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Abstract. We present a methodology for computer-assisted proofs of Shil’nikov homoclinic intersections. It is
based on geometric bounds on the invariant manifolds using rate conditions, and on propagating the
bounds by an interval arithmetic integrator. Our method ensures uniqueness of the parameter for
which the homoclinic takes place. We apply the method for the Lorenz-84 atmospheric circulation
model, obtaining a sharp bound for the parameter, and also for where the homoclinic intersection of
the stable/unstable manifolds takes place.
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1. Introduction. A class of three-dimensional systems with a homoclinic orbit for a three-
dimensional saddle-focus equilibrium point was studied by Shil’'nikov in a series of papers (see,
for example, [38, 39, 40]). The homoclinic (usually called the Shil’nikov homoclinic orbit) can
bifurcate in a simple as well as in a chaotic way. The type of bifurcation depends on the
saddle quantity, a constant derived from the eigenvalues of the linearized vector field at the
fixed point. If the saddle quantity is negative, then a unique and stable limit cycle bifurcates
from the homoclinic orbit. (This is called the simple Shil’'nikov bifurcation.) If it is positive,
then there occurs infinitely many periodic orbits of saddle type, and one speaks of the chaotic
Shil’nikov bifurcation (see also [27]). Shil'nikov homoclinics are important, since they lead to
interesting dynamics. For instance, when combined with the study of the separatrix value, one
can infer from them the existence of a Lorenz-type attractor in the system [41].

Detecting Shil’'nikov homoclinic intersections analytically is difficult, since in most systems
of interest the ODE does not have a closed-form solution. In this paper we present a computer-
assisted approach for such proofs. The method is based on computer-assisted estimates on
the stable and unstable manifolds and their propagation using a rigorous, interval arithmetic
integrator along the flow. To apply our method, one first needs a good numerical understanding
of the problem. In particular, one needs to investigate the shape of the manifolds in question
and find the approximate value of the parameter for which their intersection exists. Our
method can be viewed as an a posteriori validation that the true intersection parameter is
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contained within an interval enclosure of the numerically established value.

Our estimates for the invariant manifolds are based on the method of rate conditions from
[9, 10]. These are related to the rate conditions of Fenichel [12, 13, 14, 15]. The difference
is that we derive our rate conditions based on the estimates on the derivative at a (large)
neighborhood of a normally hyperbolic manifold (in this paper this manifold will be a family
of hyperbolic fixed points), and not at the manifold as is done by Fenichel. Since our estimates
are more global, we are able to establish existence and obtain explicit bounds on the invariant
manifolds within the investigated neighborhood.

The bounds on the manifolds are then propagated along the flow using an interval arith-
metic integrator. For the proof of a homoclinic intersection, we use a standard shooting argu-
ment, which is based on the Bolzano intermediate value theorem. We also keep track of the
dependence of the manifolds on the parameter, which leads to a uniqueness argument for the
intersection.

In our approach we use cone-type estimates that follow from rate conditions [9, 10] to
establish rigorous bounds on the position of the manifolds, their slope, and their dependence
on the parameter. There is another approach for doing this, which is based on the parame-
terization method [6, 7, 8, 22, 23, 24]. This method provides a powerful tool for numerical
computation of stable/unstable manifolds of invariant objects. It can be applied to hyperbolic
fixed points (which would fit the setting of our paper) or to normally hyperbolic invariant
manifolds. The method is also suitable for computer-assisted proofs and has been successfully
applied in the context of hyperbolic fixed points [2, 29, 33, 34], periodic orbits [3, 5, 18], or
whiskered tori [16, 17]. (Here we have made just a short selection of related papers; a good
overview of the references associated with the method can be found in the monograph [22].)

To demonstrate that our method is applicable we implement it for the Lorenz-84 system
[30]. We make a list of conditions that need to be verified in order to obtain the existence and
uniqueness of the intersection, and then validate them. The bounds obtained by us are quite
sharp. We establish the intersection parameter with 10=° order of accuracy, and the region
where the intersection takes place with 1077 order of accuracy. The Lorenz-84 model serves
only as an example. Our method is general and can be applied to other systems.

The only other computer-assisted proof of Shil’'nikov homoclinics known to us is the work
of Wilczak [43]. This method uses a topological shadowing mechanism, which stems from the
method of covering relations [19, 20] (referred to also in the literature as “correctly aligned
windows”) and Lyapunov function—type arguments close to the fixed points. Our method is
different. We rely on explicit estimates on the manifolds and their slopes, which are derived
from rate conditions. Our method implies that the intersection parameter is unique within
the given range. The uniqueness was not investigated in [43]. In [43] it is shown that in the
investigated system there is an infinite number of Shil’'nikov homoclinics, which are derived
from symbolic dynamics. We focus on a simpler setting where the intersection is unique.

