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Institute of Computer Science, Faculty of Mathematics and Computer Science,

Jagiellonian University, ul. S.  Lojasiewicza 6, 30-348 Kraków, Poland

E-mail: umzglicz@cyf-kr.edu.pl, piotr.zgliczynski@ii.uj.edu.pl

Abstract. We prove that the Shimizu-Morioka system has a Lorenz attractor for

an open set of parameter values. For the proof we employ a criterion proposed by

Shilnikov, which allows to conclude the existence of the attractor by examination of

the behavior of only one orbit. The needed properties of the orbit are established

by using computer assisted numerics. Our result is also applied to the study of local

bifurcations of triply degenerate periodic points of three-dimensional maps. It provides

a formal proof of the birth of discrete Lorenz attractors at various global bifurcations.

1. Introduction and main results

In this paper we provide a solution to a long-standing open problem. We prove, by

employing rigorous numerics, that Shimizu-Morioka system has a Lorenz attractor for

an open set of parameter values. The fact itself is well-known, see [1, 2, 3]; however its

rigorous proof was missing which impeded the further development of the mathematical

theory of Lorenz-like attractors. Here, we report a computer assisted proof which

formally closes this problem.
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Figure 1. Two kinds of Lorenz attracto in the Shimizu-Morioka systemr: standard

(for α = 0.45, λ = 0.9) on the left, and with a lacuna (for α = 0.5, λ = 0.85) on the

right.

The Shimizu-Morioka system
ẋ = y,

ẏ = (1− z)x− λy,
ż = −αz + x2,

(1)

where (x, y, z) are coordinates in R3 and α > 0, λ > 0 are parameters, was introduced

by T.Shimizu and N.Morioka in [4] and extensively studied numerically by A. Shilnikov

in [1, 2]. One of the main findings was that there is a large open region in the (α, λ)-

plane where this system has a strange attractor very similar to the classical attractor

of the Lorenz model (5), see Fig. 1. This is more than just the similarity in shape:

as one can infer from the pictures numerically obtained in [1], the Poincaré map on a

two-dimensional cross-section is hyperbolic (very strongly contracting in one direction

and expanding in the other direction), so the attractor in the Shimizu-Morioka system

can be described by the Afraimovich-Bykov-Shilnikov geometric Lorenz model [5, 6],

i.e., it is a Lorenz attractor.

We will describe the geometric Lorenz model and give the corresponding definition

of the Lorenz attractors in a moment. However, we first want to stress that Shimizu-

Morioka model is special (and maybe more important than the classical Lorenz model).

The reason is that system (1) is a truncated normal form for certain codimension-

3 bifurcations of equilibria and periodic orbits [3, 7]. Because Lorenz or Lorenz-like

attractors persist at small perturbations, our result on the existence of the Lorenz

attractor in the normal form system (1) implies that Lorenz-like attractors exist for

any small perturbation of (1). This proves the emergence of the Lorenz attractor

(or its discrete analogue) in the corresponding class of codimension-3 bifurcations.

In particular, in this paper, using Theorem 3, we prove the existence of discrete

Lorenz attractors in a class of three-dimensional polynomial maps (3D Hénon maps,

see Theorem 4 and remarks after it).
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1.1. Pseudohyperbolicity

In order to talk about Lorenz attractors, we need a proper definition of them. We

use the Afraimovich-Bykov-Shilnikov geometric model [5, 6] which we describe using

the notion of pseudo-hyperbolicity introduced in [8, 9]. A system (a smooth flow or a

diffeomorphism) in Rn is called pseudo-hyperbolic in a strictly forward-invariant domain

D ⊆ Rn if:

1) there are directions in which the dynamical system (a flow or a diffeomorphism)

is strongly contracting (“strongly” means that any possible contraction in transverse

directions is always strictly weaker);

2) transverse to the contracting directions the system is volume-expanding (i.e. the

volume is stretched exponentially).

In precise terms, condition 1 reads as follows. For each point of D, we assume that

there exists a pair of transversal subspaces N1 and N2 (with dim(N2) = k ≥ 1 and

dim(N1) = n− k), continuously depending on the point, such that the families of these

subspaces are invariant with respect to the derivative DXt of the time-t map Xt of the

system, i.e., DXtN1(x) = N1(Xt(x)) and DXtN2(x) = N2(Xt(x)) for all t ≥ 0 (in the

case of a diffeomorphism, t runs all positive integer values). We also assume that there

exist constants C > 0, α > 0 and β > 0 such that for each x ∈ D and all t ≥ 0

‖DXt(x)|N2‖ ≤ Ce−αt (2)

and

‖DXt(x)|N2‖ · ‖(DXt(x)|N1)
−1‖ ≤ Ce−βt. (3)

The volume-expansion condition 2 reads as follows: there exist constants C > 0 and

σ > 0 such that for each x ∈ D and all t ≥ 0

det(DXt(x)|N1) ≥ Ceσt. (4)

Inequality (3) (the so-called cone condition) ensures that the invariant families

of subspaces N1 and N2 continuously persist for all C1-small perturbations of the

system, so the pseudohyperbolic structure is a robust property of the system. Inequality

(4) guarantees that for every orbit in D its maximal Lyapunov exponent is positive.

Therefore, the existence of the pseudohyperbolic structure in a bounded domain

D ensures chaotic dynamics in D, which cannot be destroyed by small smooth

perturbations.

Conditions (2),(3) imply also the existence of a strong-stable invariant foliation N ss

in D, whose field of tangents is the family N2. For every two points in the same leaf

of N ss the distance between their forward orbits tends to zero exponentially, i.e., the

forward dynamics of all points in the same leaf are the same.

1.2. Lorenz attractor

The Lorenz attractor of the Afraimovich-Bykov-Shilnikov model is the attractor of

a pseudohyperbolic system of differential equations with dim(N1) = 2. Specifically,
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consider a system X of differential equations with a saddle equilibrium state O. Assume

that O has a one-dimensional unstable manifold W u(O) and an (n − 1)-dimensional

stable manifold W s(O), i.e., if λ1, . . . , λn are the eigenvalues of the linearized system at

O, then λ1 > 0 and Reλj < 0 for j ≥ 2. Assume that

λ2 > Reλj for j ≥ 3

and

λ1 + λ2 > 0.

This means that the pseudohyperbolicity conditions (2), (3) and (4) are fulfilled at the

point O, with N1 being the two-dimensional eigenspace corresponding to the eigenvalues

λ1 and λ2 and N2 being the eigenspace corresponding to the rest of eigenvalues. We

assume that the pseudohyperbolicity property also holds in a sufficiently large, bounded

neighborhood D of O. We assume that D is strictly forward-invariant, i.e., there exists

T > 0 such that the image of the closure of D by the time-T map lies strictly inside D.

Moreover, we assume that in D there exists an (n− 1)-dimensional cross-section Π

to the flow, such that for every point in D its forward orbit either tends to O (i.e., it lies

in W s(O)) or hits Π at some moment of time. We assume that Π is divided by a smooth

(n− 2)-dimensional surface Π0 into 2 halves, Π+ and Π−, such that the orbits starting

in Π+ and Π− return to Π again, while the orbits starting in Π0 tend to O as t→ +∞,

i.e., Π0 ⊂ W u(O)∩Π. Thus, the orbits of X define the Poincaré map T : Π+∪Π− → Π.

This map is smooth outside a discontinuity surface Π0. The orbits starting close to

Π0 pass near O, so the return time tends to infinity as the initial point M tends to Π0;

note that TM tends to one of the two points, M+ and M−, where W u(O) intersects Π.

The unstable manifold W u(O) is one-dimensional, so W u(O)\O consists of exactly two

orbits, Γ+ and Γ−, called separatrices, and the points M+ and M− are the first points

where the Γ+ and Γ− intersect Π. We take the convention that limM→Π0 T (M) equals

to M+ if the initial point M approaches Π0 from Π+ and M− if M approaches Π0 from

Π−.

The invariant foliation N ss of the system X also corresponds to a codimension-1

strong-stable invariant foliation N ss
Π for the map T : the leaves of N ss

Π are obtained as

intersections with Π of the orbits of the leaves of N ss by the flow. The foliation is

contracting, i.e., the iterations by T of any two points in the same leaf of N ss
Π converge

exponentially to each other. However, the dynamics transverse to the strong-stable

foliation are chaotic. The expansion of areas by the flow transverse to N ss implies that

the Poincaré map T is uniformly expanding in the direction transverse to N ss
Π .

