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Abstract

This paper considers two point boundary value problems for conservative systems de-
fined in multiple coordinate systems, and develops a flexible a-posteriori framework for
computer assisted existence proofs. Our framework is applied to the study collision and
near collision orbits in the circular restricted three body problem. In this case the coordi-
nate systems are the standard rotating coordinates, and the two Levi-Civita coordinate
systems regularizing collisions with each of the massive primaries. The proposed frame-
work is used to prove the existence of a number of orbits which have long been studied
numerically in the celestial mechanics literature, but for which there are no existing an-
alytical proofs at the mass and energy values considered here. These include transverse
ejection/collisions from one primary body to the other, Strömgren’s assymptotic peri-
odic orbits (transverse homoclinics for L4,5), families of periodic orbits passing through
collision, and orbits connecting L4 to ejection or collision.
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1. Introduction

The present work develops computer assisted arguments for proving theorems about
collision and near collision orbits in conservative systems, and applies these arguments

1M. C. was partially supported by the NCN grants 2019/35/B/ST1/00655 and
2021/41/B/ST1/00407.

2J.D.M.J. was partially supported by NSF Grant DMS 1813501
Email addresses: maciej.capinski@agh.edu.pl (Maciej J. Capiński), s.kepley@vu.nl (Shane
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to a number of questions involving the planar circular restricted three body problem
(PCRTBP). The PCRTBP, defined formally in Section 3, describes the motion of an
infinitesimal particle like a satellite, asteroid, or comet moving in the field of two massive
bodies called the primaries. These primary bodies are assumed to orbit their center
of mass on Keplerian circles. Changing to a co-rotating frame of reference results in
autonomous equations of motion, and choosing normalized units of distance, mass, and
time reduces the number of parameters in the problem to one: the mass ratio of the
primaries.

We consider the following questions about the dynamics of the infinitesimal body in
the PCRTBP. In each case we are interested in non-perturbative values of the mass and
energy parameters. Recall that in systems which conserve energy, periodic orbits occur
in one parameter families – or tubes – parameterized by energy. We note also that the
PCRTBP has an equilibrium solution, or Lagrange point, called L4 in the upper half
plane forming an equilateral triangle with the two primaries. (Similarily, L5 forms an
equilateral tringle in the lower half plane).

We develop a methodology which allows us to address the following questions.

• Q1: Do there exist orbits of the infinitesimal body, which collide with one primary
in forward time, and the other primary in backward time? We refer to such orbits
as primary-to-primary ejection-collisions.

• Q2: Do there exist orbits of infinitesimal body which are assymptotic to the L4 in
backward time, but which collide with a primary in forward time? (Or the reverse
- from ejection to L4). We refer to these as L4-to-collision orbits (or ejection-to-L4

orbits).

• Q3: Do there exist orbits of the infinitesimal body which are asymptotic in both
forward and backward time to L4? Such orbits are said to be homoclinic to L4.

• Q4: Do there exist tubes of large amplitude periodic orbits for the infinitesimal
body, which accumulate to an ejection-collision orbit with one of the primaries?
Such tubes are said to terminate at an ejection-collision orbit.

• Q5: Do there exist tubes of periodic orbits for the infinitesimal body which accumu-
late to a pair of ejection-collision orbits going from one primary to the other and
back?. Such tubes are said to terminate at a consecutive ejection-collision.

In response to the questions above we have the following theorems, which constitute
the main results of the present work.

Theorem 1. For the PCRTBP with mass ratio 1/3 there exist ejection-collision orbits
from one primary to the other, in both directions. (See page 31 for the precise statement.)

Theorem 2. For the PCRTBP with equal masses, there exist ejection-to-L4 orbits, and
L4-to-collision orbits. (See page 34 for the precise statement.) Analogous orbits exist for
L5 by symmetry considerations.

Theorem 3. For the PCRTBP with equal masses, there exist transverse homoclinic or-
bits for L4. (See page 36 for the precise statement.) Analogous orbits exist for L5 by
symmetry considerations.
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Theorem 4. For the PCRTBP with Earth-Moon mass parameter, there exists a family
of periodic orbits which accumulate to an ejection-collision orbit involving the Earth. The
ejection-collision orbit has “large amplitude” in the sense that it passes near collision with
the Moon. (See page 38 for the precise statement.)

Theorem 5. For the PCRTBP with equal masses, there exists a family of periodic orbits
which accumulate to a a consecutive ejection-collision orbit involving both primaries. (See
page 39 for the precise statement.)

Remark 6 (Termination orbits). Theorems 3,4,5 involve the termination of tubes of
periodic orbits. In the case of Theorem 3, the existence of a transverse L4 homoclinic
implies the further existence of a family of periodic orbits which accumulates to the L4

homoclinic by a theorem of Henrard [1]. It is worth remarking further that the orbits of
Theorem 3 imply also the existence of chaotic dynamics in the L4 energy level. This is
due to a theorem of Devaney [2]. In Theorems 4 and 5, we obtain families of periodic
orbits terminating at the ejection-collision orbit by a direct application of the implicit
function theorem.

Termination orbits have a long history in celestial mechanics, and are of fundamen-
tal importance in equivariant bifurcation theory. We refer the interested reader to the
discussion of “Strömgren’s termination principle” in Chapter 9 of [3], and to the works
of [4, 5, 6] on equivariant families in the Hill three body and restricted three body prob-
lems. See also the works of [7, 8] on global continuation families in the restricted N -body
problem.

Remark 7 (Ballistic transport). Theorem 1 establishes the existence of ballistic trans-
port, or a zero energy transfer, from one primary to the other in finite time. The existence
of ballistic transport shows for example that debris can diffuse between a planet and it’s
moon, or between a star and one of it’s planets, using only the natural dynamics of the
system. This phenomena is observed for example when Earth rocks, ejected into space
after a meteor strike, are later found on the Moon [9] (or vice versa). In a similar fashion,
Theorem 2 shows the existence of orbits whose velocity limits to zero in backward time,
but to infinity in finite forward time (or vice versa). Such orbits describe ballistic transfer
from L4 to a primary.

Remark 8 (Moulton’s L4 periodic orbits). The family of periodic orbits whose ex-
istence is established in Theorem 5 are of Moulton’s L4 type, in the sense of [10]. That
is, these are periodic orbits which when projected into the (x, y) plane (i.e. the configu-
ration space) have non-trivial winding about L4. See also Chapter 9 of [3], or the works
of [11, 12] for a more complete discussion of the history (and controversy) surrounding
Moulton’s orbits. The present work provides the first mathematically rigorous proof that
Moulton type L4 periodic orbits exist.

Each of the five theorems above are proven using a common analytical set up for two
point boundary value problems (BVPs) in energy manifolds of systems defined in several
different coordinate systems. Our setup for the BVPs is designed to allow for rigorous
computer assisted validation of the needed assumptions using interval arithmetic. This is
implemented using freely available validated numerical tools for computing mathemati-
cally rigorous enclosures of solutions of initial value problems, variational equations, and
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invariant manifolds. In particular, we make extensive use of the CAPD library for vali-
dated numerical integration of ODEs [13]. (Additional details about these algorithms are
found in [14, 15]. Similar methods for computing validated enclosures of stable/unstable
manifolds attached to equilibrium solutions are discussed in [16, 17].)

Collisions and near collision orbits are incorporated into this analytical setup via the
classical Levi-Civita regularization. In these coordinates the set of all collisions appears
as a simple one dimensional manifold, which we refer to as the collision set [18]. Once we
obtain the collision set analytically we formulate BVPs for orbits beginning and ending
at collision. We review the Levi-Civita coordinates for the PCRTBP in Section 3, and
refer the interested reader to Chapter 3 of [3], to the notes of [19, 20], and to the works
of [21, 22, 23] for much more complete overview of regularization in celestial mechanics.

Remark 9 (Collisions in the literature). Collisions are an essential and delicate topic
in celestial mechanics. While it has been shown that the set of orbits which col-
lide in finite time has measure zero [24, 25], it is also known that the embedding of
the collision set may be topologically complicated. For example, recent results of [26]
show that there exist open sets where collisions are dense. Many mathematically rig-
orous theorems on the existence of collisions exploit perturbative techniques, taking
one or more of the masses to be small [27, 28, 29, 30, 31], or the energy to be large
[32, 33, 34, 35, 35, 36, 37, 38, 39, 40]. These works depend on results from geome-
try/topology, the calculus of variations, and the KAM theory. For parameter and energy
regimes where analytical results are unavailable, numerical studies illuminate the dynam-
ics of the collision set [41, 42, 43, 44, 45, 46, 47, 48]. Our work goes towards providing
a framework for computer assisted proofs for collision orbits, for the parameter regimes
where the perturbative methods cannot be applied.

Remark 10 (CAPs in the literature). Constructive computer assisted arguments have
been used to prove many theorems in celestial mechanics. An overview of the literature
on computer assisted proofs (CAPs) in celestial mechanics is beyond the scope of the
present paper, and we refer the interested reader to the works of [49, 50, 51, 52, 53]
on periodic orbits, the works of [54, 55, 56, 16, 57] on connecting orbits and chaos, the
works of [58, 59, 60, 61] on oscillations to infinity, center manifolds, and Arnold diffusion,
and the works of [62, 63, 64, 65, 66] on quasi-periodic orbits and KAM phenomena. By
looking also to the references in the papers cited in this paragraph, the interested reader
will come away with a deeper appreciation of the role of CAPs in celestial mechanics.
We remark that, until now, collisions have been viewed largely as impediments to the
implementation of CAPs. We demonstrate in the current paper that this is not the case.

The remainder of the paper is organized as follows. In Section 2 we describe the
problem setup in terms of an appropriate multiple shooting problem, and establish tools
for solving the problem. In particular, we define the unfolding parameters which we
use to isolate transverse solutions in energy level sets and use this notion to formulate
Theorem 15 and Lemma 18 which we later use for our computer assisted proofs. In
Section 3 we describe the PCRTBP and it’s Levi-Civita regularization. Sections 4, 5,
and 6 describe respectively the formulation of the multiple shooting problem for primary-
to-primary ejection-collision orbits, L4 to ejection/collision orbits, L4 homoclinic orbits,
and periodic ejection-collision families. Section 7 describes our computer assisted proof
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strategy and illustrates how this strategy is used to prove our main theorems. Some
technical details are given in the appendices. The codes implementing the computer
assisted proofs discussed in this paper are available at the homepage of the first author
MC.

2. Problem setup

Consider an ODE with one or more first integrals or constants of motion. For such
systems, the level sets of the integrals give rise to invariant sets. Indeed, the level sets are
invariant manifolds except at critical points of the conserved quantities. In this section we
describe a shooting method for two point boundary value problems between submanifolds
of the level set. To be more precise, we consider two manifolds, parameterized (locally)
by some functions, which are contained in a level set. We present a method which allows
us to find points on these manifold which are linked by a solution of an ODE. This in
particular implies that the two manifolds intersect. Our method will allow us to establish
transversality of the intersection within the level set.

We consider an ODE
x′ = f (x) , (1)

where f : Rd → Rd. Assume that the flow φ (x, t) induced by (1) has an integral of
motion expressed as

E : Rd → Rk,

which means that
E (φ (x, t)) = E (x) , (2)

for every x ∈ Rd and t ∈ R. Fix c ∈ Rk and define the level set

M :=
{
x ∈ Rd : E(x) = c

}
, (3)

and assume that M is (except possibly at some degenerate points) a smooth manifold.
Consider two open sets D1 ⊂ Rd1 and D2 ⊂ Rd2 and two chart maps

Pi : Di →M ⊂ Rd for i = 1, 2, (4)

parameterizing submanifolds of M .

Remark 11. One can for example think of the P1 and P2 as parameterizations of the
exit or entrance sets on some local unstable and stable manifolds, respectively, of some
invariant object. However in some of the applications to follow P1,2 will parameterize
collision sets in regularized coordinates or some surfaces of symmetry for f .

We seek points x̄i ∈ Di for i = 1, 2 and a time τ̄ ∈ R such that

φ (P1(x̄1), τ̄) = P2 (x̄2) . (5)

Note that if P1 and P2 parameterize some φ-invariant manifolds, then Equation (5)
implies that these manifolds intersect. The setup is depicted in Figure 1.