The paper is organized as follows. Section 2 contains preliminaries. In section 3 we intro-
duce the Lorenz-84 model. Section 4 contains the proof for Shil’'nikov-type bifurcations. The
proof is based on an assumption that within the investigated neighborhood of the family of
hyperbolic fixed points we have estimates on their invariant manifolds. We discuss how to
obtain such estimates in section 5. This is based on the rate conditions method from [10, 9],
adapted to our setting. In section 6 we extend the method to obtain bounds on the dependence
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of the manifolds on the parameter of the system. Finally, in section 7, we apply our method
for the Lorenz-84 system.

2. Preliminaries.

2.1. Notations. Throughout the paper, all norms that appear are standard Euclidean
norms. We use the notation By (p, R) to denote a ball in RF of radius R centered at p. We use
the shorthand notation By, (R) for a ball or radius R in R¥ centered at zero. For a set A C R¥,
we use A to denote its closure and OA for its boundary, intA for its interior, and A€ for the
complement. For a point p = (z,y) we use m;p and m,p to denote projections onto = and y
coordinates, respectively. We use the notation (v|w) to denote the scalar product between two
vectors v and w.

2.2. Interval Newton method. Let X be a subset of R”. We shall denote by [X] an
interval enclosure of the set X, that is, a set

[(X] = I} [a;, b)] CR",
such that

X C [X].

Let f:R™ — R" be a C! function and U C R™. We shall denote by [Df(U)] the interval
enclosure of a Jacobian matrix on the set U. This means that [Df(U)] is an interval matrix
defined as

. Ofi Of; .
_ nxn L. —
[Df(U)] = {A e R"™"A4;; € L}lgg oz, (a:),ilqu) oz, (x)| foralli,j=1,... ,n} .

Theorem 1 (interval Newton method; see [1]). Let f : R® — R™ be a C' function, and let
X =17 [ai, bi] with a; < b;. If [Df(X)] is invertible and there exists an xg in X such that

N (w9, X) := x0 — [DF(X)] " f(xo) € X,
then there exists a unique point x* € X such that f(z*) = 0.

Consider now f : R" x R — R™, with the notation f(z,8) € R" for z € R" and 6 € R. For
U C R™ and I C R we shall use the notation [D, f(U,I)] for an n x n interval matrix of the
form

. dfi of; .
— nxn L. _
[D.f(U,I)] = {A e R™"A4;; € Lell%el oz, (x70)7:c68(1]l,gel oz, (,0)| fori,j=1,.. .,n} .

Below theorem is a well-known modification (see, for instance, [36, p. 376]) of the interval
Newton method, which includes a parameter.

Theorem 2. Let f : R xR — R"™ be a C! function, let X = T, [a;,b;] C R", with a; < b;,
and let I = [c,d] C R, with ¢ < d . Consider xo € intX and

N (20, X, 1) = g — [Duf (X, D] [f (20, 1)].-
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If
N (x9,X,I) C intX,

then there exists a function p: I — X such that F (p(0),6) = 0.
Remark 3. By the implicit function theorem, p (6) is as smooth as f.

2.3. Interval arithmetic enclosure for eigenvalues and eigenvectors. The interval New-
ton method can be applied to find the eigenvalues and eigenvectors of a matrix.
Let A be an n x n real matrix. In this section we outline how to solve

(1) Az = Az.
We consider two cases. In the first, both A and = will be real, and in the second complex:

A= p+iw,

T = Tre + 1Tim-

In the first case, we fix the first coordinate 1 of x = (x1,%) and treat # € R" ! as a
variable. (We can also set some other coordinate to be fixed if needed.) We define f : R” — R"
as

f(\Z) = Az — Ax.

We see that solving f (A, Z) = 0 is equivalent to (1). A solution of f(A,Z) = 0 can be
established using the interval Newton method (Theorem 1).

In the second case, we can consider Tye = (Zre1,Zre) and Tim = (Tim,1,Tim), treating
Fre, Tim € R™1 as variables and Tre,1, Tim,1 as fixed parameters. (We can also fix some other
coordinate than the first if needed.) We can consider f : R?" — R?" defined as

~ - A . .
f(p>$re,w,$im) = ( Tre — PTre + WTim ) .

AZim — PTim — Wre

Clearly f (p, Zre,w, Tim) = 0 is equivalent to (1), and the solution can again be established
using the interval Newton method.

2.4. Linear approximation of solutions of ODEs. In this section we present a technical
lemma. Consider an ODE

P = f(p),

where f : R" — R" is C'. Let ®; be the flow of the above system.