In other words, the pseudohyperbolicity of the flow in D implies that the Poincaré

map T is locally uniformly hyperbolic. However, one cannot directly apply the theory

of uniform hyperbolicity to this map, as it has a singularity (at Π0). Nevertheless, the

(singular) hyperbolicity of the Poincaré map T makes a comprehensive analysis of the

structure of the Lorenz attractor in the above described Afraimovich-Bykov-Shilnikov

model possible, as it was done in [6]. The results of these papers can be summarized as

follows [10]:
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Theorem 1. [6] Under conditions above, the set of non-wandering orbits of the system

in D consists of a uniquely defined, two-dimensional closed invariant set A ⊂ D (which

is called the Lorenz attractor) and a (possibly empty) one-dimensional closed invariant

set Σ (which may intersect A but is not a subset of A) such that

(1) the separatrices Γ+ and Γ− and the saddle O lie in A;

(2) A is transitive, and saddle periodic orbits are dense in A;

(3) A is the limit of a nested sequence of hyperbolic, transitive, compact invariant sets

each of which is equivalent to a suspension over a finite Markov chain with positive

topological entropy;

(4) A is structurally unstable: arbitrarily small smooth perturbations of the system lead

to the creation of homoclinic loops to O and to the subsequent birth and/or disappearance

of saddle periodic orbits within A;

(5) when Σ = ∅, the set A is the maximal attractor in D;

(6) when the set Σ is non-empty, it is a hyperbolic set equivalent to a suspension over a

finite Markov chain (it may have zero entropy, e.g. be a single saddle periodic orbit);

(7) every forward orbit in D tends to A ∩ Σ as t→ +∞;

(8) when Σ 6= ∅, the maximal attractor in D is cl(W u(Σ)) = A ∩W u(Σ);

(9) A attracts all orbits from its neighbourhood when A ∪ Σ = ∅.
In [6] the pseudohyperbolicity conditions were expressed in a different (equivalent)

form, as explicitly verifiable conditions that ensure the hyperbolicity of the Poincaré

map T . Similar hyperbolicity conditions were checked for the classical Lorenz model

ẋ = −10(x− y), ẏ = x(28− z)− y, ż = −8

3
z + xy (5)

by W.Tucker, with the use of rigorous numerics. In this way, in [11, 12], a computer

assisted proof of the existence of the Lorenz attractor in system (5) was done.

1.3. Shilnikov criterion

In our approach to the proof of the existence of the Lorenz attractor in the Morioka-

Shimizu system we also rely on the computer assistance, however we need much less

computations. We employ a criterion proposed by Shilnikov in [13] that allows to

conclude the existence of the Lorenz attractor by examination of the behavior of only

one orbit (a separatrix) of the system of differential equation, instead of the direct

check of the hyperbolicity of the Poincaré map T which would require a high precision

computation of a huge number of orbits.

In [13], several criteria for the birth of the Lorenz attractor were proposed. We

use the following one. Consider a system X of differential equations in Rn, which

have a saddle equilibrium state O with one-dimensional unstable manifold. Namely, let

λ1, . . . , λn are the eigenvalues of the linearized system at O. We assume that

λ1 > 0 > λ2 > Reλj for j ≥ 3.

Let the system be symmetric with respect to a certain involution R and that O is a

symmetric equilibrium, i.e., RO = O. The eigenvectors e1 and e2 corresponding to the
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eigenvalues λ1 and λ2 must be R-invariant. We assume that Re1 = −e1 and Re2 = e2.

This, in particular, implies that the two unstable separatrices Γ+ and Γ−, which are

tangent at O to e1, are symmetric to each other, Γ+ = RΓ−.

Let the system satisfy the following 3 conditions:

1. Assume that both separatrices Γ+ and Γ− return to O as t → +∞ and are

tangent to the direction e2 when entering O (it follows from the symmetry that they

are tangent to each other as they enter O).

2. Assume that the so-called saddle value σ = λ1 + λ2 is zero.

3. Assume that the so-called separatrix value A satisfies the condition

0 < |A| < 2. (6)

The definition of the separatrix value for our case is given in Section 1.5, see (14),(15).

One can describe |A| as the maximal extent, to which infinitesimal two-dimensional areas

can be expanded by the system along the homoclinic loop (the sign of A determines

whether the orientation of the areas for which this maximal expansion is achieved is

changed during the propagation along the loop); more about the definition of A can be

seen in [14, 15].

According to [13], bifurcations of systems satisfying the above described conditions

lead to the birth of a Lorenz attractor. To make this statement precise, we note that

conditions 1 and 2 describe a codimension-2 bifurcation in the class of R-symmetric

systems. Suppose the system is embedded into a two-parameter family of systems Xµ,ε

such that by changing the parameters µ and ε we can independently vary the saddle

value σ near zero and split the homoclinic loop Γ+ (by the symmetry, the homoclinic

loop Γ− will be split as well). Then we have

Theorem 2. [13] If condition (6) holds at the bifurcation moment (when the system

Xµ,ε has a homoclinic butterfly with a zero saddle value), then there exists an open

region in the plane of parameters µ, ε, for which system Xµ,ε has a Lorenz attractor of

the Afraimovich-Bykov-Shilnikov model.

A proof of this result was given by Robinson in [14] under certain additional

assumptions on the eigenvalues λ; in full generality this theorem was proven in [10].

We show in Theorems 5 and 6 that Shimizu-Morioka system (1) satisfies conditions

1-3 for some value of parameters (α, λ) and that the homoclinic loops can be split and

the saddle value can be varied independently when α and λ vary. This, as explained,

implies our main result:

Theorem 3. There exists an open set in the plane of parameters (α, λ) for which the

Shimizu-Morioka system has a Lorenz attractor.

1.4. Discrete Lorenz attractor in local and global bifurcations.

The main theorem can be applied to the study of local bifurcations of triply degenerate

periodic points of three-dimensional maps. For example, consider a 3D Hénon-like map
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(x, y, z) 7→ (x̄, ȳ, z̄)

x̄ = y, ȳ = z, z̄ = M1 +Bx+M2y − z2, (7)

where M1, M2 and B are parameters and (x, y, z) ∈ R3. Pictures numerically obtained

in [16] show that this map has a strange attractor which looks very similar to the

Lorenz attractor, even though this is a discrete dynamical system and not a system of

differential equations. The explanation to this fact (the emergence of a discrete analogue

of a Lorenz attractor) can be obtained based on the following observation.

At M1 = −1/4, M2 = 1, B = 1 this map has a fixed point at x = y = z = 1/2,

and this point has all three multipliers (the eigenvalues of the linearization matrix at

this point) on the unit circle: (−1,−1, 1). This is a codimension-3 bifurcation and, as

shown in [16], the flow normal form for this bifurcation in this map is given by the

Shimizu-Morioka system. As the normal form has a Lorenz attractor, the map itself has

a discrete version of it.

More precisely, at (M1,M2, B) close to (−1/4, 1, 1) and (B + M1 − 1)2 + 4M1 > 0

we can shift the coordinate origin to the fixed point x = y = z = x∗ = (B + M2 − 1 +√
(B +M2 − 1)2 + 4M1)/2. Then the map will take the form

x̄ = y, ȳ = z, z̄ = Bx+M2y − 2x∗z − z2. (8)

Introduce small parameters ε1 = 1 − B, ε2 = 1 − M2, ε3 = 2x∗ − 1. It was shown

in [16] that in the region ε1 > 0, ε1 + ε3 > ε2, the second iteration of (8) near the

origin is O(s2)-close, in appropriately chosen rescaled coordinates, to the time-s shift

by the flow of a system, which is O(s)-close to the Shimizu-Morioka system (1) with

α = (ε1 + ε2 + ε3)/(4s), λ = (ε1 − ε3)/(2s), s =
√

(ε1 − ε2 + ε3)/2.

This means that if we make N iterations of map (8), such that N is even and

of order s−1, the result will be O(s)-close to the time-1 map of the Shimizu-Morioka

system. In other words, the square of map (8) is the Poincaré map for a certain

small, time-periodic perturbation of the Shimizu-Morioka system. According to [9],

the pseudohyperbolicity persists at small time-periodic perturbations. Therefore, as by

Theorem 3 the Shimizu-Morioka system has a pseudohyperbolic attractor for an open

set of (α, λ) values, the same holds true for the map (8) for the corresponding set of

values of ε1,2,3. This attractor is called a discrete Lorenz attractor because it shape is

similar to the Lorenz attractor in the Shimizu-Morioka system. However, its structure

is much more complicated than that of the Lorenz attractor described in section 1.2.