Remark 12. Denote by x1, x2 the points x1 ∈ Rd1 and by x2 ∈ Rd2 : this avoids confu-
sion with x ∈ Rd.
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Figure 1: The left and right plots are in Rd with a d− k dimensional manifold M depicted in gray. The
manifolds Pi(Di) ⊂ M , for i = 1, 2, are represented by curves inside of M . We seek x̄1 ∈ D1, x̄2 ∈ D2

and τ̄ ∈ R such that φ(P1(x̄1), τ̄) = P2(x̄2). The two points Pi(x̄i), for i = 1, 2, are represented by dots.

We introduce a general scheme which allows us to:

1. Establish the intersection of the manifolds parameterized by P1 and P2 by means
of a suitable Newton operator.

2. Establish that the intersection is transverse relative to the level set M .

3. Provide a setup flexible enough for multiple shooting between charts in different
coordinates.

Our methodology is applied to establish connections between stable/unstable and
collision manifolds in the PCRTBP.

2.1. Level set shooting

We now provide a more detailed formulation of problem (5) which allows us to describe
connections between multiple level sets in distinct coordinate systems (instead of just
one coordinate system as discussed in Section 3). This allows us to study applications
to collision dynamics as boundary value problems joining points in different coordinate
systems. Let U1, U2 ⊂ Rd be open sets and consider smooth functions E1, E2

Ei : Ui → Rk for i = 1, 2,

for which DEi (x) is of rank k for every x ∈ Ui, for i = 1, 2. We fix c1, c2 ∈ Rk and define
the following the level sets

Mi = {x ∈ Ui : Ei (x) = ci} for i = 1, 2,

and assume that Mi 6= ∅ for i = 1, 2. Observe that the Mi are smooth d− k dimensional
manifolds by the assumption that DEi are of rank k, for i = 1, 2.

Consider now a smooth function R : U1 × R× Rk → Rd We introduce the following
notation for coordinates

(x, τ, α) ∈ Rd × R× Rk, y ∈ Rd,

and define a parameter dependent family of maps Rτ,α : U1 → Rd by

Rτ,α (x) := R (x, τ, α) ,
6



and assume that for each (x, τ, α) ∈ Rd+k+1, the d× d matrix

∂

∂x
R(x, τ, α),

is invertible, so that Rτ,α(x) is a local diffeomorphism on Rd.
The following definition makes precise our assumptions about when Rτ,α(x) takes

values in M2.

Definition 13. We say that α is an unfolding parameter for R if the following two
conditions are satisfied for every x ∈M1.

1. If Rτ,α(x) ∈M2, then α = 0.

2. If Rτ,0(x) ∈ U2, then Rτ,0(x) ∈M2.

To emphasize that we are interested in points mapped from M1 to M2, we say that
α is an unfolding parameter for R from M1 to M2.

Assume from now on that α is an unfolding parameter for R. We consider two open
sets D1 ⊂ Rd1 and D2 ⊂ Rd2 where d1, d2 ∈ N and two smooth functions

Pi : Di →Mi, for i = 1, 2,

each of which is a diffeomorphism onto its image. Define

F : D1 ×D2 × R× Rk → Rd

by the formula
F (x1, x2, τ, α) := Rτ,α (P1 (x1))− P2 (x2) . (6)

We require that
d1 + d2 + 1 + k = d, (7)

and seek x̄1, x̄2, τ̄ such that

F (x̄1, x̄2, τ̄ , 0) = Rτ̄ ,0 (P1 (x̄1))− P2 (x̄2) = 0, (8)

with DF (x̄1, x̄2, τ̄ , 0) an isomorphism. In fact, we do more than simply solve (8). For
some open interval I ⊂ R containing τ̄ we establish a transverse intersection between the
smooth manifolds R (P1 (D1) , I, 0) and P2 (D2) at ȳ := P2 (x̄2) ∈M2.

The setup above, and in particular the roles of the parameters α and τ , might appear
puzzling. We now give an example which informs the intuition. In the applications
we have in mind, τ is the time associated with the flow map of an ODE. The unfolding
parameter α deals with the fact that we solve a problem restricted to the level sets Mi for
i = 1, 2 though there are other practical methods to enforce this constraint.5. Consider
the following example.

5Alternatives are to either fix the energy and use its formula to eliminate one of the variables in
the equations of motion, or to work with coordinates in which we can write Mi as graphs of some
functions and use these functions and appropriate projections to enforce the constraints. We believe
that the approach with the unfolding parameter has the advantage that it simplifies formulas and easier
to implement.
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Example 14. (Canonical unfolding.) Consider the ODE in Equation (1)and E : Rd →
R satisfying Equation (2). Suppose c ∈ R is fixed and denote its associated level set by
M := {E = c} (In this example we have k = 1 and E1 = E2 = E.) Assume there are
smooth functions P1, P2 as in (4) and that d1 + d2 + 2 = d. We construct a shooting
operator for Equation (5) by choosing R as follows. Consider the α-parameterized family
of ODEs

x′ = f(x) + α∇E (x) .

Let φα (x, t) denote the induced flow and note that φ0 = φ is the flow induced by Equation
(1). Defining the shooting operator by the formula

R (x, τ, α) := φα (x, τ) , (9)

we see that solving Equation (5) is equivalent to solving Equation (8).
Observe that α is unfolding for R because E is an integral of motion for φ from which

it follows that

d

dt
E (Rτ,α (x)) =

d

dt
E(φα(x, t))

= ∇E (φα (x, t)) · (f(φα (x, t)) + α∇E (φα (x, t)))

= α ‖∇E (φα (x, t))‖2 ,

where · denotes the standard scalar product. Here we have used the fact that Equation
(2) implies ∇E (x) · f(x) = 0 but also ∇E(φα(x, t)) 6= 0 since ∇E is assumed to have
rank 1 everywhere.

Returning to the general setup we have the following theorem.

Theorem 15. Assume that α is an unfolding parameter for R and F is defined as in
Equation (6). If

F (x̄1, x̄2, τ̄ , ᾱ) = 0, (10)

then ᾱ = 0. Moreover, if DF (x̄1, x̄2, τ̄ , 0) is an isomorphism, then there exists an
open interval I ⊂ R of τ̄ such that the manifolds R (P1 (D1) , I, 0) and P2 (D2) inter-
sect transversally in M2 at ȳ := P2 (x̄2). Specifically, we have the splitting

TȳR (P1 (D1) , I, 0)⊕ TȳP2 (D2) = TȳM2, (11)

and moreover, ȳ is an isolated transverse point.

Proof. Recalling the definition of F in Equation (6) and the hypothesis of Equation
(10), we have that x̄ = P1 (x̄1) ∈ M1 and ȳ = P2 (x̄2) ∈ M2. The fact that α is an
unfolding parameter for R, combined with R (x̄, τ̄ , ᾱ) = ȳ, implies that ᾱ = 0. Since
F (x̄1, x̄2, τ̄ , 0) = 0, we see that R(P1(D1), I, 0) and P2(D2) intersect at ȳ.

Our hypotheses on P1,2 and R imply that R (P1 (D1) , I, 0) and P2 (D2) are subman-
ifolds of M2 so evidently

TȳR (P1 (D1) , I, 0)⊕ TȳP2 (D2) ⊂ TȳM2.

However, from the assumption in Equation (7) we have d−k = d1 +d2 + 1 and therefore
it suffices to prove that TȳR (P1 (D1) , I, 0)⊕ TȳP2 (D2) is d− k dimensional.

8



Suppose {e1, . . . , ed1} is a basis for Rd1 and {ẽ1, . . . , ẽd2} is a basis for Rd2 . Define

vi :=
∂R

∂x1
(x̄1, τ̄ , 0)DP1 (x̄1) ei for i = 1, . . . , d1

vi := DP2 (x̄2) ẽi−d1
for i = d1 + 1, . . . , d1 + d2

vd1+d2+1 :=
∂R

∂τ
(x̄1, τ̄ , 0) .

After differentiating Equation (6) we obtain the formula

DF =
(

∂F
∂x1

∂F
∂x2

∂F
∂τ

∂F
∂α

)
=
(

∂R
∂x1

DP1 −DP2
∂R
∂τ

∂R
∂α

)
,

and sinceDF is an isomorphism at (x̄1, x̄1, τ̄ , 0), it follows that the vectors v1, . . . , vd1+d2+1

span a d1 + d2 + 1 = d− k dimensional space. Observe that

TȳR (P (D1), I, 0) = span (v1, . . . , vd1 , vd1+d2+1) ,

TȳP2 (D2) = span (vd1+1, . . . , vd1+d2) ,

proving the claim in Equation (11). Moreover, since

dimR (P1 (D1) , I, 0) + dimP2 (D2) = (d1 + 1) + d2 = d− k = dimM2,

it follows that ȳ is an isolated transverse intersection point which concludes the proof.
We finish this section by defining an especially simple “dissipative” unfolding param-

eter which works in the setting of the PCRTBP.

Example 16. (Dissipative unfolding.) Let x, y ∈ R2k, let Ω : R2k → R and J ∈ R2k×2k

be of the form

J =

(
0 Idk
− Idk 0

)
,

where Idk is a k × k identity matrix. Let us consider an ODE of the form

(x′, y′) = f (x, y) :=

(
y, 2Jy +

∂

∂x
Ω (x)

)
.

One can check that E (x, y) = −‖y‖2 + 2Ω (x) is an integral of motion. Consider the
parameterized family of ODEs

(x′, y′) = fα (x, y) := f (x, y) + (0, αy) , (12)

and let φα ((x, y) , t) denote the flow induced by Equation (12). Define the shooting op-
erator defined by

R ((x, y) , τ, α) := φα ((x, y) , τ) . (13)

As in Example 14, one can check the equivalence between Equations (5) and (8). The
fact that α is unfolding for R follows as

d

dt
E (φα ((x, y) , t)) = −2α ‖y‖2 .
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2.2. Level set multiple shooting

Consider a sequence of open sets U1, . . . , Un ⊂ Rd and a sequence of smooth maps

Ei : Ui → Rk for i = 1, . . . , n

for which DEi (x) is of rank k for every x ∈ Ui, for i = 1, . . . , n. Let c1, . . . , cn ∈ Rk be
a fixed sequence with corresponding level sets

Mi := {x ∈ Ui : Ei (x) = ci} for i = 1, . . . , n.

Let
Ri : Ui × R× Rk → Rd for i = 1, . . . , n− 1

be a sequence of smooth functions which defines a sequence of parameter dependent maps

Riτ,α : Ui → Rd,
Riτ,α (x) := Ri (x, τ, α) , for i = 1, . . . , n− 1.

We assume that for each fixed τ and α, each of the maps is a local diffeomorphism on
Rd.

Let D0 ⊂ Rd0 and Dn ⊂ Rdn be open sets, and let

P0 : D0 →M0 ⊂ Rd, Pn : Dn →Mn ⊂ Rd,

be diffeomorphisms onto their image. Assume that

d0 + dn + 1 + k = d (14)

and consider the function

F̃ : Rnd ⊃ D0 × Rd × . . .× Rd︸ ︷︷ ︸
n−1

×Dn × R× Rk → Rd × . . .× Rd︸ ︷︷ ︸
n

,

defined by the formula

F̃ (x0, . . . , xn, τ, α) =


P0 (x0) − x1

R1
τ,α (x1) − x2

...
Rn−2
τ,α (xn−2) − xn−1

Rn−1
τ,α (xn−1) − Pn (xn)

 (15)

We now define the following functions

R : U1 × R× Rk → Rd,
F : D0 ×Dn × R× Rk → Rd

by the formulas

R (x1, τ, α) = Rτ,α (x1) := Rn−1
τ,α ◦ . . . ◦R1

τ,α (x1) ,

F (x0, xn, τ, α) := Rτ,α (P0 (x0))− Pn (xn) . (16)
10



Definition 17. We say that α is an unfolding parameter for the sequence Riτ,α if it is
unfolding for Rτ,α = Rn−1

τ,α ◦ . . . ◦R1
τ,α.