Lemma 4. Let U C R" be a convex compact set. Then there exists a constant M > 0 such
that for any t > 0 and any p,q € R™ satisfying

{®-s(p),®-5(q) : 5 €[0,8]} C T,
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we have

P_(p) — 2-i(q) =p—q—tC(p—q) +9(t,p,q)
for some matriz C € [Df (U)] (which can depend on p, q, and t)and some g satisfying

lg(t,p,q)|| < Mt |p—ql|.

Proof. The proof is given in the appendix. |

Remark 5. In Lemma 4 we move backwards in time along the flow. We set this up in this
way, because later on in our application we will use the lemma in the context of unstable
manifolds, where, moving back in time along the flow, we will converge towards a fixed point.

2.5. Logarithmic norms. Let us begin by defining some matrix functionals that will be
used in further proofs. Let ||-|| be a given norm in R™. Let A € R™*™ be a square matrix. By
m(A) we will denote the following matrix functional:

m(A)= min |[Az].

z€R™ ||2]|=1
Definition 6. The logarithmic norm of A, denoted by l(A) in [32, 11, 21, 28], is defined as
L+ RA| - [T
2 (A) =1 .
@ ()= Jim 2=
Moreover
. m(I+hA)— ||
3 Ay =1
® m(d) = i, =

will be called the logarithmic minimum of A.

Lemma 7. If ||-|| is the Euclidean norm, then the following equalities hold:
(4) I(A) = max{\ € spectrum of (A+ A")/2},
(5) my(A) = min{\ € spectrum of (A+ AT)/2}.

Remark 8. FEquality (4) is a well-known result (see, for instance, [21]). Equation (5) is
proven in [9].

Corollary 9. From Lemma 7, we see that mi(—A) = —1(A).

Lemma 10 (see [9]). Consider the Euclidean norm ||-||. Let W C R™ ™ be a compact set,
and let tg > 0. Then for any t € (0,ty] and A € W the following equality holds:

I +tA|| =1+tl(A)+r(t,A),

where

Ir(¢, A)ll < CF?
for some constant C' = C(tg, W).
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Lemma 11 (see [9]). Consider the Euclidean norm ||-||. Let W C R™ ™ be a compact set,
and let tyg > 0. Then for any t € (0,tg] and A € W the following equality holds:

m(l +tA) =1+ tmy(A) +r(t, A),
where
Ir(t, A)l| < C#

for some constant C' = C(tg, W).

3. Lorenz-84 atmospheric circulation model. The Lorenz-84 model was introduced by
Lorenz in [30]. It is a low-order model for the long-term atmospheric circulation. It is consid-
ered as the simplest model capable of representing the basic features of the so-called Hadley
circulation. Therefore, it has been widely used in meteorological studies. The detailed analysis
of this model can be found in [42]. The model equations are

X =-Y?-22—aX +aF,
(6) Y =XY -bXZ-Y +G,
Z=bXY +XZ-Z,

where variable X represents the strength of the globally averaged westerly wind current, and
variables Y and Z are the strength of the cosine and sine phases of a chain of superposed waves
transporting heat poleward. F' and G represent the thermal forcing terms, and the parameter
b stands for the advection strength of the waves by the westerly wind current. The coefficient
a, if less than 1, allows the westerly wind current to damp less rapidly than the waves. The
time unit is equal to the damping time of the waves and is estimated to be five days.

In their paper [37], Shil’nikov, Nicolis, and Nicolis carry out a detailed bifurcation analysis
for the Lorenz-84 model with parameters a and b set to classical values % and 4, respectively
(these values were also considered in many other works; see, for example, [4, 30, 31]). The
authors identify the types of the equilibrium points depending on the choice of the domain
for the parameters F' and G. They show that the problem has either one, two, or three
equilibrium points. If parameters F' and G are chosen from a proper domain, one of the fixed
points, denoted in [37] as Oy, is saddle-focus. The paper [37] presents numerical calculations
suggesting the existence of the homoclinic orbit passing through O; that is possessed by the
system for F' ~ 4.0 and G ~ 0.08. The homoclinic is depicted in Figure 1.

Following Shil'nikov et al. [37], we set the parameters a = i and b = 4. In upcoming
sections we will use our method to rigorously enclose the stable and unstable manifolds, and
to validate the existence of a homoclinic orbit for saddle-focus fixed point O;. We prove that
such an orbit exists for F' = 4, and some G, where

(7) G € [0.0752761095,0.07527611625] .

Moreover, we show the uniqueness of such G in the interval (7).
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Figure 1. The Shil’nikov homoclinic in the Lorenz-84 model for F = 4.0 and G ~ 0.08.

