝

[1465.6, 1466.5] [−0.353, 0.369] [−0.285, 0.283] [−0.300, 0.333]
[−0.361, 0.360] [−0.360, 0.361] [−0.290, 0.277] [−0.319, 0.304]
[−0.138, 0.140] [−0.139, 0.139] [0.896, 1.120] [0.458, 0.700]
[−0.201, 0.202] [−0.202, 0.202] [−0.171, 0.149] [0.823, 1.172]

⎞
⎟⎟⎠ .

Finally, using [DF (B)] and Lemmas 9.1 and 9.2 (see also Remarks 6.6 and 7.9), we verify
the assumptions of Lemma 6.3. We thus obtain rigorous bounds for the position of the fibers.
The computation of the enclosure of the fibers took 18 minutes on a single core 2.53 GHz
laptop with 4 GB of RAM. For more details on the implementation see section 9.3.

We plot the obtained bounds on fibers transported to the original coordinates of the system
x, y, px, py in Figures 11, 12, and 13. On the plots we present rigorous enclosures of three fibers
starting from q(x∗) with x∗ on the edges and the middle of interval I (with I chosen in (4.1)).
This gives us an overview of the size of our fiber enclosures (left-hand sides of Figures 11, 12,
and 13). We can see that close to the set which contains {q(x∗) = (x∗, 0, 0, κ(x∗))|x∗ ∈ I},
which is depicted in green, the estimates on the fibers are sharp (right-hand plots in Figures
11, 12, and 13). We can see that our three considered fiber enclosures are very close to each
other but are still separated, which is visible after a close-up on the left-hand-side plot in
Figure 13.D
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-1⋅10-7

-8⋅10-8

-6⋅10-8

-4⋅10-8

-2⋅10-8

 0

y

x

-0.95100553+10-7-0.95100553

-8⋅10-11

-6⋅10-11

-4⋅10-11

-2⋅10-11

 0

y

x

-0.95100553395+10-10-0.95100553395

Figure 11. Projections of fiber enclosures onto x, y coordinates.

0

1⋅10-7

2⋅10-7

3⋅10-7

4⋅10-7

5⋅10-7

p x

x

-0.95100553+10-7-0.95100553

p x

 0

 1⋅10-10

 2⋅10-10

 3⋅10-10

 4⋅10-10

x

-0.95100553395+10-10-0.95100553395

Figure 12. Projections of fiber enclosures onto x, px coordinates.

p y

-0.83680425-10

-0.83680425

-0.83680425+10

x

-7

-7

-0.95100553+10-7-0.95100553
-0.8368041797-2⋅10

-0.8368041797p y

x

-10

-0.8368041797+2⋅10
-10

-0.95100553395+10-10-0.95100553395

Figure 13. Projections of fiber enclosures onto x, py coordinates.

Remark 7.12. The range of obtained fibers is small. It is possible to reach somewhat further
from q(x∗), but this significantly increases the time of computation, since further subdivision
of the set is required.

Remark 7.13. By using linearization only we have not been able to obtain accurate enough
enclosure of the fibers to handle the proof of the transversal intersection of manifolds which
follows in section 7.4.2. Thus the use of a higher order change of variables seems to be needed.

7.4.2. Bounds for intersections of manifolds. In this section we present rigorous com-
puter assisted results in which we verify the assumptions of Lemma 7.8 and thus conclude the
proof of Theorem 4.1. For each x∗ ∈ I there are four points of intersection of W u(L(x∗)) andD

ow
nl

oa
de

d 
01

/1
4/

13
 to

 1
28

.6
1.

29
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERSECTIONS OF INVARIANT MANIFOLDS IN THE PCR3BP 1747

-0.4

-0.2

 0

 0.2

 0.4

 0.6  0.8

p x

x

   -1⋅10-6

   -5⋅10-7

    0

    5⋅10-7

    1⋅10-6

 0.650074

p x

x

 0.650074+5⋅10-7

Figure 14. Left: Numerical sketch ofW s(L(x∗)) (in red) and W u(L(x∗)) (in blue) intersected with {y = 0}.
Right: The red boxes are the x, px projections of G(Bl

E) (the one over px = 0) and G(Br
E) (the one under

px = 0). We have proved that {πx,px (W
u(L(x∗))∩ {y = 0})|x∗ ∈ I} consists of curves passing through the two

red boxes. We have also proved that their slope is between [1.7695, 1.7725]. The blue/green line is a nonrigorous
plot of the curves.