We now formulate the following lemma.

Lemma 18. If F̃ (x̄0, . . . , x̄n, τ̄ , ᾱ) = 0 and DF̃ (x̄0, . . . , x̄n, τ̄ , ᾱ) is an isomorphism,
then F (x̄0, x̄n, τ̄ , ᾱ) = 0 and DF (x̄0, x̄n, τ̄ , ᾱ) is an isomorphism.

Proof. The fact that F (x̄0, x̄n, τ̄ , ᾱ) = 0 follows directly from the way F̃ and F are
defined in Equations (15) and (16) respectively. Before proving that DF is an isomor-
phism, we set up some notation. We will write

dRi :=
∂Ri

∂xi
(x̄i, τ̄ , ᾱ) for i = 1, . . . , n− 1.

It will be convenient for us to swap the order of the coordinates, so we define

F̂ (x1, . . . , xn, x0, τ, α) := F̃ (x0, x1, . . . , xn, τ, α) , (17)

and write

F̂ =
(
F̂1, . . . , F̂n

)
where F̂i : Rnd → Rd, for i = 1, . . . , n.

Finally, the last notation we introduce is z ∈ Rd to combine the coordinates from the
domain of F together

z = (z1, . . . , zd) = (xn, x0, τ, α) ∈ Rdn × Rd0 × R× Rk = Rd.

Note that z is also the variable corresponding to the last d coordinates from the domain of
F̂ (see Equation (17)). Finally, we remark that all derivatives considered in the argument
below are computed at the point (x̄0, . . . , x̄n, τ̄ , ᾱ).

With the above notation we see that

DF̂ =



− Id 0 · · · 0 ∂F̂1

∂z

dR1 − Id
. . .

... ∂F̂2

∂z

0
. . .

. . . 0
...

...
. . . dRn−2 − Id ∂F̂n−1

∂z

0 · · · 0 dRn−1 ∂F̂n
∂z


,

and DF̂ is an isomorphism since DF̃ is an isomorphism. To see this define a sequence
of vectors v1, . . . , vd ∈ Rnd of the form

vi =

 vi1
...
vin

 ∈ Rd × . . .× Rd = Rnd for i = 1, . . . , d,

with vi1,vin ∈ Rd chosen as

vi1 =
∂F̂1

∂zi
, vin =

(
0 · · · 0

i
1 0 · · · 0

)>
, (18)
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and vi2, . . . , v
i
n−1 ∈ Rd defined inductively as

vik = dRk−1vik−1 +
∂F̂k
∂zi

for k = 2, . . . , n− 1. (19)

Note that from the choice of vin in (18) the vectors v1, . . . , vd are linearly independent.
By direct computation6 it follows that

DF̂vi =

(
0

dRn−1vin−1 + ∂F̂n
∂zi

)
for i = 1, . . . , d, (20)

where the zero is in R(n−1)d.
Looking at (15), since F̂1, . . . F̂n−1 do not depend on xn, we see that for i ∈ {1, . . . , dn}

we have ∂F̂1

∂zi
= . . . = ∂F̂n−1

∂zi
= 0, so

dRn−1vin−1 +
∂F̂n
∂zi

= dRn−1

(
dRn−2vin−2 +

∂F̂n−1

∂zi

)
− ∂Pn
∂xn,i

(21)

= dRn−1
(
dRn−2vin−2 + 0

)
− ∂Pn
∂xn,i

= · · ·

= dRn−1 . . . dR1vi1 −
∂Pn
∂xn,i

= dRn−1 . . . dR1 ∂F̂1

∂zi
− ∂Pn
∂xn,i

= − ∂Pn
∂xn,i

for i = 1, . . . , dn.

Similarly, for j = i − dn ∈ {1, . . . , d0} from (15) we see that ∂F̂1

∂zi
= ∂P0

∂x0,j
and ∂F̂2

∂zi
=

. . . = ∂F̂n
∂zi

= 0, so

dRn−1vin−1 +
∂F̂n
∂zi

= dRn−1dRn−2 . . . dR1 ∂P0

∂x0,j
=
∂ (Rτ̄ ,ᾱ ◦ P0)

∂x0,j
(22)

for i = dn + 1, . . . , dn + d0.

The index i = dn+d0 +1 corresponds to τ . Similarly to (21), by inductively applying
the chain rule, it follows that

dRn−1vin−1 +
∂F̂n
∂zi

=
∂R

∂τ
for i = dn + d0 + 1. (23)

Finally, for j = i − dn − d0 − 1 ∈ {1, . . . , k}, the variable zi corresponds to αj , and
also by applying the chain rule we obtain that

dRn−1vin−1 +
∂F̂n
∂zi

=
∂R

∂αj
for i = dn + d0 + 2, . . . , d. (24)

6From (15) and (19) follow the cancellations when multiplying the vector vi by DF̂ .
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Combining Equations (20)–(24) we see that

(
DF̂v1 · · · DF̂vd

)
=

(
0 0 0 0

−∂Pn∂xn

∂(Rτ̄,ᾱ◦P0)
∂x0

∂R
∂τ

∂R
∂α

)
. (25)

Since v1, . . . , vd are linearly independent and since DF̂ is an isomorphism, the rank of
the above matrix is d. Looking at Equation (15) we see that the lower part of the matrix
in Equation (25) corresponds to DF which implies that DF is of rank d, hence is an
isomorphism.

We see that we can validate assumptions of Theorem 15 by setting up a multiple
shooting problem (15) and applying Lemma 18. To do so, one needs to additionally
check whether α is an unfolding parameter for the sequence Riτ,α.

3. Regularization of collisions in the PCRTBP

In this section we formally introduce the equations of motion for the PCRTBP as
discussed in Section 1. Recall that the problem describes a three body system, where two
massive primaries are on circular orbits about their center of mass, and a third massless
particle moves in their field. The equations of motion for the massless particle are
expressed in a co-rotating frame with the frequency of the primaries. Writing Newton’s
laws in the co-rotating frame leads to

x′′ = 2y′ + ∂xΩ(x, y), (26)

y′′ = −2x′ + ∂yΩ(x, y),

where

Ω(x, y) = (1− µ)

(
r2
1

2
+

1

r1

)
+ µ

(
r2
2

2
+

1

r2

)
,

r2
1 = (x− µ)2 + y2, and r2

2 = (x+ 1− µ)2 + y2.

Here x, y are the positions of the massless particle on the plane. The µ and 1 − µ are
the masses of the primaries (normalized so that the total mass of the system is 1). The
rotating frame is oriented so that the primaries lie on the x-axis, with the center of mass
at the origin. We take µ ∈ (0, 1

2 ] so that the large body is always to the right of the
origin. The larger primary has mass m1 = 1 − µ and is located at the position (µ, 0).
Similarly the smaller primary has mass m2 = µ and is located at position (µ−1, 0). The
top frame of Figure 2 provides a schematic for the positioning of the primaries and the
massless particle.

Let U ⊂ R4 denote the open set

U :=
{

(x, p, y, q) ∈ R4 | (x, y) 6∈ {(µ, 0) , (µ− 1, 0)}
}
.

The vector field f : U → R4 defined by

f(x, p, y, q) :=


p

2q + x− (1−µ)(x−µ)
((x−µ)2+y2)3/2 − µ(x+1−µ)

((x+1−µ)2+y2)3/2

q

−2p+ y − (1−µ)y
((x−µ)2+y2)3/2 − µy

((x+1−µ)2+y2)3/2

 (27)
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Figure 2: Three coordinate frames for the PCRTBP: the center top image depicts the classical PCRTBP
in the rotating frame. The bottom left and right frames depict the restricted three body problem in
Levi-Civita coordinates: regularization of collisions with m2 on the left and with m1 on the right.
Observe that in these coordinates the regularized body has been moved to the origin. The Levi-Civita
transformations T1 and T2 provide double covers of the original system, so that in the regularized frames
there are singularities at the two copies of the remaining body.

is equivalent to the second order system given in (26). Note that

‖f(x, p, y, q)‖ → ∞ as either (x, y)→ (µ, 0) or (x, y)→ (µ− 1, 0).

Let x = (x, p, y, q) denote the coordinates in U and denote by φ(x, t) the flow generated
by f on U . The system (27) has an integral of motion E : U → R given by

E (x) = −p2 − q2 + 2Ω(x, y), (28)

which is refered to as the Jacobi integral.
We are interested in orbits with initial conditions x ∈ U with the property that their

positions limit to either m1 := (µ, 0) or m2 := (µ−1, 0) in finite time. Such orbits, which
reach a singularity of the vector field f in finite time, are called collisions. It has long
been known that if we fix our attention to a specific level set of the Jacobi integral for
some fixed c ∈ R, then it is possible to make a change of coordinates which “removes”
or regularizes the singularities. This idea is reviewed in the next sections.

3.1. Regularization of collisions with m1

To regularize a collision with m1, define the complex variables z = x + iy, and the
new “regularized” variables ẑ = x̂+ iŷ, related to z by the transformation

ẑ2 = z − µ.
14



One also rescales time in the regularized coordinates with the rescaled time t̂ related to
the original time t by the formula

dt

dt̂
= 4|ẑ|2.

Let U1 ∈ R4 denote the open set

U1 =
{
x̂ = (x̂, p̂, ŷ, q̂) ∈ R4 : (x̂, ŷ) /∈ {(0,−1) , (0, 1)}

}
.

This set will be the domain of the regularized vector field which allows us to “flow
through” collisions with m1 but not with m2.

A lengthy calculation (see [3]), applying the change of coordinates and time rescaling
just described to the vector field f defined in Equation (27) leads to the regularized
Levi-Civita vector field f c1 : U1 → R4 with the ODE x̂′ = f c1 (x̂) given by

x̂′ = p̂,

p̂′ = 8
(
x̂2 + ŷ2

)
q̂ + 12x̂(x̂2 + ŷ2)2 + 16µx̂3 + 4(µ− c)x̂

+
8µ(x̂3 − 3x̂ŷ2 + x̂)

((x̂2 + ŷ2)2 + 1 + 2(x̂2 − ŷ2))3/2
,

ŷ′ = q̂, (29)

q̂′ = −8
(
x̂2 + ŷ2

)
p̂+ 12v̂

(
x̂2 + ŷ2

)2 − 16µŷ3 + 4 (µ− c) ŷ

+
8µ(−ŷ3 + 3x̂2ŷ + ŷ)

((x̂2 + ŷ2)2 + 1 + 2(x̂2 − ŷ2))3/2
,

where the parameter c in the above ODE is c = E(x, p, y, q). The main observation is that
the regularized vector field is well defined at the origin (x̂, ŷ) = (0, 0), and that the origin
maps to the collision with m1 when we invert the Levi-Civita coordinate transformation.

Let ψc1(x̂, t̂) denote the flow generated by f c1 . The flow conserves the first integral
Ec1 : U1 → R given by

Ec1(x̂) = −q̂2 − p̂2 + 4(x̂2 + ŷ2)3 + 8µ(x̂4 − ŷ4) + 4(µ− c)(x̂2 + ŷ2)

+8(1− µ) + 8µ
(x̂2 + ŷ2)√

(x̂2 + ŷ2)2 + 1 + 2(x̂2 − ŷ2)
. (30)

Note that the parameter c appears both in the formulae for f c1 and Ec1. We write ψc1 to
stress that the flow depends explicitly on the choice of c. We choose c ∈ R and then,
after regularization, have new coordinates which allow us to study collisions only in the
level set

M := {x ∈ U : E(x) = c} . (31)

We define the linear subspace C1 ⊂ R4 by

C1 =
{

(x̂, p̂, ŷ, q̂) ∈ R4 | x̂ = ŷ = 0
}
,

The change of coordinates between the two coordinate systems is given by the transform
T1 : U1\C1 → U ,

x = T1(x̂) :=


x̂2 − ŷ2 + µ

x̂p̂−ŷq̂
2(x̂2+ŷ2)

2x̂ŷ
ŷp̂+x̂q̂

2(x̂2+ŷ2)

 , (32)
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and is a local diffeomorphism on U1\C1. The following theorem collects results from [3],
and relates the dynamics of the original and the regularized systems.