In particular, the discrete Lorenz attractor may contain homoclinic tangencies [9] and

heterodimensional cycles involving saddle periodic orbits with different dimensions of the

unstable manifold [17] (more discussions can be found in [19]). This makes a complete

description of the dynamics of the discrete Lorenz attractor impossible but, anyway,

its pseudohyperbolicity allows to conclude that every orbit in this attractor behaves

chaotically and this property persists for all small perturbations.

Since the map (8) is obtained from (7) just by a change of coordinates, we have the

following



Existence of the Lorenz attractor in the Shimizu-Morioka system 8

Theorem 4. There exists an open set in the space of parameters (M1,M2, B) for which

the 3D Hénon map (7) has a pseudohyperbolic discrete Lorenz attractor.

Note that the same conclusion holds for larger classes of three-dimensional maps.

It was shown in [19] that the normal form for the bifurcations of the zero fixed point of

any map of the type

x̄ = y,

ȳ = z,

z̄ = (1− ε1)x+ (1− ε2)y − (1 + ε3)z + ay2 + byz + cz2 +O(‖x, y, z‖3),

is the Shimizu-Morioka system, provided the condition

(c− a)(a− b+ c) > 0 (9)

is fulfilled. Therefore, by the same arguments as for the map (8), Theorem 3 provides

a formal justification for the claim of [19] (see Lemma 3.1 there) about the existence

of pseudohyperbolic attractors for an open set of parameters ε1,2,3 in maps (9) whose

coefficients satisfy condition (9).

Map (8) is particularly important for the theory of global bifurcations because it

appears as a normal form (i.e., a very close - as close as we want - approximation

in appropriately chosen coordinates) for the first-return maps near many types of

homoclinic tangencies and heteroclinic cycles with tangencies in three-dimensional and

higher-dimensional maps [18]. Therefore, by the robustness of the pseudohyperbolicity

property, Theorem 4 implies that pseudohyperbolic attractors emerge near these types

of homoclinic and heteroclinic cycles. Thus, Theorem 4 provides, finally, a formal proof

to the results of [20, 21, 22, 23, 24, 25] about the birth of pseudohyperbolic (discrete

Lorenz) attractors at various global bifurcations, including the birth of infinitely many

coexisting pseudohyperbolic attractors, see [21, 22].

1.5. Main results of the rigorous numerics

We establish Theorem 3 in the following steps. First, we find good bounds for the values

of parameters (α, λ) for which Shimizu-Morioka system (1) conditions 1 and 2 of section

1.3 (the existence of a homoclinic butterfly with zero saddle value σ). It is easy to check

that condition σ = 0 reads as

λ =
1

α
− α. (10)

We will study how the separatrices Γ± move as α varies while λ is given by (10); the

moment a separatrix forms a homoclinic loop corresponds to the parameter values we

are looking for.

It is convenient to scale time t→ t/α and variables x→ X
√
α, y → Y α

√
α. Then

the system takes the form

Ẋ = Y,

Ẏ = (a+ 1) (1− Z)X − aY, (11)

Ż = −Z +X2,
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where

a =
1

α2
− 1 = λ/α.

The eigenvalues of the linearization matrix at (0, 0, 0) are (−1, 1,−(1 + a)) with

corresponding eigenvectors given by (0, 0, 1), (1, 1, 0) and (−(1+a)−1, 1, 0), respectively.

We will investigate (11) for a ≈ 1.72, so the hyperbolic equilibrium state (0, 0, 0) has

a one dimensional unstable manifold, and a two dimensional stable manifold. When

the manifolds intersect, we have a solution that tends to zero both as t → +∞ and

t→ −∞, i.e., a homoclinic loop to the equilibrium state.

Theorem 5. There exists a = a0 ∈ [al, ar], where

al = 1.72432329151541− 10−13,

ar = 1.72432329151541 + 10−13,

for which (11) has a homoclinic orbit X0 (t) , Y0 (t) , Z0 (t) to the equilibrium state

(0, 0, 0). As a changes between al and ar, the loop splits. Taking

ξ = 1− 10−4, c = 3.5, T = 26,

we have the bound:

|X0 (T + t)| , |Y0 (T + t)| , |Z0 (T + t)| ≤ ce−ξt ‖(X0 (T ) , Y0 (T ) , Z0 (T ))‖ ,
for t ≥ 0, and for t ≤ 0 we have:

|X0 (t)| , |Y0 (t)| , |Z0 (t)| ≤ ce−ξ|t| ‖(X0 (0) , Y0 (0) , Z0 (0))‖ .
The proof of the above theorem is obtained with a computer assistance and is given

in section 3.2. The mere existence of a homoclinic loop in system (11) can be obtained

purely analytically [26]. However, we need good estimates on a0 and the corresponding

homoclinic solution, which the methods of [26] do not provide. Crucially, these estimates

are used in the next theorem where the separatrix value A is estimated.

The separatrix value can be defined as follows (cf. [14, 26]). Let a system of three

differential equations have a homoclinic solution (X0(t), Y0(t), Z0(t)) to a hyperbolic

equilibrium state at zero, so (X0(t), Y0(t), Z0(t))→ 0 as t→ ±∞. Let

d

dt

 x

y

z

 = B(t)

 x

y

z

 (12)

be the linearization of the system along the loop. In particular, in the case of system

(11) we have

B =

 0 1 0

(a0 + 1)(1− Z0(t)) −a0 −(a0 + 1)X0(t)

2X0(t) 0 −1

 .

Let ξ1, ξ2 be any two vectors and let η = ξ1×ξ2 be their vector product. If the evolution

of ξ1 and ξ2 is defined by (12), then the evolution of η is governed by

dη

dt
= −(B> − tr(B)I)η, (13)
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where I is the (3 × 3) identity matrix. This equation describes the evolution of

infinitesimal two-dimensional areas near the homoclinic loop.

Since (X0(t), Y0(t), Z0(t)) tends to zero exponentially, the asymptotic behavior of

solutions of (13) as t→ ±∞ is determined by the limit matrix

B̂ = −(B>∞ − tr(B∞)I)

where B∞ = limt→±∞B(t), which is the linearization of the original system at the

hyperbolic equilibrium at zero. If λ1 > 0 > λ2 > λ3 are the eigenvalues of B∞, then the

eigenvalues of B̂ are

σ1 = λ1 + λ2, σ2 = λ1 + λ3, σ3 = λ2 + λ3.

We are interested here in the case of zero saddle value, i.e., λ1 + λ2 = 0. Then the

eigenvalues of B̂ are 0, σ2 < 0 and σ3 < 0, so every solution of (13) tends, as t → +∞
to a constant times the eigenvector of B̂ that corresponds to the zero eigenvalue (this

is the vector v0, which is the vector product of the eigenvectors of B∞ that correspond

to the eigenvalues λ1 and λ2). It also follows that only one solution of (13) tends to v0

in backward time, as t→ −∞. We take this particular solution η0(t) and denote

lim
t→+∞

η0(t) = Av0. (14)

The coefficient A is the sought separatrix value. One can see that

|A| = sup lim
t→+∞

‖η(t)‖
‖η(−t)‖

(15)

where the supremum is taken over all the solutions of (13). Thus, A determines the

maximal expansion of infinitesimal areas along the homoclinic loop.

In the case of system (11) system (13) becomes

η′ (t) =

 − (a0 + 1) − (a0 + 1) (1− Z0 (t)) −2X0 (t)

−1 −1 0

0 (a0 + 1)X0 (t) −a0

 η (t) . (16)

This equation, in the limit t→ ±∞ becomes

η′ (t) = B̂η (t) =

 −(a0 + 1) −(a0 + 1) 0

−1 −1 0

0 0 −a0

 η (t) . (17)

The eigenvalues are 0,−(a + 2),−a with corresponding eigenvectors v0 = (1,−1, 0),

v−(a+2) = (1 + a, 1, 0) and v−a(0, 0, 1), respectively.

Theorem 6. There exists an orbit η (t) of (16), for which

lim
t→−∞

η (t) ∈ [0.99984336210766, 1.0001566378923] v0,

lim
t→+∞

η (t) ∈ [0.62606812264791, 0.62663392848044]v0,

meaning that

lim
t→+∞

‖η (t)‖
‖η (−t)‖

∈ [0.62597007201516, 0.6267320984754] . (18)
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The proof of the above theorem is obtained with computer assistance and is given in

Section 4.3. By definition (14) of the separatrix value, estimate (18) gives the following

bounds for the separatrix value of the homoclinic loop in system (11):

A ∈ [0.62597007201516, 0.6267320984754] .