4. Establishing Shil’'nikov homoclinics. Let us consider the three-dimensional system
given by the ODE

(8) P =f(.0),

where f : R? x R — R3? is C1, and § € © is a parameter, with © = [0;,60,] C R. Let ®;(p,0)
be the flow induced by (8).

Suppose that for § € © system (8) has a smooth family of hyperbolic fixed points pj;, with
two-dimensional stable and one-dimensional unstable eigenspace.

Below we present a theorem which allows us to prove the existence of a homoclinic orbit
in the system. First we need to introduce some notation.

Let By (R) = [-R,R] C R, let Bs(R) C R?, and let

D =B,(R) xB;(R) cR?

be a neighborhood of the smooth family of fixed points, meaning that we assume pj € intD
for any 6 € ©. The set D will be fixed throughout the discussion. We denote by W' the local
unstable manifold of py in D and by W the local stable manifold of pj in D, i.e.,

(9) Wg‘:{peD:¢t(p,0) € D for t <0 and tlir_n @t(p,e):pg},
(10) Wj—{pED:@t(p,Q) € D for t > 0 and tligrn @t(p,Q)—pg}.

We assume that W' and Wy are graphs of the C' functions

w": By (R) x © — B (R),
w®: Bs (R) x © — B, (R),

meaning that (see Figure 2)
Wy ={(z,w" (2,0)) : x € Bu (R)},

(11) Wi = {(* (1,0),9) 1y € By (R)}.
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Figure 2. The local unstable manifold Wg' (in red) and the local stable manifold W3 (in green).

Figure 3. We have the one-dimensional unstable manifold of p; (in red) and the two-dimensional local
stable manifold W3 in D (in green). The h(0) is the signed distance along the x coordinate between W§ and
D7 (py,0); this is the distance along the dotted line on the plot.

Let
(12) Py = (R,w" (R, 0)) € R3.
Consider T' > 0 and assume that for all § € ©, &7 (p},0) € D. Let us define
h:®—R
as
(13) h(0) = m2®r (g, 0) — wi(my@r (g, 0))-

We now state a natural result, that i () = 0 implies an intersection of the stable and
unstable manifolds of pj. (See Figure 3.)

Theorem 12. If
(14) h(6;) <0 and h(6,) > 0,

then there exists a 1 € © for which we have a homoclinic orbit to pfp.
Moreover, if, for all 6 € ©, K/ (0) > 0, then 1 is the only parameter for which we have a
homoclinic orbit satisfying ®; (pg,0) € D for allt > T.
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Proof. Since w*, w® are C*, so is h. From (14), by the Bolzano intermediate value theorem,
it follows that there exists a ¢ € © for which & (¢) = 0. Let ¢ = ®7(p}}, ¥). Since h () = 0,

(15) ¢ = (ma,myq) = (w}(mya), my0) -

Since Py, € WH, clearly g = @ (pz, 1) belongs to the unstable manifold of p;';}. All points of the
form (wy(y),y) belong to the stable manifold of pj; hence by (15) so does g, and the stable
and unstable manifolds intersect at q.

If ' (6) > 0 for all § € ©, then 1) is the only parameter for which h is zero; hence for all

07,

WI(I)T (pg’ 9) 7é w;(ﬂ-y(I)T (pga 0))

By (11), this implies that for 8 # v, &1 (pg,0) ¢ Wj. By (10) this means that for some t > T,
P, (p§,0) ¢ D, or that we do not have a homoclinic for this parameter. |

Remark 13. The inequalities in (14) and the sign of h' in Theorem 12 can be reversed.
Then the proof follows from mirror arguments.

Remark 14. If the stable and unstable manifolds intersect, then this intersection must be
nontransversal. This is because if there is an intersection, then the unstable manifold must lie
on the stable manifold. Thus, the tangent vectors to the manifolds do not span R3.

To apply Theorem 12, we need to be able to compute estimates on h and its derivative.
We note that obtaining a rigorous bound on a time shift map &7 along the flow, and on its
derivative, can be computed in interval arithmetic using the CAPD' package. To compute h
and its derivative it is therefore enough to be able to obtain estimates on w", w®, and their
derivatives. We discuss how this can be achieved in interval arithmetic in sections 5 and 6. We
use these, together with Theorem 12, to provide a computer-assisted proof of a homoclinic
intersection in the Lorenz-84 model in section 7.

5. Bounds on unstable manifolds of hyperbolic fixed points. Consider an ODE

(16) q = f(a),

and let

D =B, (R) x Bs(R) C R* x R®.