Theorem 19. Let c be the fixed parameter determining the level set M in Equation
(31). Assume that x0 ∈ U satisfies E(x0) = c, and assume that x̂0 ∈ U1 \ C1 is such that
x0 = T1 (x̂0). Then the curve

γ (s) := T1 (ψc1(x̂0, s))

parameterizes the following possible solutions of the PCRTBP in M :

1. If for every t̂ ∈ [−T̂ , T̂ ] we have ψc1(x̂0, t̂) ∈ U1 \ C1, then γ (s) , for s ∈ [−T̂ , T̂ ] lies
on a trajectory of the PCRTBP which avoids collisions. Moreover, the time t in
the original coordinates that corresponds to the time t̂ ∈ [−T̂ , T̂ ] in the regularised
coordinates is recovered by the integral

t = 4

∫ t̂

0

(
x̂(s)2 + ŷ(s)2

)
ds, (33)

i.e.
φ (t,x0) = T1

(
ψc1(x̂0, t̂)

)
.

2. If for T̂ > 0, for every t̂ ∈ [0, T̂ ) we have ψc1(x̂0, t̂) ∈ U1 \ C1 and ψc1(x̂0, T̂ ) ∈ C1,
then in the original coordinates the trajectory starting from x0 reaches the collision
with m1 at time T > 0 given by

T = 4

∫ T̂

0

(
x̂(s)2 + ŷ(s)2

)
ds. (34)

3. If for T̂ < 0, for every t̂ ∈ (T̂ , 0] we have ψc1(x̂0, t̂) ∈ U1 \ C1 and ψc1(x̂0, T̂ ) ∈ C1,
then in the original coordinates the backward trajectory starting from x0 reaches
the collision with m1 at time T < 0 expressed in Equation (34).

Orbits satisfying condition 2 from Theorem 19 are collision orbits, while orbits sat-
isfying condition 3 from Theorem 19 are called ejection orbits. From Theorem 19 we
see that for regularized orbits ψc1

(
x̂0, t̂

)
to have a physical meaning in the original coor-

dinates we need to choose c = E (T1 (x̂0)) for the regularization energy. The following
lemma, whose proof is a standard calculation (see [3]), addresses this choice.

Lemma 20. For every x̂ ∈ U1, we have

E (T1 (x̂)) = c if and only if Ec1 (x̂) = 0. (35)

The following corollary of Lemma 20 is a consequence of evaluating the expression for
the energy at zero when the positions are zero.

Corollary 21. If we consider x̂ = (x̂, p̂, ŷ, q̂) with x̂ = ŷ = 0, which corresponds to a
collision with m1, then from Ec1 (x̂) = 0 we see that for a trajectory ψc1

(
x̂, t̂
)

starting from
a collision point x̂ = (0, p̂, 0, q̂) to have a physical meaning in the original coordinates it
is necessary and sufficient that

q̂2 + p̂2 = 8(1− µ). (36)
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Definition 22. We refer to{
ψc1
(
x̂, t̂
)

: q̂2 + p̂2 = 8(1− µ), t̂ ≥ 0 and ψc1(x̂, [0, t̂]) ∩ C1 = ∅
}

as the ejection manifold from m1, and{
ψc1
(
x̂, t̂
)

: q̂2 + p̂2 = 8(1− µ), t̂ ≤ 0 and ψc1(x̂, [t̂, 0]) ∩ C1 = ∅
}

as the collision manifold to m1.

Note that both the collision and the ejection manifolds depend on the choice of c.
That is, we have a family of collision/ejection manifolds, parameterized by the Jacobi
constant c. For a fixed c the collision manifold, when viewed in the original coordinates,
consists of points with energy c, whose forward trajectory reaches the collision with m1.
Similarly, for fixed c, the ejection manifold, in the original coordinates, consists of points
with energy c whose backward trajectory collide with m1. Thus, the circle defined in
Corollary 21 is a sort of “fundamental domain” for ejections/collisions to m1 with energy
c.

3.2. Regularization of collisions with m2

To regularize at the second primary, we define the coordinates z̃ = x̃ + iỹ through
z̃2 = z + 1− µ and consider the time rescaling dt/dt̃ = 4|z̃|2. As in the previous section,
define

U2 :=
{
x̃ = (x̃, p̃, ỹ, q̃) ∈ R4 | (x̃, ỹ) /∈ {(−1, 0) , (1, 0)}

}
,

C2 :=
{
x̃ = (x̃, p̃, ỹ, q̃) ∈ R4 | x̃ = ỹ = 0

}
,

so that U2 consists of points in the regularized coordinates which do not collide with m1,
and C2 consists of points which collide with m2.

The regularized Levi-Civita vector field f c2 : U2 → R4 with the ODE x̃′ = f c2 (x̃) is of
the form (see [3])

x̃′ = p̃,

p̃′ = 8
(
x̃2 + ỹ2

)
q̃ + 12x̃(x̃2 + ỹ2)2 − 16(1− µ)x̃3 + 4 ((1− µ)− c) x̃

+
8(1− µ)

(
−x̃3 + 3x̃ỹ2 + x̃

)
((x̃2 + ỹ2)2 + 1 + 2(ỹ2 − x̃2))3/2

,

ỹ′ = q̃, (37)

q̃′ = −8
(
ũ2 + ỹ2

)
p̃+ 12ỹ(x̃2 + ỹ2)2 + 16(1− µ)ỹ3 + 4 ((1− µ)− c) ỹ

+
8(1− µ)

(
ỹ3 − 3x̃2ỹ + ỹ

)
((x̃2 + ỹ2)2 + 1 + 2(ỹ2 − x̃2))3/2

,

with the integral of motion

Ec2 (x̃) = −p̃2 − q̃2 + 4(x̃2 + ỹ2)3 + 8(1− µ)(ỹ4 − x̃4) + 4 ((1− µ)− c) (x̃2 + ỹ2)

+ 8(1− µ)
x̃2 + ỹ2√

(x̃2 + ỹ2)2 + 1 + 2(ỹ2 − x̃2)
+ 8µ. (38)
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Figure 3: Ejection collision orbits in the PCRTBP when µ = 1/4 and C = 3.2. The grey curves at the
top and bottom of the figure illustrate the zero velocity curves, i.e. the boundaries of the prohibited
Hill’s regions, for this value of C. The black dots at x = µ and x = −1 + µ depict the locations of the
primary bodies. The curves in the middle of the figure represent two ejection-collision orbits: m2 to m1

(bottom) and m1 to m2 (top). (Recall that m2 is on the left and m1 on the right; compare with Figure
2.) These orbits are computed by numerically locating an approximate zero of the function defined in
Equation (44). The blue portion of the orbit is in the original coordinates, while green and red are on
the ejection and collision manifolds in regularized coordinates, respectively. The curves are plotted by
changing all points back to the original coordinates.

We write ψc2(x̃, t̃) for the flow induced by (37).
The change of coordinates from the regularized coordinates x̃ to the original coordi-

nates x is given by T2 : U2 \ C2 → R4 of the form

x = T2 (x̃) =


x̃2 − ỹ2 + µ− 1

x̃p̃−ỹq̃
2(x̃2+ỹ2)

2x̃ỹ
ỹp̃+x̃q̃

2(x̃2+ỹ2)

 . (39)

A theorem analogous to Theorem 19 characterizes solution curves in the two coordi-
nate systems and the collisions with the second primary m2. Also, analogously to Lemma
20 and Corollary 21 for every x̃ ∈ U2 we have

E (T2 (x̃)) = c if and only if Ec2 (x̃) = 0, (40)

and a trajectory ψc2
(
x̃, t̃
)

starting from a collision point x̃ = (0, p̃, 0, q̃) with m2 has
physical meaning in the original coordinates if and only if

q̃2 + p̃2 = 8µ. (41)

We introduce the notions of the ejection and collision manifolds for m2 analogously
to Definition 22.
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4. Ejection-collision orbits

We now define a level set multiple shooting operator whose zeros correspond to trans-
verse ejection-collision orbits from the body mk to the body ml for k, l ∈ {1, 2} in the
PCRTBP. Two such orbits in the PCRTBP are illustrated in Figure 3.

Note that the PCRTBP has the form discussed in Example 16, so that a dissipative
unfolding is given by the one parameter family of ODEs

fα(x, p, y, q) = f(x, p, y, q) + α (0, p, 0, q) , (42)

where f is as defined in Equation (27). Let φα(x, t) denote the flow generated by the
the vector field of Equation (42). For c ∈ R consider the fixed energy level set M . Then
α is an unfolding parameter for the mapping

Rτ,α (x) = φα(x, τ)

from M to M . (Here Rτ,α : R4 → R4 for fixed α, τ ∈ R.)
Define the functions Pi : R→ R4 for i = 1, 2 by

Pi (θ) :=

{
(0,
√

8 (1− µ) cos (θ) , 0,
√

8 (1− µ) sin θ) for i = 1,

(0,
√

8µ cos (θ) , 0,
√

8µ sin θ) for i = 2.
(43)

By Equations (36) and (41) the function Pi (θ) parameterizes the collision set for the
primary mi, with i = 1, 2. Fix k, l ∈ {1, 2} and consider level sets M1, . . . ,M6 ⊂ R4

defined by

M1 = M2 = {Eck = 0} ,
M3 = M4 = {E = c} ,
M5 = M6 = {Ecl = 0} .

Choose s > 0, and for i = 1, 2 recall the definition of the coordinate transformations
Ti : Ui\Ci → R4 defined in Equations (32) and (39). Taking the maps R1

τ,α, . . . , R
5
τ,α :

R4 → R4 as

R1
τ,α (x1) = ψck (x1, s) ,

R2
τ,α (x2) = Tk (x2) ,

R3
τ,α (x3) = φα (x3, τ) ,

R4
τ,α (x4) = T−1

l (x4) ,

R5
τ,α (x5) = ψcl (x5, s) ,

we let
F : R×R4× . . .×R4︸ ︷︷ ︸

5 copies

×R× R× R→R4× . . .×R4︸ ︷︷ ︸
6 copies

be defined as

F (x0, x1, . . . x5, x6, τ, α) :=


Pk (x0) − x1

R1
α,τ (x1) − x2

R2
α,τ (x2) − x3

R3
α,τ (x3) − x4

R4
α,τ (x4) − x5

R5
α,τ (x5) − Pl (x6)

 , (44)
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where x0, x6, τ, α ∈ R and x1, . . . , x5 ∈ R4. We also write (xk, pk, yk, qk) and (xl, pl, yl, ql)
to denote the regularized coordinates given by the coordinate transformations Tk and Tl,
respectively.

Lemma 23. Let x∗ = (x∗0, . . . , x
∗
6) and τ∗ > 0. If

DF (x∗, τ∗, 0)

is an isomorphism and
F (x∗, τ∗, 0) = 0,

then the orbit of the point x∗3 is ejected from the primary body mk and collides with the
primary body ml. (The same is true of the orbit of the point x∗4.) Moreover, intersection
of the collision and ejection manifolds is transversal on the energy level {E = c} and the
time from the ejection to the collision is

τ∗ + 4

∫ s

0

‖πxk,ykψck (x∗1, u)‖2 du+ 4

∫ s

0

‖πxl,ylψcl (x∗5, u)‖2 du. (45)

(Above we use the Euclidean norm.)

Proof. We have d0 = d6 = k = 1 and d = 4, so the condition in Equation (14) is
satisfied. We now show that α is an unfolding parameter for Rτ,α = R5

τ,α ◦ . . . ◦ R1
τ,α.

Since Eci is an integral of motion for the flow ψci , for i = 1, 2, we see that

x1 ∈M1 = {Eck = 0} if and only if R1
τ,α (x1) = ψck (x1, s) ∈M2 = {Eck = 0} ,

x5 ∈M5 = {Ecl = 0} if and only if R5
τ,α (x5) = ψcl (x5, s) ∈M6 = {Ecl = 0} .