Importantly 0 < A < 1. So, by applying Shilnikov criterion we obtain our main result,

Theorem 3, see section 1.3.

The plot of the homoclinic trajectory from Theorem 5 can be seen on the left plot

in Figure 6 on page 18. The plot of the heteroclinic orbit from Theorem 6 is given in

Figure 12 on page 28.

2. Some notations

In the subsequent sections we present a methodology for establishing homoclinic orbits

and for the computation of the separatrix value. First we introduce the following

notations.

We will write Bk(R) for ball in Rk of radius R, centered at zero. For a matrix A

we define the logarithmic norm of A as (see [27] and literature cited there)

l (A) = lim
h→0+

‖I + Ah‖ − ‖I‖
h

.

We will also use the notation

m (A) =

{
1

‖A‖−1 detA 6= 0,

0 otherwise,

ml (A) = − l (−A) .

The m(A) is a number with the property that ‖Av‖ ≥ m (A) ‖v‖ . The ml (A) can be

interpreted as a ‘bound from below’ of the logarithmic norm.

Let u, s ∈ N. For a function f : Ru × Rs → Ru × Rs, we will use the notations

(x, y) ∈ Ru × Rs, where x ∈ Ru and y ∈ Rs. The x will play the role of an “unstable”

coordinate and y will be the “stable” coordinate, hence the choice of the notation u, s.

We will also write fx, and fy for the projections of f onto Ru and Rs, respectively. For

a set D ⊂ Ru × Rs we define[
∂fx
∂x

(D)

]
: =

{
A = (aij) ∈ Ru×u : ai,j ∈

[
inf
p∈D

∂fxi
∂xj

(p) , sup
p∈D

∂fxi
∂xj

(p)

]}
,[

∂fx
∂y

(D)

]
: =

{
A = (aij) ∈ Ru×s : ai,j ∈

[
inf
p∈D

∂fxi
∂yj

(p) , sup
p∈D

∂fxi
∂yj

(p)

]}
.

We also define

m

(
∂fx
∂x

(D)

)
:= inf

A∈[ ∂fx∂x
(D)]

m (A) ,

ml

(
∂fx
∂x

(D)

)
:= inf

A∈[ ∂fx∂x
(D)]

ml (A) ,
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Figure 2. The local unstable manifold Wu
θ in red, and the local stable manifold W s

θ

in green.

∥∥∥∥∂fx∂y (D)

∥∥∥∥ := sup
A∈[ ∂fx∂y

(D)]
‖A‖ .

We will use the notation int(D), D and ∂D for the interior, closure and boundary

of a set D, respectively.

3. Establishing homoclinics

In this section we give an overview of the method for establishing the existence of

homoclinic orbits to fixed points. The method is written for the case where we consider

a parameter dependent ODE with the vector field f : R3 × R→ R3,

p′ = f(p, a). (19)

and a ∈ A is a parameter, with A = [al, ar] ⊂ R. We assume that for each a ∈ A

(19) has a hyperbolic fixed point p∗a, with one dimensional unstable manifold and two

dimensional stable manifolds. (If dimensions are the other way around we can change

the sign of the vector field.)

Let Φt(p, a) be the flow induced by (19). Let Bu (R) = [−R,R] ⊂ R, Bs (R) ⊂ R2

and let

D = Bu (R)×Bs (R) ⊂ R3,

be a neighborhood of the smooth family of fixed points, meaning that we assume

p∗a ∈ intD for any a ∈ A.

We denote by W u
a the local unstable manifold of p∗a in D and by W s

a the local stable

manifold of p∗a in D, i.e.

W u
a =

{
p ∈ D : Φt (p, a) ∈ D for t ≤ 0 and lim

t→−∞
Φt (p, a) = p∗a

}
, (20)

W s
a =

{
p ∈ D : Φt (p, a) ∈ D for t ≥ 0 and lim

t→+∞
Φt (p, a) = p∗a

}
. (21)

We assume that W u
a and W s

a are graphs of C1 functions

wua : Bu (R)→ Bs (R) ,

wsa : Bs (R)→ Bu (R) ,
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Figure 3. We have the 1-dimensional unstable manifold of p∗a in red, and the 2-

dimensional local stable manifold W s
a in D in green. The h (a) is the signed distance

along the x coordinate between W s
a and ΦT (pua , a); this is the distance along the dotted

line on the plot.

meaning that (see Figure 2)

W u
a =

{
(x,wua (x)) : x ∈ Bu (R)

}
,

W s
a =

{
(wsa (y) , y) : y ∈ Bs (R)

}
. (22)

Let

pua := (R,wua (R)) ∈ R3. (23)

Consider T > 0 and assume that for all a ∈ A, ΦT (pua, a) ∈ D. Let us define

h : A→ R,

as

h (a) = πxΦT (pua, a)− wsa(πyΦT (pua, a)). (24)

We now state a natural result, that h (a) = 0 implies an intersection of the stable

and unstable manifolds of p∗a. (See Figure 3.)

Theorem 7. [28]If

h(al) < 0 and h(ar) > 0 (25)

then there exists a ψ ∈ A for which we have a homoclinic orbit to p∗ψ.

3.1. Computer assisted bounds for unstable manifolds of fixed points of ODEs

In order to apply Theorem 7, we need to be able to establish bounds for h defined in (24).

Using a rigorous, interval arithmetic based integrator‖, it is possible to obtain rigorous

enclosures for ΦT . In this section we discuss how to obtain bounds on parameterizations

wsa, w
u
a of stable and unstable manifolds of fixed points. For simplicity, we will skip the

parameter a and consider an ODE

p′ = f(p). (26)

‖ in our application we use the CAPD package: http://capd.ii.uj.edu.pl/
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When combined with Theorem 7, we can apply below results for (19) with fixed a.

Let D ⊂ Ru × Rs,

D = Bu (R)×Bs (R) .

In this section we do not need to assume that u = 1 and d = 2. The result works for

arbitrary dimensions.

We define

−→µ = sup
z∈D

{
l

(
∂fy
∂y

(z)

)
+

1

L

∥∥∥∥∂fy∂x (z)

∥∥∥∥} , (27)

−→
ξ = ml

(
∂fx
∂x

(D)

)
− L

∥∥∥∥∂fx∂y (D)

∥∥∥∥ . (28)

Definition 8. We say that the vector field f satisfies rate conditions if

−→µ < 0 <
−→
ξ , (29)

Definition 9. We say that D = Bu (R)×Bs (R) is an isolating block for (26) if

(i) For any q ∈ ∂Bu (R)×Bs (R),

(πxf(q)|πxq) > 0.

(ii) For any q ∈ Bu (R)× ∂Bs (R),

(πyf(q)|πyq) < 0.

Definition 10. We define the unstable set in D as

W u = {z : Φt(z) ∈ D for all t < 0}.

Below theorem is a simplified (adapted to fixed points) version of the results from

[27, Theorem 30]. The paper [27] is in the setting of normally hyperbolic invariant

manifolds, hence the Theorem 31 from that paper is more involved than below result.

Theorem 11. Let k ≥ 1. Assume that f is C1 and satisfies the rate conditions. Assume

also that D = Bu (R) × Bs (R) is an isolating segment for f . Then the set W u is a

manifold, which is a graph over Bu (R). To be more precise, there exists a C1 function

wu : Bu(R)→ Bs(R),

such that

W u =
{

(x,wu(x)) : x ∈ Bu(R)
}
. (30)

Moreover, wu is Lipschitz with constant L.

Proof. The proof is given in Appendix 5.1. It is a modification of the argument from

[27]. The main difference is that the results from [27] are for the setting in which in

addition to the hyperbolic coordinates x, y we have a centre coordinate. Due to this the

Lipschitz bound from Theorem 11 is sharper compared with [27]. In the proof we focus

on this issue.
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We will now discuss the contraction rate along the stable manifold W u from

Theorem 11. First we shall need an auxiliary result. Consider a flow Φt (z), for

Φ : R× Ru × Rs → Ru × Rs,

Φt (x, y) = (πxΦt (x, y) , πyΦt (x, y)) ,

and define the following constants

µ (h) = sup
z∈U

{∥∥∥∥∂πyΦt

∂y
(h, z)

∥∥∥∥+
1

L

∥∥∥∥∂πyΦt

∂x
(h, z)

∥∥∥∥} , (31)

ξ (h) = m

[
∂πxΦt

∂x
(h, U)

]
− L sup

z∈U

∥∥∥∥∂πxΦt

∂y
(h, z)

∥∥∥∥ . (32)

Theorem 12. [27, Theorem 31]Let
−→
ξ and −→µ be the constants defined in (27) and (28).