W s(L(x∗)) on {y = 0}. They can be seen in the left-hand plot in Figure 14 (see also Figures
4, 2, and 3). We consider only the rightmost point.

The method presented below exploits the fact that on the point of intersection we have
px = 0. This allows for the use of the symmetry of the system in the arguments, which
simplifies computation. Similar arguments could be conducted for the points where px �= 0.
The only difference is that we would need to integrate both along the unstable and stable
manifolds. In the following case, when px = 0, it is sufficient to consider the intersection of
the unstable manifold with {y = 0}, since the stable manifold follows naturally from symmetry.

We define the set BE =
[
xl, xr

]×Bc with xl, xr chosen as

xm = 4.461867506615821 · 10−6,

xl = xm − 10−11, xr = xm + 10−11.

We verify that assumption (7.8) of Lemma 7.8 holds by computing G(Bl
E) and G(Br

E).
We plot the obtained bounds in red in the right-hand-side plot of Figure 14.

Next, using Remark 7.10, we compute

(7.16) a = [1.7695, 1.7725];

hence assumption (7.9) of Lemma 7.8 holds. Applying Lemma 7.8, we conclude the proof of
Theorem 4.1.

We needed to subdivide BE into 600 parts to compute [DG(BE)V
+] and [DG(BE)V

−]
with sufficient accuracy to obtain (7.16). Verification of assumptions of Lemma 7.8 took
24 minutes on a single core 2.53 GHz laptop with 4 GB of RAM. For more details on the
implementation see section 9.3.

Remark 7.14. From a and by S-symmetry of manifolds W u(L(x∗)) and W s(L(x∗)), we
obtain an estimate [58.8637◦, 58.9439◦] on the angle of intersection of the curves on the x, px
plane.

Remark 7.15. In one go we obtain an estimate for a whole family of curves on

πx,px (W
u(L(x∗)) ∩ {y = 0}) for x∗ ∈ I.D
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In reality these curves are very close to each other (the furthest distance along x∗ is about
2.65 · 10−9). We plotted (using nonrigorous computations) two curves which are furthest from
each other on the right-hand-side plot of Figure 14. One is in green and the other in blue.
They are visible only after a large magnification and on a paper printout will merge together.
This means that our estimate on the position of the curves is somewhat rough in comparison
to nonrigorous numerical simulation.

8. Closing remarks and future work. In this paper we have presented a method for
proving existence of families of Lyapunov orbits in the planar circular restricted three body
problem (PCR3BP). The method gives explicit bounds on a curve of initial points, which can
continue up to half the distance from L2 to the smaller primary in the Jupiter–Sun system.

We also presented a method of proving transversal intersections of invariant manifolds
associated with Lyapunov orbits. The method gives explicit bounds on which the intersection
takes place. It has been applied to Lyapunov orbits with the energy of the comet Oterma in
the Jupiter–Sun system.

In this paper we have focused on detection of homoclinic intersections. Using identical
tools one could also prove heteroclinic intersections of manifolds in the spirit of the work of
Wilczak and Zgliczyński [23, 24].

Due to the fact that the presented method gives explicit estimates on the position of inves-
tigated manifolds, it is our hope to later apply it to the study of diffusion. Here is an outline
of a future scheme that could be followed to prove diffusion. The family of Lyapunov orbits
is normally hyperbolic and hence survives time periodic perturbations. In a nonautonomous
setting the system no longer preserves energy, which allows for diffusion between orbits of dif-
ferent energies. Such a mechanism has been investigated in [9] for the planar elliptic restricted
three body problem, for the system with special restriction on parameters. The discussed dif-
fusion follows from the geometric method of Delshams, de la Llave, and Seara [11, 12, 13]
and requires computation of Melnikov-type integrals along homoclinic orbits of the PCR3BP.
Since our method allows for precise and rigorous estimates for such orbits, it is our hope that
such integrals could be computed using rigorous computer assisted techniques. This combined
with topological methods [8, 10] for detection of normally hyperbolic manifolds could give the
first rigorous results for diffusion in the three body problem with real-life parameters. From
this perspective, the results of this paper are a first step in a larger scheme for investigation
of real-life systems.