Also, by Equations (35) and (40) we see that

x2 ∈M2 = {Eck = 0} if and only if R2
τ,α (x2) = Tk (x2) ∈M3 = {E = c} ,

x4 ∈M4 = {E = c} if and only if R4
τ,α (x2) = T−1

l (x4) ∈M5 = {Ecl = 0} .

Moreover α is an unfolding parameter for the PCRTBP, and hence for

R3
τ,α (x3) = φα (x3, τ) .

Note that for i = 1, 2, 4, 5, the mapsRiτ,α takes the level sets Mi into the level set Mi+1

and this does not depend on the choice of α. Then, since α is an unfolding parameter
for R3

τ,α, it follows directly from Definition 13 that α is an unfolding parameter for
Rτ,α = R5

τ,α ◦ . . . ◦R1
τ,α.

By applying Lemma 18 to

F̃ (x0, x6, τ, α) := Rτ,α (Pk (x0))− Pl (x6)

we obtain that DF̃ (x∗0, x
∗
6, τ
∗, 0) is an isomorphism and that F̃ (x∗0, x

∗
6, τ
∗, 0) = 0. Since

F̃ (x∗0, x
∗
6, τ
∗, 0) = ψcl

(
T−1
l (φ (Tk (ψck (Pk(x∗0), s)) , τ∗)) , s

)
− Pl (x∗6) ,

we see that, by Theorem 19 (and its mirror counterpart for the collision with m2) we have
an orbit originating at the point Pk(x∗0) on the collision set for mk, and terminating at the
point Pl (x

∗
6) on the collision set for ml. The transversality of the intersection between

the ejection manifold of mk and the collision manifold of ml follows from Theorem 15.
The time between collisions in Equation (45) follows from Equation (34).

20



Remark 24 (Additional shooting steps). We remark that in practice, computing
accurate enclosures of flow maps requires shortening the time step. Consider for example
the third and fourth component of F as defined in Equation (44), and suppose that time
step of length τ/N is desired. By the properties of the flow map, solving the sub-system
of equations

R3
α,τ (x3)− x4 = φα(x3, τ)− x4 = 0

R4
α,τ (x4)− x5 = T−1

l (x4)− x5 = 0
(46)

is equivalent to solving

φα(x3, τ/N)− y1 = 0

φα(y1, τ/N)− y2 = 0

...

φα(yN−2, τ/N)− yN−1 = 0

φα(yN−1, τ/N)− x4 = 0

T−1
l (x4)− x5 = 0,

and we can append these new variables and components to the map F defined in Equation
(44) without changing the zeros of the operator. Moreover, by Lemma 18 the transversal-
ity result for the operator is not changed by the addition of additional steps. Indeed, by
the same reasoning we can (and do) add intermediate shooting steps in the regularized
coordinates to reduce the time steps to any desired tolerance.

5. Connections between collisions and libration points L4, L5

For each value of µ ∈ (0, 1/2], the PCRTBP has exactly five equilibrium solutions.
For traditional reasons, these are referred to as libration points of the PCRTBP. Three
of these are collinear with the primary bodies, and lie on the x-axis. These are referred
to as L1, L2 and L3, and they correspond to the co-linear relative equilibrium solutions
discovered by Euler. The remaining two libration points are located at the third vertex of
the equilateral triangles whose other two vertices are the primary and secondary bodies.
These are referred to as L4 and L5, and correspond to the equilateral triangle solutions
of Lagrange. Figure 4 illustrates the locations of the libration points in the phase space.

For all values of the mass ratio, the collinear libration points have saddle × center
stability. The center manifolds give rise to important families of periodic orbits known
as Lyapunov families. The stability of L4 and L5 depend on the mass ratio µ. For

0 < µ < µ∗ ≈ 0.04,

where the exact value is µ∗ = 2/(25 +
√

621), the triangular libration points have center
× center stability. That is, they are stable in the the sense of Hamiltonian systems and
exhibit the full “zoo” of nearby KAM objects.

When µ > µ∗, the triangular libration points L4 and L5 have saddle-focus stability.
That is, they have a complex conjugate pair of stable and a complex conjugate pair of
unstable eigenvalues. The four eigenvalues then have the form

λ = ±α± iβ,
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Figure 4: The three collinear libration points L1,2,3 and the equilateral triangle libration points L4,5,
relative to the positions of the primary masses m1 and m2.

for some α, β > 0. In this case, each libration point has an attached two dimensional
stable and two dimensional unstable manifold. Since these two dimensional manifolds
live in the three dimensional energy level set of L4,5, there exists the possibility that
they intersect the two dimensional collision or ejection manifolds of the primaries trans-
versely. It is also possible that the stable/unstable manifolds of L4,5 intersect one other
transversely giving rise to homoclinic or heteroclinic connecting orbits.

In fact, in this paper we prove that both of these phenomena occur and in this section
we discuss our method for proving the existence of intersections between a stable/unstable
manifold of L4,5, and an ejection/collision manifold of a primary body. Any point of
intersection between these manifolds gives rise to an orbit which is asymptotic to L4,
but which collides or is ejected from one of the massive bodies. Two such orbits are
illustrated in Figure 5.

Let B ⊂ R2 denote a closed ball with radius 1. Assume that

wκj : B → R4 for j ∈ {4, 5} and κ ∈ {u, s} ,

parameterize the two dimensional local stable/unstable manifolds of Lj . We assume that
the charts are normalized so that wκj (0) = Lj . Then

wκj
(
B
)

= Wκ
loc (Lj) for j ∈ {4, 5}, κ ∈ {u, s} .

Define the functions

Pκj : R→ R4 for j ∈ {4, 5} and κ ∈ {u, s} ,

by
Pκj (θ) := wκj (cos θ, sin θ) . (47)

For i ∈ {1, 2} consider Pi as defined in Equation (43).
For

x = (x0, x1, x2, x3, x4) ∈ R14,

where x0, x4 ∈ R, x1, x2, x3 ∈ R4, and j ∈ {4, 5} we define

Fui,j , F
s
i,j : R16 → R16,
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Figure 5: Libration-to-collision and ejection-to-libration orbits for µ = 1/2 and c = 3 (which is the L4

value of the Jacobi constant in the equal mass problem). The left frame illustrates an ejection to L4

orbit, and the right frame an L4 to collision. In each frame m1 is depicted as a black dot and L4 as a red
dot. The boundary of a parameterized local unstable manifold for L4 is depicted as the red circle; stable
boundary the green circle. The orbits are found by computing an approximate zero of the map defined
in Equation (48). The green portion of the left, and red portion of the right curves are computed in
regularized coordinates for the body m1. These points are transformed back to the original coordinates
for the plot.

by the formulas

Fui,j (x, τ, α) =


Puj (x0) − x1

φα (x1, τ) − x2

T−1
i (x2) − x3

ψ
cj
i (x3, s) − Pi(x4)

 , F si,j (x, τ, α) =


Pi(x0) − x1

ψ
cj
i (x1, s) − x2

Ti(x2) − x3

φα (x3, τ) − P sj (x4)

 .

(48)
Here τ, α ∈ R and the constant cj in ψ

cj
i is chosen as cj = E (Lj).

Zeros of the operator Fui,j correspond to intersections of the unstable manifold of Lj
with the collision manifold of mass mi. We also refer to this as a heteroclinic connection
from Lj to mi. Similarly, zeros of the operator F si,j correspond to intersections between
the stable manifold of Lj with the ejection manifold of mass mi. In other words, they
lead to heteroclinic connections ejected from mi and limiting to the libration point Lj in
forward time. This is expressed formally in the following lemma.

Lemma 25. Fix i ∈ {1, 2} , j ∈ {4, 5}, and κ ∈ {u, s}. Suppose there exists x∗ =
(x∗0, x

∗
1, x
∗
2, x
∗
3, x
∗
4) ∈ R14 and τ∗ > 0 satisfying

Fκi,j (x∗, τ∗, 0) = 0,

and such that
DFκi,j (x∗, τ∗, 0)

is an isomorphism. Then we have the following two cases.

1. If κ = u, then the orbit of x∗1 is heteroclinic from the libration point Lj to colli-
sion with mi and the intersection of Wu (Lj) with the collision manifold of mi is
transverse with respect to the energy level {E = cj}.
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Figure 6: Transverse homoclinic orbits at L4 for µ = 1/2 in the C = 3 energy level. Each orbit traverses
the illustrated curves in a clockwise fashion. The left and center orbits were known to Stromgren and
Szebeheley. The center and right orbits possess no symmetry, and the orbit on the right passes close
to collision with m2. Each orbit is found by approximately computing a zero of the map defined in
Equation (49). The left and center orbits are computed in only the standard coordinate system. The
orbit on the right is computed by changing to regularized coordinates for the middle third of the flight.

2. If κ = s, then the orbit of x∗3 is heteroclinic from the libration point Lj to ejec-
tion with mi and the intersection of W s (Lj) with the ejection manifold of mi is
transverse with respect to the energy level {E = cj}.

Proof. The proof follows from an argument similar to the proof of Lemma 23.

By a small modification of the operator just defined, we can study orbits homoclinic
or heteroclinic to the libration points as well. Such orbits arise as intersections of the
stable/unstable manifolds of the libration points, and lead naturally to two point BVPs.
Three such orbits, homoclinic to L4 in the PCRTBP, are illustrated in Figure 6.

Note that homoclinic/heteroclinic connections between equilibrium solutions do not
require changing to regularized coordinates as such orbits exists for all forward and back-
ward time and cannot have any collisions. While this claim is mathematically correct,
any homoclinic/heteroclinic orbit which passes sufficiently close to a collision with mi

for i ∈ {1, 2} becomes difficult to continue numerically. Consequently, these orbits may
still be difficult or impossible to validate via computer assisted proof. In this case regu-
larization techniques are an asset even when studying orbits which pass near a collision.
The left and center homoclinic orbits in Figure 6 for example are computed entirely in
the usual PCRTBP coordinates, while the right orbit was computed using both coordi-
nate systems. With this in mind we express the homoclinic/heteroclinic problem in the
framework set up in the previous sections.

Let Pκj : R→ R4, for j ∈ {4, 5} be the functions defined in Equation (47) and consider

x = (x0, . . . , x6) ∈ R22,

where x0, x6 ∈ R and x1, . . . , x5 ∈ R4, and fix s1, s2 > 0. Let

Fi,j,k : R24 → R24, for j, k ∈ {4, 5}, i ∈ {1, 2} ,
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be defined as

Fi,j,k (x, τ, α) :=


Puj (x0) − x1

φα (x1, τ) − x2

T−1
i (x2) − x3

ψ
cj
i (x3, s1) − x4

Ti(x4) − x5

φα (x5, s2) − P sk (x6)

 . (49)

One can formulate an analogous result to the Lemmas 23 and 25, so that

Fi,j,k (x∗, τ∗, 0) = 0,

together with DFi,j,k (x∗, τ∗, 0) an isomorphism implies that the manifolds Wu (Lj) and
W s (Lk) intersect transversally.

Again, the advantage of solving Fi,j,k = 0 over parallel shooting in the original co-
ordinates is that one can establish the existence of connections which pass arbitrarily
close to a collision m1 and/or m2. Indeed, the operator defined in Equation (49) can
be generalized to study homoclinic orbits which make any finite number of flybys of the
primaries in any order before returning to L4,5 by making additional changes of variables
to regularized coordinates every time the orbit passes near collision.

6. Symmetric periodic orbits passing through collision

In this section we show that our method applies to the study of families of periodic
orbits which pass through a collision. By this we mean the following. We will prove
the existence of a family of orbits parameterized by the value of the Jacobi constant on
an interval. As in the introduction, we refer to this as a tube of periodic orbits. For
all values in the interval except one, the intersection of the energy level set with the
tube is a periodic orbit. For a single isolated value of the energy the intersection of the
energy level set with the tube is an ejection-collision orbit involving m1. The situation
is depicted in Figure 7.

To establish such a family of periodic orbits we make use of the time reversing sym-
metry of the PCRTBP. Recall that for

S (x, p, y, q) := (x,−p,−y, q)

and for the flow φ (x, t) of the PCRTBP we have that

S (φ (x, t)) = φ (S (x) ,−t) . (50)

Let us introduce the notation S to stand for the set of self S-symmetric points

S : =
{
x ∈ R4 : x = S (x)

}
.