If Φt is the flow induced by (26), then for h > 0

µ (h) = 1 + h−→µ +O
(
h2
)
,

ξ (h) = 1 + h
−→
ξ +O

(
h2
)
.

Theorem 13. Let W u be the manifold established in Theorem 11. Then for any

p1, p2 ∈ W u

‖Φ−t (p1)− Φ−t (p2)‖ ≤ ce−
−→
ξ t ‖πx (p1 − p2)‖ for all t ≥ 0,

for c = 2
√

1 + L2.

Proof. Let p1, p2 ∈ W u. Since wu is Lipschitz with constant L,

‖πy [p1 − p2]‖ ≤ L ‖πx [p1 − p2]‖ . (33)

Let q1, q2 ∈ W u. If Φt(q1),Φt(q2) ∈ D for t ∈ (0, T ], then for 0 < h ≤ T holds

‖πx(Φh(q1)− Φh(q2))‖ ≥ ξ(h)‖πx(q1 − q2)‖
= (1 + h

−→
ξ +O(h2))‖πx(q1 − q2)‖.

If we take h = T
N

, then

‖πx(ΦT (q1)− ΦT (q2))‖ ≥ (1 + h
−→
ξ +O(h2))N‖πx(q1 − q2)‖

→ eT
−→
ξ ‖πx(q1 − q2)‖, N →∞.

Observe that from the above it follows that (we set pi = Φ−T (qi))

‖πx(p1 − p2)‖ ≥ eT
−→
ξ ‖πx(Φ−T (p1)− Φ−Tp2)‖ (34)

for any T > 0.

Using (33) in the third line and (34) in the last line,

‖Φ−T (p1)− Φ−T (p2)‖2

= ‖πx [Φ−T (p1)− Φ−T (p2)]‖2 + ‖πy [Φ−T (p1)− Φ−T (p2)]‖2

≤
(
1 + L2

)
‖πx [Φ−T (p1)− Φ−T (p2)]‖2

≤
(
1 + L2

)
e−2T
−→
ξ ‖πx [p1 − p2]‖2 ,

which concludes the proof.
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Remark 14. Theorems 11, 13 can also be applied to establish bounds on the stable

manifold. In order to do so, it is enough to consider p′ = −f(p) instead of (26), and to

swap the roles of the coordinates x, y. The unstable manifold for the vector field −f is

the stable manifold for f .

3.2. Computer assisted proof of homoclinic intersection

In this section we give an overview of the computer assisted proof of Theorem 5.

To apply the method from Sections 3, 3.1 to conduct a computer assisted proof we

follow the steps, as outlined in [28]:

Algorithm 1.

(i) In local coordinates around zero, using Theorem 11, establish the bounds on the

unstable manifolds for the family of vector fields .

(ii) By changing sign of the vector field, using the same procedure as in step i, establish

bounds on the stable manifolds.

(iii) Propagate the bounds on the unstable manifold along the flow, and establish the

homoclinic intersection using Theorem 7.

To obtain bounds for the stable/unstable manifolds, we use the local coordinates

(x, y1, y2),

(X, Y, Z) = C (x, y1, y2) , (35)

with,

C =

 1 −0.36706363121968 0

1 1 0

0 0 1

 .

Note that ‖C‖ ≈ 1.527 8 and ‖C−1‖ ≈ 1.117 5.

Coordinates x, y1, y2 align the system (11) so that x is the (rough) unstable

direction, and y1, y2 are (roughly) stable. Note that we use the same local coordinates

for all the parameters a.

To obtain the bound on W u we choose

D = Bu (R)×Bs (R) ,

with R = 10−5, and use Theorem 11 to obtain an enclosure of the unstable manifold

W u. In our computer assisted proof, we have a Lipschitz bound L = 4 · 10−5 for the

slope of the manifold for all parameters a ∈ A. See Figure 4. (Note the scale on the

axes. The enclosure is in fact quite sharp.) Applying Theorem 13 we obtain

ξ1 = 0.99999999967813,

c = 2
√

1 + L2.
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Figure 4. The projection onto x, y1 coordinates of the bounds on Wu
a .

For any trajectory (X(t), Y (t), Z(t)) starting from a point p = C (x,wu(x)) , for t ≤ 0,

holds

|X (t)| , |Y (t)| , |Z (t)| ≤ c ‖C‖
∥∥C−1

∥∥ e−ξ1|t| ‖p‖ < 3.5e−ξ|t| ‖p‖ .
To establish the bounds for the two dimensional stable manifold W s, we consider

the vector field (11) with reversed sign (this means that we also swap the roles of the

coordinates x, y1, y2), and apply Theorem 11 once again. We use the same Lipschitz

bound L. We consider all the parameters a ∈ A. We do so by subdividing A into several

intervals, and performing the interval arithmetic enclosure of W s; we use the interval

enclosure of the map f with the intervals on a. In Figure 5 we see the bound on the

enclosure. From Theorem 13 we obtain

ξ2 = 0.99998045374688.

Thus, for any trajectory (X(t), Y (t), Z(t)) starting from a point p = C (ws(y1, y2), y1, y2)

holds

|X (t)| , |Y (t)| , |Z (t)| ≤ c ‖C‖
∥∥C−1

∥∥ e−ξ2t ‖p‖ < 3.5e−ξt ‖p‖ for t ≥ 0.

We now take T = 26. The two rectangles in Figure 5 are the ΦT (Cpua, a) for a = al
and a = ar (see (23) for the definition of puu). Note that Figure 5 corresponds to the

sketch from Figure 3. In Figure 5 we have the projection onto x, y1 coordinates of what

happens inside of the set D, without plotting the trajectory along the unstable manifold.

Figure 6 presents the bounds, plotted in the original coordinates of the system.

We use the rigorous estimates for ΦT

(
Cpual , al

)
and ΦT

(
Cpuar , ar

)
to compute the

following bounds (see (24) for the definition of the function h,)

h (al) ∈ [1.5093787863274e− 09, 3.9653443827625e− 09],

h (ar) ∈ [−3.9570292285809e− 09,−1.51777586447e− 09] .

We also make sure that ΦT (Cpua, a) ∈ D for all a ∈ A. We see that assumption (25) of

Theorem 7 is satisfied, which means that we have a homoclinic connection for at least

one of the parameters a ∈ A.
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Figure 5. The bound on W s
a , for all parameters a. On the left we have a non-rigorous

plot, to illustrate the shape of our bound in three dimensions. In the middle and on the

right, we have a projection onto the x, y1 coordinates of the rigorous, computer assisted

enclosure. The two rectangles depicted on the right hand side plots are ΦT
(
pual , al

)
(on the left, in red) and ΦT

(
puar , ar

)
(on the right, in blue). All these plots are in the

local coordinates.
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 1x10
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Y
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Figure 6. The bound on Wu
a , for all parameters a ∈ [al, ar] on the left (in black). On

the right, we have the bound on Wu
a in black, valid for all a ∈ [al, ar]. A trajectory

along Wu
a , which leaves the neighbourhood by the top right corner, returns through

the lower edge of the plot. In red, we have the Wu
al

, as it returns to the neighbourhood,

and in blue we have Wu
ar . In green is the bound on W s

a , for all parameters a ∈ [al, ar].

The bound on W s
a in local coordinates is in fact is much tighter than on this plot. It

is a strip that passes through the intersections of the green rectangles. The plots are

in the original coordinates of the system, projected onto the X,Y coordinates.

We have thus established a homoclinic orbit

(X0(t), Y0(t), Z0(t)) = Φt

(
Cpua0 , a0

)
,

for some a0 ∈ A.

The computer assisted proof has been done entirely by using the CAPD† package

and took under a second on a single core 3Ghz Intel i7 processor.

† computer assisted proofs in dynamics: http://capd.ii.uj.edu.pl/
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4. Computation of the separatrix value

In this section we will show how we prove Theorem 6. First we will describe the method.