The results of this section are more general than the previously considered ODE in R3,
and here u, s can be any natural numbers. We use a notation x € R* to stand for the unstable
coordinate and y € R® for the stable coordinate. For us it will be enough if these coordinates
are “roughly” aligned with the eigenspaces of a fixed point. (We do not need to work with
precisely linearized local coordinates.) We write f(z,y) = (fz(x,v), fy(x,vy)), where f, is the
projection onto R* and f, is the projection onto R®.

!Computer-assisted proofs in dynamics available as the supplemental file M107995_01.zip [local/web
9.16MB] and also from http://capd.ii.uj.edu.pl/.
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Let L > 0 be a fixed number. We define
m=sp 1 (Gr) + e}
UG C)RS FACIE
e=mi (5 0) - 13 H‘% )

ZGD

Definition 15. We say that the vector field f satisfies rate conditions in D if
(17) 1 < 0< 67

(18) p2 < €.

Definition 16. We say that D = B, (R) x Bs(R) is an isolating block for (16) if the
following hold:
1. For any q € OB, (R) x Bs(R),

(fo(QNﬂ'xQ) > 0.
2. For any q € By, (R) x 0B (R),

(my f(q)|myq) <O
Definition 17. We define the unstable set in D as

={z: ®y(2) € D for all t < 0}.

Theorem 18. Assume that f is C' and satisfies rate conditions. Assume also that D =
By (R) x Bs (R) is an isolating block for f. Then the set W is a manifold, which is a graph
over B, (R). To be more precise, there exists a function

w" : By(R) — Bs(R),
such that

W ={(z,w"(@)) : 2 € Bu(R)} .
Moreover, w" is Lipschitz with constant L and for C = 2R (1 + 1/L) for any p1,p2 € W4,
(19) [®_¢ (p1) — B (p2)|| < Ce™™ for all t > 0.

Proof. The result follows directly from Theorem 30 from [9]. Theorem 30 in [9] is written
in the context where, apart from x,y, we have an additional “center” coordinate, which is
not present here. This is why the number of constants and rate conditions (17)-(18) for
Theorem 18 is smaller than the number of constants and associated inequalities needed in
[9]. The conditions (17)—(18) imply all the needed assumptions of Theorem 30 from [9] in the
absence of the center coordinate. |
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In above theorem we ignore (fix) the parameter. The result can be extended to include
the parameter as follows.

Theorem 19. Consider a parameter-dependent ODE

P = f(p,0)

for 6 € ©. Assume that the system has a smooth family of hyperbolic fized points pj. Assume
that for each (fized) 0, the vector field satisfies the assumptions of Theorem 18. Then the
family of unstable manifolds Wy' (as defined in (9)) of pj is given by a graph of a function

w" : By (R) x © — B, (R)

(meaning that Wy = {(x,w“(x, 0)):z € By (R)}), which is as smooth as f.

Proof. The existence of w" follows from Theorem 18. We need to justify its smoothness.
From the classical theory (see, for instance, [25, 26, 35]), we know that in a small neighbor-
hood U of {(p;,0)|0 € O} (considered in the state space, extended to include the parameter),
the family of local unstable manifolds exists and is as smooth as f. Condition (19) ensures
that the local manifold is propagated along the flow in the extended space to span the set
D x O. Since ®; is as smooth as f, this establishes the smoothness of w". |

Remark 20. In this section we have focused on the unstable manifold. This method can also
be applied to obtain bounds on a stable manifold. To do so one can simply change the sign of
the vector field.

6. Dependence of the unstable manifold on parameters. In this section we consider the
ODE of the form

(20) v = f(p,0)

depending on the parameter § € O, where p € R¥ x R and f : R* x R® x © - R* x R is a
C' function, with

f(x7y79) = (fz(x,y,H),fy(a?,y,H)).

Our aim now is to examine the nature of the dependency of function w", which parametrizes
the unstable manifold in the statement of Theorem 18, on parameter 6.
Let our coordinates be (z,y,0) € R* x R® x R, and let us consider the following sets:

Js (g, M) = {(2,9,0) : |7z,0q9 — (2,0)]| <M [|myq —yl},
qu ((LM) = {(l‘,y,e) : ||7qu - y” < M H7Tx79q - (l’,9)||},

where ¢ € R* x R®* x R and M > 0. These sets represent cones, depicted in Figure 4. Note
that we have

(21) (Jew (g, 1/M)) = intJ, (¢, M).
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0

s\4q, MZ)

Figure 4. The cones Js(q, M1) and Js(q, M2) for My =1 and Mz = 3.

Let us consider an ODE given by (20) in the state space extended by parameter, that is,

(22) (x,ayla 91) - (fx (a:,y, 0) ) fy (-r’y’H) ’ f&(x7y76)) )

where fy(z,y,0) = 0. Let ®4(x,y,0) be the flow induced by (22).
Let D = B, (R) x Bs(R) C R* x R®, and let us define

D=Dx06
and the following constants:
(23) n 0 =1 (G @) + 31 5202 @)
con-m($5250) |22 0]

Our objective will be to prove the following theorem.