The property in Equation (50) is used to find periodic orbits as follows. Suppose
x,y ∈ S satisfy y = φ (x, t). Then by Equation (50), we have

φ (x, 2t) = φ (y, t) = φ (S (y) , t) = S (φ (y,−t)) = S (x) = x, (51)
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Figure 7: A family of Lyapunov periodic orbits passing through a collision. The left two figures are in
the original coordinates, the middle two are in the regularised coordinates at m1 and the right two are
in regularised coordinates at m2. (Compare with Figure 2.) The trajectories computed in the original
coordinates are in black, and the trajectories computed in the regularized coordinates are in red. The
collision with m1 is indicated by a cross. The mass m2 is added in the closeup figures as a black dot.
The operator (54) gives half of a periodic orbit in red and black. The second half, which follows from
the symmetry, is depicted in grey. The plots are for the Earth-moon system.
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Figure 8: A closeup of a Lyapunov orbit before (left) and after (right) passing through the collision. The
plot is in the original coordinates.
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meaning that x lies on a periodic orbit. Our strategy is then to set up a boundary value
problem which shoots from S to itself.

The set S lies on the x-axis in the (x, y) coordinate frame. From the left plot in
Figure 7 it is clear that we are interested in points on S which will pass through collision
with m1 and close to the collision with m2. We therefore consider the set S transformed
to the regularized coordinates of m1 and m2.

Lemma 26. Let Ŝ, S̃ ⊂ R4 be defined as

Ŝ = {(0, p̂, ŷ, 0) : p̂, ŷ ∈ R} ,
S̃ = {(x̃, 0, 0, q̃) : x̃, q̃ ∈ R} .

Then T1(Ŝ) = S and T2(S̃) = S.

Proof. The proof follows directly from the definition of T1 and T2. (See Equations
(32) and (39).)

The intuition behind the choice of Ŝ, S̃ is seen in Figure 2. From the figure we see
that the set Ŝ is the vertical axis {x̂ = 0} and S̃ is the horizontal axis {ỹ = 0}, which
join the primaries in the regularized coordinates.

To find the desired symmetric periodic orbits we fix an energy level c ∈ R and
introduce an appropriate shooting operator, whose zero implies the existence of an orbit
with energy c. Slightly abusing notation, let us first define two functions p̂, q̃ : R2 → R
as

p̂ (ŷ, c) :=

√
4ŷ6 − 8µŷ4 + 4(µ− c)ŷ2 +

8µŷ2√
ŷ4 + 1− 2ŷ2

+ 8(1− µ),

q̃ (x̃, c) :=

√
4x̃6 − 8(1− µ)x̃4 + 4 ((1− µ)− c) x̃2 +

8(1− µ)x̃2

√
x̃4 + 1− 2x̃2

+ 8µ.

Observe that from Equations (30) and (38) we have

Ec1 (0, p̂ (ŷ, c) , ŷ, 0) = 0, (52)

Ec2 (x̃, 0, 0, q̃ (x̃, c)) = 0. (53)

Next, we define P c1 , P
c
2 : R→ R4 by

P̂ c1 (ŷ) := (0, p̂ (ŷ, c) , ŷ, 0) ,

P̃ c2 (x̃) := (x̃, 0, 0, q̃ (x̃, c)) ,

and note that P c1 (R) ⊂ Ŝ and P c2 (R) ⊂ S̃. Taking

x = (x0, x1, . . . , x5, x6) ∈ R× R4 × . . .× R4︸ ︷︷ ︸
5 copies

× R = R22,

we define the shooting operator Fc : R24 → R24 as

Fc (x, τ, α) =


P̂ c1 (x0) − x1

ψc1 (x1, s) − x2

T1 (x2) − x3

φα (x3, τ) − x4

T−1
2 (x4) − x5

ψc2 (x5, s) − P̃ c2 (x6)

 . (54)
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We have the following result.

Lemma 27. Suppose that for c ∈ R we have an x (c) ∈ R22 and τ (c) ∈ R for which

Fc (x (c) , τ (c) , 0) = 0,

then we have one of the following three cases:

1. If x0 (c) 6= 0 and x6 (c) 6= 0, then the orbit through T1(P̂ c1 (x0 (c))) is periodic.

2. If x0 (c) = 0 and x6 (c) 6= 0, then then the orbit through T1(P̂ c1 (x0 (c))) is an
ejection-collision with m1.

3. If x0 (c) 6= 0 and x6 (c) = 0, then then the orbit through T1(P̂ c1 (x0 (c))) is an
ejection-collision with m2.

Proof. The result follows immediately from the definition of Fc in Equation (54) and
from Theorem 19 (or the analogous theorem for m2). We highlight the fact that due to
Equations (52)–(53) we have Ec1(P̂ c1 (x0)) = 0 and Ec2(P̃ c2 (x6)) = 0, so the trajectories
in the regularized coordinates correspond to the physical trajectories in the physical
coordinates of the PCRTBP.

We can use the implicit function theorem to compute the derivative of x (c) with
respect to c. Let us write y (c) := (x (c) , τ (c) , α (c)) and suppose Fc(y(c)) = 0. (Note
that in fact we must also have that α (c) = 0 since α is unfolding.) Then d

dcx (c) is

computed from the first coordinates of the vector d
dcy (c) and is given by the formula

d

dc
y (c) = −

(
∂Fc
∂y

)−1
∂Fc
∂c

. (55)

Theorem 28. Assume that for c ∈ [c1, c2] the functions x (c) and τ (c) solve the implicit
equation

Fc (x (c) , τ (c) , 0) = 0.

If

x0 (c1) > 0 > x0 (c2) , (56)

x6 (c) 6= 0 for all c ∈ [c1, c2] , (57)

and
d

dc
x0 (c) < 0 for all c ∈ [c1, c2] , (58)

then there exists a unique energy parameter c∗ ∈ (c1, c2) for which we have have an
intersection of the ejection and collision manifolds of m1. Moreover, for all remaining
c ∈ [c1, c2] \ {c∗} the orbit of the point T1(P̂ c1 (x0 (c))) is periodic.

Proof. The result follows directly from the Bolzano theorem and Lemma 27.
Theorem 28 is deliberately formulated so that its hypotheses can be validated via

computer assistance. Specifically, rigorous enclosures of Equation (55) are rigorously
computed and Equations (56)-(58) are rigorously verified using interval arithmetic.

We finish this section with an example of a similar approach, which can be used for
the proofs of double collisions in the case when m1 = m2 = 1

2 . That is, we establish the
28
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Figure 9: A family of periodic orbits passing through a double collision. The left figure is in the original
coordinates and the right figure is in the regularised coordinates at m1. The trajectories computed in
the original coordinates are in black, the trajectories computed in the regularized coordinates are in red,
and the collision orbit is in blue. The second half of an orbit, which follows from the R-symmetry, is
depicted in grey. The plots are for the system with equal masses.

existence of a family of periodic orbits, parameterized by energy (the Jacobi constant),
which are symmetric with respect to the y-axis, and such that for a single parameter
from the family we have a double collision as in Figure 9.

In this case consider R : R4 → R4 defined as

R (x, p, y, q) = (−x, p, y,−q) .

For the case of two equal masses, we have the time reversing symmetry

R (φ (x, t)) = φ (R (x) ,−t) . (59)

We denote by R the set of all points which are R-self symmetric, i.e. R = {x = R (x)}.
An argument mirroring Equation (51) shows that if two points x,y ∈ R have y = φ (x, t) ,
then these points must lie on a periodic orbit.

To obtain the existence of the family of orbits depicted in Figure 9, define p : R2 → R
and P c1 , P

c
2 : R→ R4 as

p (y, c) :=
√

2Ω(0, y)− c,
P c1 (y) := (0, p (y, c) , y, 0) ,

P c2 (y) := (0,−p (y, c) , y, 0) .

Note that P c1 (y) , P c2 (y) ∈ R and E (P c1 (y)) = E (P c2 (y)) = c (see Equation (28)).
Consider x0, x7 ∈ R and x1, . . . , x6 ∈ R4, where

x4 = (s4, p̂4, ŷ4, q̂4) ∈ R4. (60)

We emphasize that the first coordinate in x4 will be used here in a slightly less standard
way than in the previous examples. We define also

x̂4 := (0, p̂4, ŷ4, q̂4) ∈ R4.
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We now choose some fixed s2, s5 ∈ R, s2, s5 > 0, and for

x = (x0, . . . , x7) ∈ R× R4 × . . .× R4︸ ︷︷ ︸
6

× R = R26

define the operator Fc : R26 × R× R→ R28 as

Fc (x, τ, α) =



P c1 (x0) − x1

φα (x1, s2) − x2

T−1
1 (x2) − x3

ψc1 (x3, s4) − x̂4

ψc1 (x̂4, s5) − x5

T1 (x5) − x6

φα (x6, τ) − P c2 (x7)


. (61)

Note that in Equation (61) the s2, s5 are some fixed parameters, and s4 is one of
the coordinates of x. We claim that if Fc (x, τ, 0, 0) = 0 and πŷ4x = 0, then the orbit
of x2 passes through the collision with m1. This is because x̂4 = (0, p̂4, ŷ4, q̂4), so that
Fc = 0 ensures that the point ψc1 (x3, s4) is zero on the x̂4 coordinate. So, if Fc(x) = 0
and πŷ4

x = 0, then πx̂4,ŷ4
ψc1 (x3, s4) = 0 and we arrive at the collision. Moreover, by the

R-symmetry of the system in this case we also establish heteroclinic connections between
collisions with m1 and m2 (see Figure 9).

If on the other hand Fc = 0 and πŷ4
x 6= 0, then we have a periodic orbit passing near

the collisions with m1 and m2. One can prove a result analogous to Theorem 28 with
the minor difference being that instead of using x0 in Equations (56) and (58) we take
ŷ4. We omit the details in order not to repeat the same argument.

7. Computer assisted proofs for collision/near collision orbits

7.1. Newton-Krawczyk method

For a smooth mapping F : Rn → Rn, the following theorem provides sufficient condi-
tions for the existence of a solution of F (x) = 0 in the neighborhood of a “good enough”
approximate solution. The hypotheses of the theorem require measuring the defect as-
sociated with the approximate solution, as well as the quality of a certain condition
number for an approximate inverse of the derivative. Theorems of this kind are used
widely in computer assisted proofs, and we refer the interested reader to the works of
[67, 68, 69, 70, 71, 72, 73, 74] for a more complete overview.

Let ‖·‖ be a norm in Rn and let B(x0, r) ⊂ Rn denote a closed ball of radius r ≥ 0
centered at x0 in that norm.

Theorem 29 (Newton-Krawczyk). Let U ⊂ Rn be an open set and F : U → Rn be
at least of class C2. Suppose that x0 ∈ U and let A be a n × n matrix. Suppose that
Y,Z, r > 0 are positive constants such that B(x0, r) ⊂ U and

‖AF (x0)‖ ≤ Y, (62)

sup
x∈B(x0,r)

‖Id−ADF (x)‖ ≤ Z. (63)
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If
Zr − r + Y ≤ 0, (64)

then there is a unique x̂ ∈ B(x0, r) for which F (x̂) = 0. Moreover, DF (x̂) is invertible.

Proof. The proof is included in Appendix A for the sake of completeness.

The theorem is well suited for applications to computer assisted proofs. To validate
the assumptions its enough to compute interval enclosures of the quantities F (x0) and
DF (B), where B is a suitable ball. These enclosures are done using interval arithmetic,
and the results are returned as sets (cubes in Rn and Rn×n) enclosing the correct values.
A good choice for the matrix A is any floating point approximate inverse of the derivative
of F at x0, computed with standard linear algebra packages. The advantage of working
with such an approximation is that there is no need to compute a rigorous interval
enclosure of a solution of a linear equation (as in the interval Newton method). In higher
dimensional problems, solving linear equations can lead to large overestimation (the so
called “wrapping effect”).