9. Appendix.

9.1. Verification of cone conditions.
Lemma 9.1. Let A be an interval matrix of the form

A =

(
a11 εT

B C

)
,

where a11 = [a11, a11] with a11 > 0. If, for any ε ∈ ε, ‖ε‖ ≤ ε, the inequality

(9.1)
a11 − ε

√
α√

1 + α
> m

D
ow

nl
oa

de
d 

01
/1

4/
13

 to
 1

28
.6

1.
29

.5
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERSECTIONS OF INVARIANT MANIFOLDS IN THE PCR3BP 1749

holds, then for v = (x, y) such that Q(v) = αx2 − ‖y‖2 ≥ 0 and any A ∈ A we have ‖Av‖ >
m ‖v‖.

Proof. For v = (x, y) satisfying Q(v) ≥ 0, we have ‖x‖2 + ‖y‖2 ≤ ‖x‖2 (1 + α). Using (9.1)
this gives the following estimate:

‖Av‖ ≥ a11 ‖x‖ − ε ‖y‖ ≥ (a11 − ε
√
α
) ‖x‖ > m

√
‖x‖2 + ‖y‖2 = m ‖v‖ .

Lemma 9.2. Let Q (v) = Q(x, y) = αx2 − ‖y‖2, let CQ be a diagonal matrix such that
vTCQv = Q(v), and let A = [DF (Q+(v∗))]. Assume that D = ATCQA is an interval matrix
of the form

D =

(
d11 εT

ε B

)
.

Assume that d11 =
[
d11, d11

]
with d11 > 0 and that for some M > 0, for any symmetric

matrix B ∈ B,

(9.2) inf {λ|λ ∈ spec (B)} > −M.

If for any ε ∈ ε we have ‖ε‖ ≤ ε and d11 − 2ε > Mα, then for any v1, v2 ∈ U , v1 �= v2 such
that Q (v1 − v2) ≥ 0

Q (F (v1)− F (v2)) > 0.

Proof. By (6.9) Q (F (v1)− F (v2)) = (v1 − v2)
T D (v1 − v2) for some symmetric matrix

D ∈ D.
For v = (x, y) such that Q(x, y) ≥ 0 and for any symmetric D ∈ D,

D =

(
d11 εT

ε B

)
,

we compute the following bounds:

vTDv = d11x
2 + xεT y+ yT εx+ yTBy

≥ d11x
2 − 2ε ‖y‖ |x| −M ‖y‖2

≥ (d11 − 2ε) x2 −M ‖y‖2

=M

(
d11 − 2ε

M
x2 − ‖y‖2

)
> MQ (x, y)

> 0.

Remark 9.3. Assumption (9.2) is easily verifiable from Gershgorin’s theorem.

9.2. Bounds for the images in local coordinates. Here we give a proof of Lemma 7.3.
Proof. Inclusion (7.6) is equivalent to showing that for any τ ∈ T and any v1 ∈ U1 there

exists a v2 in U2 such that

(9.3) G(τ, v1, v2) = 0.D
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Let us fix a τ ∈ T and v1 ∈ U1 and use the notation Gτ,v1(v2) = G(τ, v1, v2). Observe that
[DGτ,v1(U2)] ⊂ A(U2) and [Gτ,v1(v0)] ⊂ [G(T, U1, v0)]. Since from (7.5)

v0 − [DGτ,v1(U2)]
−1Gτ,v1(v0) ⊂ N(T, v0, U1, U2) ⊂ U2,

by the interval Newton method (Theorem 2.1) there exists a unique v2 = v2 (τ, v1) ∈ U2 which
satisfies (9.3).