Theorem 21. Consider that the assumptions of Theorem 19 hold and that M > 0 is such
that

(M) <0 and  &(M) > p(M).

Then

owY
< ]
H o0 || <M

The proof of the theorem will be given at the end of the section. To show the result we
shall need two technical lemmas.

Lemma 22. Assume that M > 0 is such that

p(M) <0 and  E(M)>pu(M).
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Then there exist a ¢ > 0 and ty; > 0 such that for any ¢ € D and p € Js (¢, M) ND, p # q,
as long as {®_¢(p), P_¢(q) : t € [0,trp]} C D, the following inequality holds:

(25) [y (Bt (p) = Pt (@) > (1 +ct) [lmy (p— )|
for any t € (0,tprr). Moreover
(26) Py (p) € Js (P-s(q), M).
Proof. Take any ¢ € D and p € Js(¢, M) ND, p # q, and let t > 0 be such that
[0_4(p),®_y(q) : s € [0,8]} € D.
Since p € J, (¢, M),

(27) 720 (0 — Il < M ||y (p — )| -

As a consequence

(28) lp = all < VM2 + 1wy (p — g)| -
Therefore since p # ¢ we must have
Iy (p — @)l # 0.
On the other hand, from Lemma 4 it follows that for some A € [% (D)] and B €
(o0 ()]

Ty (2t (p) = 1 (q) = my (p — q) — tATy (p — @) = tBmep (P — q)
+ ﬂ-yg(tvpu q)a
where g satisfies ||g(t, p,q)|| < 71t%||p — q|| for some constant 41 > 0. Observe that from (28)

we have |g(t,p, q)|| < n1t?||my(p — q)||. From the above, and by using (27) in the second line,
Lemma 11 in the third line, Corollary 9 in the fourth line, and (23) in the last line, we obtain

[y (Bt (p) = Pt (@) = [(Id = tA) 7y (p — @) || = L[| B/ [|7z0 (0 — @)

—t? |y (p — q)
> (m(Id —tA) —tM || B])) ||lmy (p — )|

- ’71t2 ||7Ty(p - Q)H
= (1 +tmy (=A) — tM [|B]]) [|my (p — 9l

—t? ||y (p — 9|
= (1+¢(=1(A) = M|IB])) |7, (= 9)|
— Yot? ||y (p — )|
(29) > (1= tu (M) = %82 [|my (p = 9)]],
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where, in light of Lemma 11, the third inequality is satisfied for any ¢ € [0, to], where ty > 0.
Taking a fixed ¢ € (0, —p (M)), we see that there exists t3; > 0 (independent of p and ¢) such
that for any t € (0,t)

[y (Bt (p) = Pt (@) > (1 + ) [Imy (p— @),

which proves (25).
Again from Lemma 4, we know that for some A € [a(J;I; (D)] and B € [afz 2 (D) |

=~

Tep (Pt (p) — P4 (q) = a9 (p—q) —tAT 9 (p —q) — tBmy (p — q)
+ 72,09(t D, q)-

Hence, using (27) in the second line, Lemma 10 in the third line, Corollary 9 in the fourth
line, and (24) in the last line,

17260 (2t (p) = @t (@) < 1d = tA[ [|mz0 (p = O + [ B |7y (2 = @)l

+ it ||lmy(p — 9|
< (1d —tA|| M +t||BJ]) |7y (p — q) |l

+ 1t Imy(p — 9|
=M ((1 + 1l (—A)) M + %t HBH) |7y (p — )l
+ 2t |Imy(p — Q)|
1
=21 (1 = tmu () + 57t 1B ) Iy (0= )]
+ 2t |Imy(p — Q)|

(30) < (M = Mg (M) + 382 ||my (p — q)|,

where, in light of Lemma 10, the third inequality is satisfied for any t € [0, to], where to > 0.
Since £ (M) > (M), by combining (29) with (30), we see that for sufficiently small ¢,

a0 (2t () = Dt (@) _ (M —tME(M) +72t%) |my (p — a)|
Iy (®—¢ (p) — (Q))II (1 =t (M) = 72t2) |7y (p — g

This means that

176,20 (Pt () = @t (@) < M [y (D (p) = @1 (@)l

which proves (26). [ |

We now return to studying (20). Let us assume that the system has a smooth family of
hyperbolic fixed points pj; € intD, where D = B, (R) x B (R). Let us also assume that for
any given f € © the assumptions of Theorem 18 are satisfied. Let w" be the parameterization
from Theorem 19.
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Lemma 23. If the assumptions of Theorem 19 are satisfied and
(M) <0, (M) > p (M),
then for any x1,22 € By (R) and 61,02 € O,
(31) (z1, 0" (21,01),01) € Jeu (w2, w" (72,02),02),1/M).