In our work the evaluation of F and its derivative involves integrating ODEs and
variational equations. There are well know general purpose algorithms for solving these
problems, and we refer the interested reader to [75, 15, 70]. For parameterizing the
invariant manifolds attached to L4 with interval enclosures, we exploit the techniques
discussed in [76] (validated integration is also discussed in this reference).

We remark that our implementations use the IntLab laboratory running under Mat-
Lab7 and/or the CAPD8 C++ library, and recall that the source codes are found at the
homepage of MC. See [77] and [13] as references for the usage and the functionality of
the libraries.

7.2. Computer assisted existence proofs for ejection-collision orbits

The methodology of Section 4, and especially Lemma 23, is combined with Theorem
29 to obtain the following.

Theorem 1. Consider the planar PCRTBP with µ = 1/4 and c = 3.2. Let

p =


−0.564897282072410

0.978399619177283
−0.099609551141525
−0.751696444982537

 ,

r = 2.7× 10−13,

and
Br =

{
x ∈ R4 : ‖x− p‖ ≤ r

}
,

where the norm is the maximum norm on components. Then, there exists a unique
p∗ ∈ Br such that the orbit of p∗ is ejected from m2 (at x = −1 + µ, y = 0), collides

7https://www.tuhh.de/ti3/rump/intlab/
8Computer Assisted Proofs in Dynamics, http://capd.ii.uj.edu.pl
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x0 = 2.945584780500716
x1 = ( 0.0, −1.387134030283961, 0.0, 0.275425456390970)
x2 = (−0.444581369966432, −1.038375926396089, 0.112026231721142, 0.449167625710802)
x3 = (−0.564897282072410, 0.978399619177283, −0.099609551141525, −0.751696444982537)
x4 = (−0.244097430449606, 0.878139982728136, −0.025435855606099, 0.543608549989376)
x5 = ( 0.018086991443589, −0.732714475912918, −0.703153304556756, 1.254598547822042)
x6 = 1.459760691418490
τ = 2.051635871465197
α = 0.0

Table 1: Numerical data used in the proof of Theorem 1, giving the approximate solution of F = 0
for the operator (44), whose zeros correspond to the ejection-collision orbits from m2 to m1. We set
the mass ratio to µ = 1/4 and Jacobi constant to c = 3.2. The resulting orbit is illustrated in Figure 3
(bottom curve).

with m1 (at x = µ, y = 0), and the total time T from ejection to collision satisfies the
estimate

2.42710599795 ≤ T ≤ 2.42710599796.

In addition, the ejection manifold of m2 intersects the collision manifold of m1 trans-
versely along the orbit of p∗, where transversality is relative to the level set {E = 3.2}.
Moreover, there exists a transverse S-symmetric counterpart ejected from m1 and collid-
ing with m2.

Proof. The first step in the proof is to define an appropriate version of the map
F in Equation (44), whose zeros correspond to ejection-collision orbits from m2 to m1.
In particular we set k = 2 and l = 1, and choose (somewhat arbitrarily) the parameter
s = 0.35 in the definition of the component maps R1

τ,α and R5
τ,α. The parameter s

determines how long to integrate/flow in the regularized coordinates.
Next we compute an approximate zero x ∈ R24 of F using Newton’s method. Note

that interval arithmetic is not required in this step. The resulting numerical data is
recorded in Table 1, and we note that x3 in the table corresponds to p in the hypothesis
of the theorem. Note also that we take ᾱ in the approximate solution to be zero.

We define A to be the numerically computed approximate inverse of DF (x), and let

B = B(x, r∗),

denote the closed ball of radius
r∗ = 2× 10−12,

in the maximum norm about the numerical approximation. (The reader interested in the
numerical entries of the Matrix can run the accompanying computer program). We note
that the choice of r∗ is somewhat arbitrary. (It should be small enough that there is not
too much “wrapping”, but not so small that there is no r ≤ r∗ satisfying the hypothesis
of Theorem 29).

Using interval arithmetic and validated numerical integration we compute an interval
enclosure of the length 24 vector of intervals F having

F (x) ∈ F,

and an interval enclosure of a 24× 24 interval matrix M with

DF (x) ∈M for all x ∈ B.
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We then check, again using interval arithmetic, that

‖AF‖ ∈ 10−12 × [0.0, 0.26850976470521]

and that
‖Id−AM‖ ∈ 10−7 × [0.0, 0.23119622467860].

From these we have
‖AF (x)‖ ≤ Y < 0.269× 10−12

and
sup
x∈B
‖Id−ADF (x)‖ ≤ Z < 0.232× 10−7,

though the actual bounds stored in the computer are tighter than those just reported
(hence the inequality).

We let

r = sup

(
Y

1− Z

)
≤ 2.7× 10−13,

and note again that the actual bound stored in the computer is smaller than reported
here. We then check, using interval arithmetic, that

Zr − r + Y ≤ −5.048× 10−29 < 0.

We also note that, since r ≤ r∗, we have that B(x, r) ⊂ B, so that

sup
x∈B(x,r)

‖Id−ADF (x)‖ ≤ Z,

on the smaller ball as well.
From this we conclude, via Theorem 29, that there exists a unique x∗ ∈ B(x, r) ⊂ R24

so that F (x∗) = 0, and moreover that DF (x∗) is invertible. Hence, it now follows from
Lemma 23 that there exists a transverse ejection-collision from m2 to m1 in the PCRTBP.

Note that the integration time in the standard coordinates

τ̄ = 2.051635871465197,

is one of the variables of F (we are simply reading this off the table). The rescaled
integration time in the regularized coordinates is fixed to be s = 0.35. Our programs
compute validated bounds on the integrals in Equation (45) and provide interval enclo-
sures for the time each orbit spends in the regularized coordinate systems of m1 and m2

respectively. This interval enclosure is

T1+T2 ∈ [0.27116751585137, 0.27116751585615]+[0.10430261063473, 0.10430261063793].

Since the true integration time τ∗ is in an r-neighborhood of τ̄ it follows that

τ∗ ∈ [2.05163587146492, 2.05163587146547].

Interval addition of the three time intervals containing T1, T2 and τ∗ provides the desired
final bound on the total time of flight given in the theorem.
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The connection in the other direction follows from the S-symmetry of the system (see
Equation (50)). The computational part of the proof is implemented in IntLab running
under MatLab, and took 21 minutes to run on a standard desktop computer.

The orbit whose existence is proven in Theorem 1 is illustrated in Figure 3 (lower orbit
of the two orbits illustrated in the figure). The higher orbit follows from the S-symmetry
of the PCRTBP. We remark that our implementation actually subdivides the time steps
s = 0.35 in regularized coordinates 50 times, while the time step τ̄ is subdivided 200
times. This only enlarges the size of the system of equations as discussed in Remark 24.

Validation of the 50+200+50 = 300 steps of Taylor integration, along with the spatial
and parametric variational equations, takes most of the computational time for the proof.
The choice of the mass µ = 1/4 and the energy c = 3.2 was more or less arbitrary and
the existence of many similar orbits could be proven using the same method.

7.3. Connections between ejections/collisions and the libration points L4, L5

We apply the methodology of Section 5, and especially Lemma 25, in conjunction
with Theorem 29 to obtain the following result. The local stable (or unstable) manifolds
at L4 are computed using the methods and implementation of [16]. See Appendix B for
a few additional remarks concerning the parameterizations.

Theorem 2. Consider planar PCRTBP with µ = 1/2 and c = 3 is the energy of L4.
Let

p =


0.003213450375413
0.197716496638868
−0.404375730348827

0.696149210661807

 ,

r = 8.2× 10−12,

and
Br =

{
x ∈ R4 : ‖x− p̄‖ ≤ r

}
.

Then there exists a unique point

p∗ ∈ Br

such that the orbit of p∗ accumulates to L4 as t → −∞, collides with m1 (located at
x = µ, y = 0) in finite forward time, and the unstable manifold of L4 intersects the
collision set of m1 transversely along the orbit of p∗, where transversality is relative to
level set {E = 3}.

Proof. The proof is similar to the proof of Theorem 1, and we only sketch the argument.
Orbits accumulating to L4 in backward time and colliding with m1 are equivalent to
zeros of the mapping Fui,j defined in Equation (48) with j = 4 and i = 1. We also set the
parameter s = 0.5, which is the integration time in the regularized coordinates.

The first step is to compute a numerical zero x̄ = (x̄0, x̄1, x̄2, x̄3, x̄4, τ̄ , ᾱ) ∈ R16 of
Fui,j . This step exploits Newton’s method (no interval arithmetic necessary), and the

resulting data is reported in Table 2. Note that x̄1 ∈ R4 from the table is the initial
condition p̄ in the statement of the theorem. We take A to be a numerically computed
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x0 = 0.329444389425640
x1 = (−0.032305434322402, −0.044152238388004, 0.843244687835647, 0.005057045291404)
x2 = ( 0.003213450375413, 0.197716496638868, −0.404375730348827, 0.696149210661807)
x3 = ( 0.268116630482827, −0.943915863314079, −0.754104155383092, 0.671496024758153)
x4 = 1.696671399505923
τ = 7.034349085576677
α = 0.0

Table 2: Numerical data providing an approximate zero of the map Fu
i,j defined in Equation (48), for

i = 1, j = 4, c = 3, µ = 1/2 and s = 0.5. The data is used in the proof of Theorem 2, and results in the
existence of the L4 to collision orbit illustrated in the right frame of Figure 5.

approximate inverse of the 16× 16 matrix DFui,j(x̄). Again, the definition of A does not
require interval arithmetic.

For the next step we compute interval enclosures of F (x̄) and of DFui,j(x) for x in a

cube of radius r∗ = 5× 10−9 and obtain that

‖AF (x̄)‖ ∈ 10−11 × [0.0, 0.82147145471154],

and that
sup

x∈Br∗ (x̄)

‖Id−ADFui,j(x)‖ ∈ [0.0, 0.00151459031904].

Using interval arithmetic we compute

r =
Y

1− Z
≤ 8.3× 10−12,

where the actual value stored in the computer is smaller than reported here (and hence
the inequality). We then check, using interval arithmetic, that Zr − r + Y < 0. Since
r < r∗, we have that there exists a unique x∗ ∈ Br(x̄) so that Fui,j(x∗) = 0. Moreover,
transversality follows from the non-degeneracy of the derivative of Fui,j .

The proof is implemented in IntLab running under MatLab, and took about 30 min-
utes to run on a standard desktop computer.

By replacing the operator Fui,j with the operator F si,j defined in Equation (48), again
with j = 4 and i = 1, we obtain a nonlinear map whose zeros correspond to ejection-
to-L4 orbits. We compute an approximate numerical zero of the resulting operator (the
numerical data is given in Table 3) and repeat a nearly identical argument to that above.
This results in the existence of a transverse ejection-to-L4 orbit in the PCRTBP with
µ = 1/4 and c = 3. The validated error bound for the numerical data has

r ≤ 1.8× 10−11,

so that the desired orbit passes with in an r-neighborhood of the point

p̄ =


−0.112449038686947
−0.553321424594493

0.308527098616200
0.727049637558896

 .

In this way we prove the existence of both the orbits illustrated in Figure 5. More
precisely, the orbit whose existence is established in Theorem 2 is illustrated in the right
frame of the figure, and the orbit discussed in the preceding remarks is illustrated in the
left frame.
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x0 = 1.561515178070094
x1 = ( 0.0, 0.018562030958889, 0.0, 1.999913860896684)
x2 = ( 0.191471460280817, 0.959639244531484, 0.805673853857139, 1.170011720749615)
x3 = (−0.112449038686946, −0.553321424594493, 0.308527098616200, 0.727049637558895)
x4 = 5.229765599216696
τ = 4.673109099822270
α = 0.0

Table 3: Numerical data for an approximate zero of the map F s
i,j defined in Equation (48), with i = 1,

j = 4 and s = 0.5. An argument similar to the proof of Theorem 2, using the data in the table, leads to
an existence proof for the ejection-to-L4 orbit illustrated in the left frame of Figure 5.

x0 = 1.411845524482813
x1 = (−0.037058535628028, −0.007623220519232, 0.873641524369283, 0.033084516464648)
x2 = (−0.243792823114517, −1.231115802740768, 0.191555403283542, −0.508371511645513)
x3 = ( 0.536705934592082, −1.502936895854406, 0.178454709494811, −0.106295188690239)
x4 = (−0.504618223339967, −0.258236025635830, −0.463683951257916, −1.155517796520023)
x5 = (−0.460363255327369, −0.431694933697799, 0.467966743350051, 0.748266448178995)
x6 = 5.988827136344083
τ = 4.753189987600258
α = 0.0

Table 4: Numerical data for the proof of Theorem 3, which provides an approximate zero of the L4

homoclinic map Fi,j,k defined in Equation (49), when i = k = 4, j = 2, s1 = 1.8635, and s2 = 5. The
orbit is depicted on the right plot in Figure 6.