We shall investigate the following ODE

γ′ (t) = (A+B (t)) γ (t) , (36)

and assume that a22, a33 > 0 and that

A =

 0 0 0

0 −a22 0

0 0 −a33

 , B (t) =

 b11 (t) b12 (t) b13 (t)

b21 (t) b22 (t) b23 (t)

b31 (t) b32 (t) b33 (t)

 .

We assume also that there exist constants cb, λ > 0 for which

|bij(t)| ≤ cbe
−λ|t|. (37)

Remark 15. In section 4.3, where we will apply the method to the Shimizu-Marioka

system (11), the constant cb from (37) will be associated with the constant c from

Theorem 5, with the size of the neighborhood of zero in which we investigate the rate

of convergence along the homoclinic, and also on some coordinate changes.

Remark 16. The (36) can be seen as (16) considered in appropriate local coordinates.

This will be our approach when applying the results from this section for the proof of

Theorem 6.

In the sequel in our investigations of the problem (36) we will use the variables

(x, y1, y2) and quite often we will also write y = (y1, y2), so that our coordinates will be

(x, y), where x ∈ R and y ∈ R2.

Our objective will be to obtain a proof of an orbit γ∗ (t) of (36) for which

lim
t→−∞

γ∗ (t) = (x∗−, 0, 0), (38)

lim
t→+∞

γ∗ (t) = (x∗+, 0, 0), (39)

and also to obtain explicit bounds on the fraction
x∗+
x∗−

.

To understand the behavior of (36) for large |t|, we treat the line {(x, 0, 0), x ∈ R}
as the normally hyperbolic manifold, with two stable directions (y1 and y2). This is

clearly visible in (36) with B ≡ 0, but for |t| large B is just a small perturbation so

the normally hyperbolic behavior will survive. A bit problematic in this picture is the

fact that we have here an non-autonomous system, so the above scenario needs some

adjustments. This is the idea, which underlines our approach.

Definition 17. Let Z ⊂ R×R2 and J ⊂ R. Let V : Z → R be a C1 function. We say

that V is a Lyapunov function on J × Z for (36) if for any solution z : J → R× R2 of

(36), V (z(t)) is decreasing ( d
dt
V (z(t)) < 0) for z(t) ∈ Z and t ∈ J .

We have
d

dt
V (z(t)) = ((A+B(t))z(t)|∇V (z(t))). (40)

We start with two technical lemmas:
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Figure 7. The set D from Lemma 18 is the vertical cone. The curved lines are the

level sets of V . The arrows indicate the vector field of (36).

Lemma 18. Let D =
{
‖y‖2 ≥ x2

}
\{0} (see Figure 7). Let J ⊂ R be a set of all t ∈ R,

for which the following condition holds

6cbe
−λ|t| < min (a22, a33) . (41)

Then

V : R× R2 → R,
V (x, y) = ‖y‖2 − x2

is a Lyapunov function for (36) on J ×D.

Proof. For p = (x, y1, y2) we compute (skipping the dependence of bij(t) on t to simplify

the notation): (
(A+B (t)) p|1

2
∇V (p)

)
= − x2b11 + y2

1 (b22 − a22) + y2
2 (b33 − a33)

+ xy1 (b21 − b12) + xy2 (b31 − b13) + y1y2 (b23 + b32)

≤ ‖y‖2 |b11|+
(
y2

1 + y2
2

)
(max (|b22| , |b33|) + max (−a22,−a33))

+
1

2

(
x2 + y2

1

)
(|b21|+ |b12|) +

1

2

(
x2 + y2

2

)
(|b31|+ |b13|)

+
1

2

(
y2

1 + y2
2

)
(|b23|+ |b32|)

≤
[
2cbe

−λ|t| + max (−a22,−a33)
]
‖y‖2

+ cbe
−λ|t| ((x2 + y2

1

)
+
(
x2 + y2

2

)
+
(
y2

1 + y2
2

))
≤
[
2cbe

−λ|t| + max (−a22,−a33)
]
‖y‖2 + cbe

−λ|t| (4 ‖y‖2)
=
[
6cbe

−λ|t| −min (a22, a33)
]
‖y‖2

< 0,

which concludes the proof.
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Figure 8. The set D from Lemma 19 is represented by the two shaded rectangular

strips. The horizontal lines are the level sets of V . The arrows indicate the vector field

of (36).

Lemma 19. Let x0, ρ, r > 0 and let

D = [x0 − 2ρ, x0 + 2ρ]× {‖y‖ ≥ r} ⊂ R× R2.

Let J be a set of t ∈ R, such that

2cbe
−λ|t|

(
1 +

x0 + 2ρ

r

)
< min (a22, a33) , (42)

then

V : R× R2 → R,
V (x, y) = ‖y‖2

is a Lyapunov function for (36) on the set J ×D.

Proof. Let p = (x, y1, y2) and let R2 = y2
1 + y2

2 ≥ r. Note that ±y1y2 ≤ 1
2
R2 and

|y1| , |y2| ≤ R. We can compute (skipping the dependence of bij(t) on t to simplify the

notation) (
(A+B (t)) p|1

2
∇V (p)

)
= (−a22 + b22) y2

1 + (−a33 + b33) y2
2

+ (b23 + b32) y1y2 + b21xy1 + b31xy2

≤ max (−a22 + b22,−a33 + b33)R2

+
1

2
(|b23|+ |b32|)R2 + |b21| |x|R + |b31| |x|R

≤
(
max (−a22,−a33) + 2cbe

−λ|t|)R2 + 2cbe
−λ|t| (x0 + 2ρ)R

≤
[
max (−a22,−a33) + 2cbe

−λ|t|
(

1 +
x0 + 2ρ

r

)]
R2

< 0,

as required.
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Figure 9. The sets Ux,a, U+
x,a and U−

x,a.

Let γ (t) be the solution of (36) with initial condition γ (t0) = p. We shall define

φt0,t (p) := γ (t0 + t) .

Note that

d

dt
φt0,t (p) = (A+B (t0 + t))φt0,t (p) . (43)

Definition 20. Let r > 0, a ≥ 0 and x ∈ R we define sets Ux,a, U
+
x,a, U

−
x,a ⊂ R× R2 by

(see Figure 9)

Ux,a = [x− a, x+ a]×B(0, r),

U+
x,a = [x− a, x+ a]× ∂B(0, r),

U−x,a = ∂ [x− a, x+ a]×B(0, r).

4.1. Behavior for t→ −∞

Below lemma allows us to obtain a bound on x∗− from (38). The idea is to choose some

x∗ ∈ R and an initial condition in Ux∗,0 at an initial time t∗ < 0. If t∗ is small enough,

then the influence of the matrix B (t) on (36) will be small.

Lemma 21. Let us fix x∗ > 0, ρ > 0, r > 0 and t∗ < 0, such that conditions (41), (42)

hold true for x0 = x∗. If

1

λ
cbe
−λ|t∗| (x∗ + 2ρ+ 2r) < ρ, (44)

then there exists a unique point p∗ ∈ Ux∗,0 such that φt∗,t (p∗) is convergent as t→ −∞.

Moreover,

lim
t→−∞

φt∗,t (p∗) =
(
x∗−, 0, 0

)
∈ Ux∗,ρ.

Proof. Since (42) holds for t∗, by Lemma 19 we see that U+
x∗,2ρ is an “entry set” for the

set Ux∗,2ρ (see Figures 8 ,9). What we mean by this statement is that for p ∈ Ux∗,2ρ
and any t0 < t∗ the trajectory φt0,s(p) can not leave the set Ux∗,2ρ by passing through
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U+
x∗,2ρ going forwards in time for s ∈ [0, t∗ − t0]. The only way it can exit is by passing

through U−x∗,2ρ.

We will now show that for p ∈ Ux∗,ρ and any t0 < t∗, the trajectory φt0,s(p) will

never leave Ux∗,2ρ for s ∈ [0, t∗ − t0]. Since we can not exit through U+
x∗,2ρ, we need to

take care so that for s ∈ [0, t∗ − t0] the φt0,s(p) does not reach U−x∗,2ρ. Let us use the

notation

φt0,s (p) = (x (s) , y1 (s) , y2 (s)) ,

As long as |πxφt0,t (p)− x∗| ≤ 2ρ for t ∈ [0, s], we have the following bound (using (44)

in the last inequality)

|πxφt0,s (p)− x∗|

≤ |πxp− x∗|+
∣∣∣∣∫ s

0

b11 (t0 + t)x (t) + b12 (t0 + t) y1 (t) + b13 (t0 + t) y2 (t) dt

∣∣∣∣
≤ ρ+

∫ t∗−t0

−∞
cbe

λ(t0+t) (x∗ + 2ρ+ 2r) dt

= ρ+
1

λ
cbe

λt∗ (x∗ + 2ρ+ 2r)

< ĉ2ρ, (45)

for a fixed ĉ ∈
(

1
2
, 1
)
, which does not depend on s.