Proof. Let ¢1 = (1, w" (x1,61),61) and g2 = (22, w" (x2,63),02). If (31) does not hold,
then by (21)

q1 € intJs (g2, M) .

Note that then

0 < lImap (g1 — g2)ll < Mllmy (01 = g2)l-

By Lemma 22, since ®_; (¢;) € Wg! x {0;} C D x ©, we would therefore have

(32) Oy (q1) € Js (Dt (q2) , M)

for all t € Ry (we can apply Lemma 22 with small ¢ several times to obtain (32) for large ).
Also by Lemma 22 we would have

Iy (@1 (a1) = @ (g2))| > (L +ct) |y (g1 — @2)l| = 00 s ¢ — oc.

This contradicts the fact that ®_; (p),P_; (¢) € D, and hence (31) must hold true. [ ]
We are now ready to prove Theorem 21.

Proof of Theorem 21. By Theorem 19, w* is well defined. By Lemma 23,
[w* (@,01) — w" (z,02)|| <1/M||(z,01) = (x,02)[| = 1/M |61 — 62|,

which implies the claim. |

7. Computer-assisted proof of the Shil’'nikov connection in the Lorenz-84 system. To
apply our method and conduct a computer-assisted proof we follow these steps:

1. Using Theorem 2, establish an enclosure of the family of hyperbolic fixed points, and
following the method from section 2.3, establish bounds on the eigenvalues of the
Jacobian at the fixed points to verify hyperbolicity.

2. In local coordinates around the fixed points, using Theorem 19, establish the bounds
on the unstable manifolds.

3. By changing the sign of the vector field, using the same procedure as in step 2, establish
bounds on the stable manifolds.

4. Using Theorem 21, establish bounds on the dependence of the manifolds on the pa-
rameter.
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5. Propagate the bounds on the unstable manifold along the flow and establish the ho-
moclinic intersection using Theorem 12.
For our computer-assisted proof we consider the Lorenz-84 system (6) with the parameters
a:%,b=4,F:4, and

(33) G € |Gy, G,] = [0.0752761095, 0.07527611625) .

The G will play the role of the parameter 6 from earlier sections.
We first use the interval Newton method (Theorem 2) to establish an enclosure of the
fixed points:

[3.9999144633, 3.9999144654]
pe € | [—0.0008521960, —0.0008521939] for all G € [G}, Gy].
[0.0045450712, 0.0045450733]

Next we compute a bound on the derivative of the vector field at the fixed points, and using
the method from section 2.3 we establish that for all G € [G}, G,] the eigenvalues are

A1 € [0.249988,0.249991] ,
ReXg € [—2.999911, —2.999908] , ImAg € [15.999657,15.999660] ,
ReAs € [—2.999911, —2.999908] , ImAs € [-15.999660, —15.999657] .

This establishes hyperbolicity.
To obtain bounds for the stable/unstable manifolds, we use the local coordinates (z, y1,y2),

(X7Y7 Z) = 0(554/173/2) + qo,
with

go = (3.9999144643281, —0.00085219497131102, 0.0045450722448356) ,

1 —0.00016604653053618 0.00040407899883959
C =1 0.00016384655297642 —0.28235213046095 0.71764786953905
—0.0011562746220118 0.71764798264861 0.28235189601999

The qo is close to the fixed points of (6). (Depending on the choice of G the fixed point
shifts slightly with the parameter, but we keep qg fixed.) Coordinates x, y1, y2 align the system
so that x is the (rough) unstable direction, and yi,y2 are (roughly) stable. Note that we use
the same local coordinates for all the parameters G from (33).

In these local coordinates, we use the interval Newton method (Theorem 2) to obtain
enclosures of the fixed points for parameters G in (33). In the local coordinates, the fixed
points are close to the origin. (See Figure 5; the cones emanate from the fixed points.) We
then choose

D = B, (R) x Bs(R),

with R = 10~*, and use Theorem 19 to obtain an enclosure of the unstable manifold W¥.
In our computer-assisted proof, we have a Lipschitz bound L, = 107> for the slope of the
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2x10° : : 2x10°°
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2)(1079 I I I _2x10—9 I I I
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X X

Figure 5. The projection onto the x,y1 coordinates of the bounds on W&. On the left we have the bound
for G = Gy (the left end of our parameter interval (33)), and on the right for G = G,.

unstable manifold for all parameters (33). See Figure 5. (Note the scale on the axes. The
enclosure is in fact quite sharp.)