Remark 9.4. When applying Lemma 7.3, due to very strong hyperbolicity of the map Φτ ,
it pays to use the mean value theorem. Taking U1 = v1 +B, we can compute

N(T, v0, U1, U2) = v0 − [A (U2)]
−1G(T, v1, v0)−

[(
A (U2)

−1 ∂G

∂v1
(T, U1, v0)

)
B

]
.

This is a better form since in (below we neglect arguments in order to keep the formula compact)

(9.4) A−1 ∂G

∂v1
= −Dλ−1 ·

(
(Dψ)−1 ·DΦ̃τ ·Dψ

)
,

the strong hyperbolic expansion cancels out. This is the main advantage of Lemma 7.3.
Here we give a technical lemma that can be used for computation of

ψ−1(C−1
(
(x∗, 0, 0, κ(x∗))− q0

)
) for x∗ ∈ I

and q0 = (x0, 0, 0, p0y). Below, R can be any matrix close to Dψ−1(0)C−1A.
Lemma 9.5. Let a ∈ R and J1 ⊂ R be from Lemma 3.1, and let

A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
a 0 0 1

⎞
⎟⎟⎠ .

Let B be a set in R
4, let R be a 4× 4 matrix, and let

M :=
[
A−1CDψ (RB)R

]−1 (
I − x0, 0, 0, J1 − p0y

)
.

If

(9.5) M ⊂ B,

then ψ−1(C−1((x∗, 0, 0, κ(x∗))− q0)) ⊂ RB.
Proof. By Lemma 3.1

(x∗, 0, 0, κ(x∗)) ∈ (x0, 0, 0, p0y) +
(
I − x0, 0, 0, a(I − x0) + J1 − p0y

)
= q0 +A

(
I − x0, 0, 0, J1 − p0y

)
;

hence

(9.6) (x∗, 0, 0, κ(x∗))− q0 ∈ A
(
I − x0, 0, 0, J1 − p0y

)
.D
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Let

Gq(p) = A−1Cψ(Rp)− q.

If we can show that for any q ∈ (I − x0, 0, 0, J1 − p0y
)
there exists a p ∈ B such that

(9.7) Gq(p) = 0,

then

ψ−1
(
C−1Aq

)
= Rp;

hence by (9.6)

ψ−1(C−1((x∗, 0, 0, κ(x∗))− q0)) ⊂ RB.

To show (9.7) we apply the interval Newton method (Theorem 2.1). Since ψ(0) = 0, we
can compute

N(0,B) = −
[
d

dp
Gq(B)

]−1

Gq(0)

= − [A−1CDψ(RB)R
]−1

(−q)
⊂M,

and by (9.5) combined with Theorem 2.1 we obtain (9.7) and hence obtain our claim.

9.3. Details on the computer assisted computations. All the computer assisted proofs
have been performed using the Computer Assisted Proofs in Dynamics (CAPD) library avail-
able at http://capd.ii.uj.edu.pl.

The proofs of Theorems 3.2 and 4.1 require the

alglib, dynset, dynsys, interval, map, matrixAlgorithms, poincare, vectalg

modules from the CAPD library, together with

capd/alglib/capd2alglib.h,

capd/matrixAlgorithms/floatMatrixAlgorithms.hpp,

capd/map/CnMap.hpp,

capd/dynsys/CnTaylor.hpp,

capd/poincare/PoincareMap.hpp, and

capd/poincare/TimeMap.hpp

header files. All the required fragments of the library are included inside of the capdtools.h
file, which is the part of the computer assisted proof available at http://wms.mat.agh.edu.pl/
∼mcapinsk.

All programs are purely serial and have not been parallelized.

Acknowledgments. The author would like to thank Rafael de la Llave for discussions and
remarks regarding implementation of the parameterization method. Special thanks go also to
Daniel Wilczak for discussions on rigorous computer assisted computations using the CAPD
library (http://capd.ii.uj.edu.pl).D
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