∀t0 ≤ t∗, ∀s ∈ [0, t∗ − t0], ‖πxφt0,s(p)− x∗‖ ≤ 2ρ.

This shows that φt0,s will not leave Ux∗,2ρ. Since trajectories from Ux∗,ρ do not leave

Ux∗,2ρ and can not touch U+
x∗,2ρ, we have established that

∀t0 < t∗, ∀s ∈ (0, t∗ − t0], φt0,s(Ux∗,ρ) ⊂ intUx∗,2ρ. (46)

Mirror estimates to (45) together with (44) lead to

|πxφt0,s(p)− πxp| ≤
1

λ
cbe

λt∗(x∗ + 2ρ+ 2r) < ρ,

hence we proved that

|πxφt0,s(p)− πxp| < ρ, ∀t0 < t∗ ∀p ∈ Ux∗,ρ ∀s ∈ [0, t∗ − t0]. (47)

In particular we obtain for any y ∈ B(0, r), for all t0 ≤ t∗ and s ∈ [0, t∗ − t0]

πxφt0,s(x
∗ − ρ, y) < x∗, πxφt0,s(x

∗ + ρ, y) > x∗. (48)

From (46) and (48), due to the topological alignment (see Figure 10) of the sets

φt0,s (Ux∗,ρ) and Ux∗,0, it follows that for any t0 < t∗ there exist points q = q (t0) ∈ Ux∗,ρ
and p = p (t0) ∈ Ux∗,0, such that φt0,t∗−t0 (q) = p and φt0,s (q) ∈ Ux∗,2ρ for s ∈ [0, t∗ − t0].

This implies that

φt∗,t0−t∗ (p) ∈ Ux∗,ρ, (49)

φt∗,s (p) ∈ Ux∗,2ρ for s ∈ [t0 − t∗, 0].

Let pn = p (−n) (by taking t0 = −n).
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Figure 10.

Since Ux∗,0 is compact, we can pass to a convergent subsequence pnk
→ p∗ ∈ Ux∗,0,

and obtain a point for which

φt∗,s (p∗) ∈ Ux∗,2ρ for s ∈ (−∞, 0]. (50)

We now need to show that φt∗,s (p∗) is convergent as s→ −∞.

We first focus on the x coordinate. We will show that for any ε, there exists

an S < 0, such that for any s1, s2 < S holds (the Cauchy condition for the function

s 7→ πxφt∗,s1 (p∗) for s→ −∞)

‖πxφt∗,s1 (p∗)− πxφt∗,s2 (p∗)‖ ≤ ε. (51)

Assume that s1 < s2 and that u = s1 − s2. Then, by estimates analogous to (45),

‖πxφt∗,s1 (p∗)− πxφt∗,s2 (p∗)‖
= ‖πxφt∗,s2+u (p∗)− πxφt∗,s2 (p∗)‖

≤ 1

λ
cbe

s2 (x∗ + 2ρ+ 2r) .

We see that by choosing negative s2, with |s2| sufficiently large, we obtain (51). This

implies the existence of lims→−∞ πxφt∗,s1 (p∗) .

We will now show that

lim
s→−∞

πyφt∗,s (p∗) = 0. (52)

Suppose that this is not the case. Thus, there would exist a δ and a sequence si → −∞
such that

|πyφt∗,si (p∗)| > δ.

Let us choose si negative enough so that the V (x, y) = ‖y‖2 would be a Lyapunov

function on J ×D with J = (−∞, si] and

D = [x∗ − 2ρ, x∗ + 2ρ]×
{
‖y‖ ≥ δ

2

}
.



Existence of the Lorenz attractor in the Shimizu-Morioka system 25

This is possible, since we can apply Lemma 19 provided that condition (42) is satisfied.

The (42) will hold for r = δ
2
, provided that t < T , for T negative enough. Since V is

a Lyapunov function, by going backward in time, for s < si < T , φt∗,s will exit Ux∗,2ρ.

This contradicts (50), hence

lim
s→−∞

πyφt∗,s (p∗) = 0.

We have shown that φt∗,s (p∗) is convergent as s→ −∞, and that the limit lies in Ux∗,2ρ.

The fact that the limit is in fact in Ux∗,ρ follows from (47).

We will now show that the point p∗ is unique. Suppose that we have a second

point p∗∗ ∈ Ux∗,0 for which lims→−∞ φt∗,s (p∗∗) exists. Consider the following time

dependent change of coordinates (t∗+t, ξ = (t∗+t, x, y)−φt∗,t (p∗)), which means that we

just continuously change the location of the origin, by subtracting some solution. Our

equation is linear, hence in new coordinates the equation is the same, ξ′ = (A+B(t))ξ.

Let us take an initial condition ξ (t∗) = p∗∗ − p∗. If p∗∗ 6= p∗, since by construction

p∗∗, p∗ ∈ Ux∗,0, we see that ξ (t∗) ∈ D =
{
‖y‖2 > |x|

}
. Since we assumed that for t∗

condition (41) holds, it also holds for all t < t∗. By Lemma 18, this means that for s < 0,

ξ (t∗ + s) stays inside D. Moreover, since V (x, y) = ‖y‖2 − x is a Lyapunov function,

ξ (t∗ + s) must tend to infinity as s → −∞. Since ξ (t∗ + s) = φt∗,s (p∗∗) − φt∗,s (p∗),

this means that we can not have both p∗∗ 6= p∗ and φt∗,s (p∗∗) convergent. We have thus

shown that p∗ is the only point in Ux∗,0 for which the limit exists.

Corollary 22. If we consider t∗ = 0, x∗ = 1, r = ρ, and when

0 < λ− 4cb,

0 < min (a22, a33)− 6cb,

r > max

(
cb

λ− 4cb
,

2cb
min (a22, a33)− 6cb

)
,

then assumptions of Lemma 21 are satisfied.

4.2. Behavior for t→∞

We now consider a point in Ux∗∗,0 with initial time t∗∗ > 0.

Lemma 23. Let us fix x∗∗ > 0, ρ > 0, r > 0 and t∗∗ > 0, such that conditions (41),

(42) hold true for x0 = x∗∗.

If

1

λ
cbe
−λt∗∗ (x∗∗ + 2ρ+ 2r) < ρ,

then for any p∗∗ ∈ Ux∗∗,0 the φt∗∗,t (p∗∗) is convergent as t→ +∞. Moreover,

lim
t→+∞

φt∗∗,t (p∗∗) =
(
x∗∗+ , 0, 0

)
∈ Ux∗∗,ρ. (53)

Proof. The proof follows analogous in steps as the proof of Lemma 21. Since (42) holds

for t∗, by Lemma 19 we see that U+
x∗∗,2ρ is an “entry set” for the set Ux∗∗,2ρ (see Figures
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8 ,9). By a similar derivation to (45) we can establish that trajectories from Ux∗,0 do

not leave Ux∗,ρ,

φt∗∗,s(Ux∗,0) ⊂ Ux∗∗,ρ for all t > 0.

Using the same method (but taking the limit to +∞ instead of −∞) as for the proof

of (51) we can show that we have convergence of πxφt∗∗,t (p∗∗) as t goes to +∞ for any

p∗∗ ∈ Ux∗∗,0.

We need to show that

lim
s→+∞

πyφt∗∗,s (p∗∗) = 0. (54)

Suppose that this is not the case. Then there would exist a δ and a sequence si → +∞
such that

|πyφt∗∗,si (p∗∗)| > δ. (55)

Let us choose T positive enough so that V (x, y) = ‖y‖2 would be a Lyapunov function

on [T,+∞)×D, for

D = [x∗∗ − 2ρ, x∗∗ + 2ρ]×
{
‖y‖ ≥ δ

2

}
.

This is possible, since we can apply Lemma 19 provided that condition (42) is

satisfied. The (42) will hold for r = δ
2
, provided that T < t, for T large enough.

Since V is a Lyapunov function, by going forwards in time φt∗∗,s (p∗∗) will enter

[x∗∗ − 2ρ, x∗∗ + 2ρ]×
{
‖y‖ < δ

2

}
and once it enters, it will remain there. This contradicts

(55), hence we have established (54).