To establish the bounds for the stable manifold, we consider the vector field with reversed
sign (which makes the stable manifold become unstable; we therefore also swap the roles of
the coordinates) and apply Theorem 19 once again. Here we have obtained a Lipschitz bound
L, = 1073. In Figure 6 we see the bound on the enclosure. The two points on the plot are the
O (pg, G) for G = Gy and G = G, for the choice of T' = 50 (see (12) for the definition of p¢).
We do not plot these as boxes, since our computer-assisted bound gives their size of order
10!, and such boxes would be invisible on the plot. Note that Figure 6 corresponds to the
sketch from Figure 3. In Figure 6 we have the projection onto the x,y; coordinates of what
happens inside of the set D, without plotting the trajectory along the unstable manifold.

We use the rigorous estimates for @T(p’él ,G)) and ®p (pa, Gr) to compute the following

bounds (see (13) for the definition of the function h):

h(Gp) € [1.193520892609e — 07,1.2017042212622¢ — 07],
h(G,) € [-1.1920396632516e¢ — 07, —1.1838527119022¢ — 07] .

We also make sure that ®7 (p¢, G) € D for all G € [G}, G,]. We see that assumption (14) of
Theorem 12 is satisfied, which means that we have a Shil’'nikov homoclinic connection for at
least one of the parameters G € [G}, G].

To establish the bound on A/ (G), we first use Theorem 21 to establish an estimate for
%w“ (z,G). In our computer-assisted proof we use Theorem 21 with parameter M = 2. We
then use Theorem 21 once again (with M = 2) to establish bounds for %ws (z,G). (We
reverse the sign of the vector field to make the manifold unstable, and we swap the roles
of stable and unstable coordinates.) We then propagate the bound for %w“ (z,G) using
rigorous, computer-assisted integration, to obtain the bound

h' (G) € [-38.19, —32.49) for all G € |Gy, G,].
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0.0001

1l
o

-0.0001 | ; :
2x107 -1x107 0 1x107 2x107

Figure 6. The bound on W¢& for all parameters G from (33). On the left we have a nonrigorous plot to
illustrate the shape of our bound in three dimensions. On the right, we have a projection onto the x,y1 coordinates
of the rigorous, computer-assisted enclosure. The two points depicted in the right plot are 1 (pgl, Gl) (on the

right, in red) and ®r (p”ér, GT) (on the left, in blue).

This, by Theorem 12, establishes the uniqueness of the intersection parameter in [G}, Gy].

Remark 24. We do not rule out the possibility that for some parameter G € |Gy, G,] the
trajectory @4 (pg, G) could exit D and return again to intersect W¢. We have not made such
an investigation, which would require a global consideration of the system. What we establish is
that we have a single parameter for which the homoclinic orbit behaves as the one in Figure 1.

The computer-assisted proof was done entirely using the CAPD? package and took 4
seconds on a single-core 3GHz Intel i7 processor.

Appendix.

Proof of Lemma 4. Let us take any ¢ > 0 and any p,q € R™ such that {®_4(p), P_4(q) :
s €]0,t]} C U. Observe that since U is convex,

o)~ F@= [ Dfla+ulp-a)dulp—a).

Using this, we have

® () - (a) =p—a- [ F (@ () — (B (q)) ds

=pP—4q

(34) —p—a [ C6) @) - (@) s,

2Computer-assisted proofs in dynamics available as the supplemental file M107995_01.zip [local/web
9.16MB] and also from http://capd.ii.uj.edu.pl/.


M107995_01.zip
http://epubs.siam.org/doi/suppl/10.1137/16M1079956/suppl_file/M107995_01.zip
http://capd.ii.uj.edu.pl/
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where {C(s)} is a family of matrices defined as

C)= [ DF@ @) +u (@, ()~ @, (@) du e [DF )],

Since f is C! in U and U is compact, there exists a constant L > 0 such that for any
pelU

IDf(p)|| < L.
Using standard Gronwall estimates gives that
(35) S s(p)—Ps(qg)=p—q+h(spa),
where h satisfies
Ih (s, p, )| < (e = 1) |lp =gl

We can return to (34) and substitute (35) into the term under the integral to obtain

B () =@ =p—q— [ C6)(p—a+hls.p.0)ds
=p—q—tC(p—q)+9g(t,pq)

for

=1 "C(s)ds € [DF ()],

and

g(t,p,q):= —/OtC(S)h (s,p,q)ds.

Observing that

t
. < C N sL_l
lot.p 0l < max 1€ ) o=l | (e~ 1) s

_ oLt gy
= max [C )l o —all 7 (e — Lt — 1)

< M |lp— gl >

gives the claim. |
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