Corollary 24. Consider t∗∗ = 0. If

0 < min (a22, a33)− 6cb,

0 < λ− 2cb,

and

ρ <
1

2

[
r

(
1

2cb
min (a22, a33)− 1

)
− x∗∗

]
,

ρ >
cb (x∗∗ + 2r)

λ− 2cb
,

then assumptions of Lemma 23 are satisfied.

Lemmas 21, 23 lead to the following algorithm for establishing bounds for x∗− and

x∗+:

Algorithm 2:

(i) Fix r, ρ > 0 and choose t∗ < 0 small enough to satisfy assumptions of Lemma 21.

The Lemma 21 then ensures that

x∗− ∈ [x∗ − ρ, x∗ + ρ] .
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(ii) By rigorous numerical integration, evaluate the bound for φt∗,t(Ux∗,0). The t > 0

needs to be chosen large enough so that t∗∗ = t∗+ t satisfies assumptions of Lemma

23. The t also needs to be large enough so that φt∗,t(Ux∗,0) ⊂ Ux∗∗,b, for some b > 0.

(iii) By Lemma 23 limt→+∞ φt∗,t (p∗) ∈ Ux∗∗,b+ρ. This ensures that

x∗+ ∈ [x∗∗ − b− ρ, x∗∗ + b+ ρ] .

We then have the following bound:

x∗+
x∗−
∈
[
x∗∗ − b− ρ
x∗ + ρ

,
x∗∗ + b+ ρ

x∗ − ρ

]
.

4.3. Application to the Shimizu Morioka system

In this section we prove Theorem 6. We will consider a matrix P consisting of the

eigenvectors of (17), of the form

P =

 1 a0 + 1 0

−1 1 0

0 0 1

 . (56)

Thus, P is transition from the eigenvectors basis to the standard one. In coordinates γ

given by η = Pγ, the ODE (16) takes form

γ′ = (A+B (t)) γ, (57)

for

A =

 0 0 0

0 − (a0 + 2) 0

0 0 −a0

 .

B (t) =
a0 + 1

a0 + 2

 −Z0 (t) Z0 (t) −2X0(t)
a0+1

−Z0 (t) Z0 (t) −2X0(t)
a0+1

− (a0 + 2)X0 (t) (a0 + 2)X0 (t) 0

 . (58)

Since a0 ≈ 1.72 from the bound on X0 (t) , Y0 (t) , Z0(t) from Theorem 5 by (58),

we see that each coefficient bij (t) of the matrix B (t) is bounded by

|bij (t)| ≤ (a0 + 1) 3.5e−ξ|t| ‖(X0 (0) , Y0 (0) , Z0(0))‖ for t ≤ 0,

|bij (T + t)| ≤ (a0 + 1) 3.5e−ξt ‖(X0 (T ) , Y0 (T ) , Z0(T ))‖ for t ≥ 0.

This finishes establishing the needed ingredients for Algorithm 2.

Below is the bound on the set U1,ρ from Lemma 21,

U1,ρ =

 [0.99984336210766, 1.0001566378923]

[−0.00015663789234007, 0.00015663789234007]

[−0.00015663789234007, 0.00015663789234007]

 .

By Lemma 21, there is a point in U1,0, that converges to (x∗−, 0, 0) ∈ U1,ρ. We therefore

take the set U1,0 as the initial point from which we integrate (57) forward in time. A

bound on all trajectories that start in U1,0 is depicted in Figure 11. (We make also the
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Figure 11. The computer assisted bound on the heteroclinic trajectory of (57).
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Figure 12. The computer assisted bound on the heteroclinic trajectory of (16).

same plot in coordinates η in Figure 12.) A trajectory from such enclosure makes a loop,

to finish at time T closer to the origin, in a cubical enclosure Γ = Γ1 × Γ2 × Γ3 ⊂ R3.

We use Γ to compute the bound on the set UΓ1,ρ from Lemma 23, obtaining

UΓ1,ρ ⊂

 [0.62606812264791, 0.62663392848044]

[−5.3960913395776e− 05, 5.3960913395776e− 05]

[−5.3960913395776e− 05, 5.3960913395776e− 05]

 .

By Lemma 23, there exists a point (x∗+, 0, 0) ∈ UΓ1,ρ and a trajectory γ(t) of (57), for

with

lim
t→−∞

γ(t) = (x∗−, 0, 0),

lim
t→+∞

γ(t) = (x∗+, 0, 0).

From the fact that limt→±∞ η (t) = limt→±∞ Pγ (t), we obtain the claim of Theorem 6.

The computer assisted proof has been done entirely by using the CAPD‡ package

and took under a second on a single core 3Ghz Intel i7 processor.

‡ computer assisted proofs in dynamics: http://capd.ii.uj.edu.pl/
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5. Appendix

5.1. Proof of Theorem 11

Before we give the proof, we introduce some auxiliary tools.

Let

Ju (z, L) = {(x, y) ∈ Ru × Rs : ‖πyz − y‖ ≤ L ‖πxz − y‖} .

The set Ju (z, L) defines a cone of slope L, centered at z. Below theorem establish cone

alignment for a map φ, which satisfies certain bounds on its derivative.

Theorem 25. [29, Theorem 27] Let U ⊂ Ru×Rs be a convex neighborhood of zero and

assume that φ : U → Ru × Rs is a C1. If for M > 0

v ≥ sup
z∈U

{∥∥∥∥∂φy∂y (z)

∥∥∥∥+
1

L

∥∥∥∥∂φy∂x
(z)

∥∥∥∥} ,
ζ ≤ m

[
∂φx
∂x

(U)

]
− L sup

z∈U

∥∥∥∥∂φx∂y (z)

∥∥∥∥ ,
and

ζ

v
> 1,

then for z ∈ U

φ (Ju (z, L) ∩ U) ⊂ intJu (φ (z) , L) ∪ {φ (z)} . (59)

Note that if the vector field (26) satisfies condition −→µ < 0 <
−→
ξ , then by Theorem

12, for sufficiently small h > 0, and for µ (h) and ξ (h) defined in (31–32), the

v = µ (h) , ζ = ξ (h) ,

will satisfy the assumptions of Theorem 25 for M = L. This will imply (59) for φ = Φh,

for the flow Φ induced by (26).

We now give the sketch of the proof of Theorem 11.

Proof of Theorem 11. The proof of the theorem follows from a mirror argument to the

proof of Theorem 30 from [27]. The one important difference is that the result from

[27] is written in the context where in addition to the hyperbolic directions x, y, we also

have a center coordinate. Here such coordinate does not exist, which allows us to obtain

better bounds on the slope of the established manifold. Also, due to the lack of the

center coordinate, we have less inequalities in the assumptions of our theorem compared

to [27]. Instead of repeating the proof of Theorem 30 from [27] we refer the reader to

the source, and will focus here on the Lipschitz bounds of the manifold, which is the

improvement of the current result over [27].

The proof of Theorem 30 from [27] follows from a graph transform method [29].

We start with a flat function

Bu (R) 3 x→ 0 ∈ Bs (R) , (60)
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and propagate it using the graph transform method. The manifold W u is obtained by

passing to the limit. Theorem 30 from [27] ensures that W u is a graph of the function wu,

meaning that we have (30). (We refer the reader to [27] for the proof of this procedure

that is just outline here.) We will focus here on the Lipschitz bounds obtained at the

limit. From [27] we would obtain directly the Lipschitz bound 1/L, but here we will

show that the bound (due to lack of the center coordinate) is in fact L.

The important issue is that (29) ensures that the assumptions of Theorem 25 are

satisfied (with M = L,) for the map z → Φh (z) , by taking v = µ (h, L), ζ = ξ (h, L)

and sufficiently small h > 0. This means that the cones Ju are preserved along the flow

in the sense of (59); i.e. that

Φh (Ju (z,M) ∩ U) ⊂ intJu (Φh (z) ,M) ∪ {Φh (z)} .

For any x ∈ Bu (R) the graph of (60) is inside of the cone Ju ((x, 0) , L). The graph

of (60) after propagating by Φh using the graph transform, will also be contained in

cones Ju. This implies that, after passing to the limit with the graph transform, for any

x1, x2 ∈ Bu (R)

(x1, w
u (x1)) ∈ Ju ((x2, w

u (x2)) , L) ,

hence

‖wu (x2)− wu (x1)‖ ≤ L ‖x1 − x2‖ .

This means that wu is Lipschitz with constant L, as required.
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