7.4. Transverse homoclinics for L4 and L5

Combining the methodology of Section 5, and especially Lemma 25, with Theorem
29 we obtain the following result.

Theorem 3. Consider the planar PCRTBP with µ = 1/2 and c = 3 is the energy level
of L4. Let

p̄ =


−0.037058535628028
−0.007623220519232

0.873641524369283
0.033084516464648

 ,

and
Br =

{
x ∈ R4 : ‖x− p̄‖ ≤ r

}
,

where
r = 1.6× 10−9.

Then there exists a unique p∗ ∈ Br so that the orbit of p∗ is homoclinic to L4 and W s(L4)
intersects Wu(L4) transverseley along the orbit of p∗, where transversality is relative to
the level set {E = 3}.

Proof. As in the earlier cases, the argument hinges on proving the existence of a zero of
a suitable nonlinear mapping, in this case the map Fi,j,k defined in Equation (49), with
i = k = 4 and j = 2. The integration time parameters are set as s1 = 1.8635 and s2 = 5.
These are the flow times in the regularized coordinates and in the original coordinates
(the second time) respectively. With these choices, a zero of F4,2,4 corresponds to an
orbit homoclinic to L4 which passes through the Levi-Civita coordinates regularized at
m2.
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The numerical data x̄ ∈ R24 providing an approximate zero of F4,2,4 is reported in
Table 7.4. Note that x1 corresponds to p̄ in the hypothesis of the theorem. We let A be
a numerically computed approximate inverse of the matrix DF4,2,4(x̄). The table data
and the matrix A are computed using a numerical Newton scheme, and standard double
precision floating point operations.

Using validated numerical integration schemes, validated bounds on the local sta-
ble/unstable manifold parameterizations, and interval arithmetic, we compute interval
enclosures of F4,2,4(x̄) and of DF4,2,4(Br(x̄)) with where r = 1.659487745915747× 10−9.
We then check that

‖AF (x̄)‖ ∈ 10−8 × [0.0, 0.16432156145308],

and that
sup

x∈Br(x̄)

‖Id−ADF4,2,4(Br(x̄))‖ ∈ [0.0, 0.00980551463848].

Finally, we use interval arithmetic to verify that Zr−r+Y < 0 and transversality follows
as in the earlier cases which completes the proof.

Note that, from a numerical perspective, this is the most difficult computer assisted
argument presented so far. This is seen in the fact that Z ≈ 10−2 and r ≈ 10−9. That
is, these constants are roughly three orders of magnitude less accurate than the previous
theorems. On the other hand, the orbit itself is more complicated than those in the
previous theorems. We note that the accuracy of the result could be improved by taking
smaller integration steps and/or using higher order Taylor approximation. However, this
would also increase the required computational time.

Now, by symmetry, the result above gives a transverse homoclinic orbit for L5 which
passes near m1. We also observe that each of these transverse homoclinic orbits also
satisfy the hypotheses of the theorems of Devaney and Henard discussed in Section 1. In
particular, Theorem 3 also proves the existence of a chaotic subsystem in the c = 3 energy
level of the PCRTBP near the orbit of p∗, and a tube of periodic orbits parameterized
by the Jacobi constant which accumulate to the homoclinic orbit through p∗.

We remark that, using similar arguments, we are able to prove also the existence and
transversality of of the homoclinic orbits in the left and center frames of Figure 6. More
precisely, let

p̄1 =


−0.033854025583296
−0.043110876471418

0.844639632487862
0.007320747846173

 , p̄2 =


0.029871559148065
−0.006337684774610

0.850175365286339
−0.034734413580682

 ,

and
r1 = 2.03× 10−10, r2 = 1.84× 10−8.

Then there exist unique points p1
∗ ∈ B(p̄1, r1) and p2

∗ ∈ B(p̄2, r2) so that W s,u(L4)
intersect transversely along the orbits through these points. It is also interesting to note
that r2 is two orders of magnitude larger than r1. This is caused by the fact that the
time of flight (integration time) is longer in this case and, more importantly, the fact
that the second orbit passes very close to m1. Indeed, the error bounds for the second
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x̄0 = 0.0
x̄1 = ( 0.0, 2.8111911379251, 0.0, 0.0)
x̄2 = ( 0.96886794638213, -0.3219837525934, -0.52587590839627, -2.8644348266831)
x̄3 = ( 0.67431017475157, -0.74811608844773, -1.0190086228395, -1.0721803622694)
x̄4 = (-1.0199016713004, 0.72482377063238, -0.062207790440189, 1.1639536137604)
x̄5 = ( 0.1377088390491, -0.32616835939217, -0.22586709346235, 0.6480010784062)
x̄6 = 0.070375791076957
τ̄ = 2.0972398526268
ᾱ = 0.0

Table 5: Numerical data for the proof of Theorem 4, which gives an approximate solution to Fc = 0
for the operator (54), for which we have a collision of the family of Lyapunov orbits with m1 for the
Earth-Moon system (see Figure 7). This occurs for a unique value of the Jacobi constant c∗ ∈ c.

orbit would very likely be improved by changing to regularized coordinates near m1 and
this may even be necessary to validate some homoclinics passing even closer to m1 or
m2. Nevertheless, we were able to validate these orbits in standard coordinates so we
have not done this here.

The orbit of p1
∗ is illustrated in the left frame of Figure 6 appears to have y-axis

symmetry, however we do not use this symmetry nor do we rigorously prove its existence.
The orbit of p2

∗ is illustrated in the center frame of Figure 6 has no apparent symmetry.
The orbits illustrated in the left and center frames have appeared previously in the
literature, as remarked in Section 1. However, to the best of our knowledge this is the
first mathematically rigorous proof of their existence.

7.5. Periodic orbits passing through collision

We apply the methodology of section 6, namely Lemma 27 and Theorem 28, with
Theorem 29 to obtain the following result. We consider the Earth-Moon mass ratio
largely for the sake of variety.

Theorem 4. Consider the Earth-Moon system 9 where m2 has mass µ = 0.0123/1.0123
and m1 has mass 1− µ. Let10

c0 = 1.4340459493, and δ = 10−11.

There exists a single value c∗ ∈ (c0 − δ, c0 + δ) of the Jacobi integral, for which we have
an orbit along the intersection of the ejection and collision manifolds of m1. Moreover,
for every c ∈ [c0 − δ, c0 + δ] \ {c∗} we have an S-symmetric Lyapunov orbit, that passes
close to the collision with m1. In addition, for every c ∈ {1.2, 1.25, 1.3, . . . , 1.65} there
exists a Lyapunov orbit, which passes close the collision with m1. (These orbits are
depicted in Figure 7.)

Proof. The orbits for the Jacobi integral values in c := [c0 − δ, c0 + δ] were es-
tablished by means of Theorems 28 and 29. We have first pre-computed numerically
(through a standard, non-interval, numerical computation) an approximation x̄ ∈ R22,

9So named because this is the approximate mass ratio of the Moon relative to the Earth.
10In fact, our numerical calculations suggest that a more accurate value of the Jacobi constant for

which we have the collision is 1.434045949300768. However, since in the theorem we obtain only interval
results, we round c0 so that digits smaller than the width of the interval are not used.
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τ̄ ∈ R for the functions x (c) and τ (c), for c ∈ c. (The x̄ and τ̄ are written out in Table
5.) We then took x̄ := (x̄, τ̄ , 0) ∈ R24, and a ball B (x̄, r), in the maximum norm, with
r = 10−11. We established using Theorem 29 that x (c) and τ (c) satisfying

Fc (x (c) , τ (c) , 0) = 0, for c ∈ c,

are r-close to x̄ and τ̄ . To apply Theorem 29 we have used the matrix A to be an
approximation of (DFc(x̄, τ̄ , 0))

−1
(computed with standard numerics, without interval

arithmetic).
We also checked using interval arithmetic that

x0 (c0 − δ) ∈ [3.2261 · 10−12, 5.2262 · 10−12] > 0,

x0 (c0 + δ) ∈ [−4.6229 · 10−12,−2.6228 · 10−12] < 0.

By using Equation (55), we have established the following interval arithmetic bound
for the derivative of x0 with respect to the parameter

d

dc
x0 (c) ∈ [−0.53146,−0.25344] < 0 for c ∈ c.

We also verified that

x6 (c) ∈ [0.07037579, 0.07037580] , for c ∈ c,

so x6 (c) 6= 0. This proves all necessary hypotheses of Theorem 28 are satisfied for the
interval c, which finishes the first part of the proof.

The Lyapunov orbits for c ∈ {1.2, 1.25, 1.3, . . . , 1.65} were estabilshed in a similar way.
For each value of the Jacobi constant we have non-rigorously computed an approximation
of a point for which Fc is close to zero, and validated that we have Fc = 0 for a point
in a given neighbourhood of each approximation by means of Theorem 28. Then each
Lyapunov orbit followed from Lemma 27. The proof was conducted by using the CAPD
library [13] and took under 4 seconds on a standard laptop.

In a similar way we have used the operator in Equation (61) to prove the following
result.

Theorem 5. Consider the equal masses system where µ = 1
2 . Let11

c0 = 2.05991609689, and δ = 10−11.

There exists a single value c∗ ∈ (c0 − δ, c0 + δ) of the Jacobi integral, for which we have
two intersections of the ejection and collision manifolds of m1 and m2 (a double collision).
Moreover, for every c ∈ [c0 − δ, c0 + δ]\{c∗} we have an R-symmetric periodic orbit, that
passes close to the collision with both m1 and m2.

In addition, for every c ∈ {2, 2.05, 2.1, 2.15, 2.2} there exists an R-symmetric periodic
orbit, which passes close the collisions with m1 and m2. (See Figure 9.)

11We believe that a more accurate value of the Jacobi constant for which we have the double collision
is 2.059916096889689.
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x̄0 = 2.1500812504263
x̄1 = ( 0.0, 1.9284591731628, 2.1500812504263, 0.0)
ȳ1 = ( 0.69048473611567, 1.7931365837031, 2.0235432631366, -0.68131264815823)
ȳ2 = ( 1.2840491252838, 1.4060903194974, 1.6633024005717, -1.2578372410208)
ȳ3 = ( 1.6975511373876, 0.82331762641153, 1.1255430505039, -1.635312833307)
ȳ4 = ( 1.8749336204161, 0.13626785074409, 0.4974554541058, -1.7408028751654)
ȳ5 = ( 1.7998279644685, -0.53073278614628, -0.11297480280335, -1.5366473737295)
ȳ6 = ( 1.5061749347656, -1.0305902992759, -0.59342931060715, -1.0405479042095)
ȳ7 = ( 1.0818972907729, -1.2225719420862, -0.85102013466618, -0.34180581034401)
ȳ8 = ( 0.65897461363208, -1.0129455565064, -0.83705911740279, 0.41484122714387)
x̄2 = ( 0.39363679634804, -0.35214129843918, -0.55459777216455, 1.118144276789)
x̄3 = ( 0.47871801188109, -1.6325298121847, -0.5792530867862, 0.66259374214967)
x̄4 = ( 0.40239981358785, -1.0164469492932, 0.0, 1.7224504635177)
x̄5 = (-0.25865224139372, -0.43561054122851, 0.51876042853484, 1.7861707478994)
x̄6 = ( 0.29778859976434, -1.2111468567795, -0.2683570951738, -1.0237309759288)
x̄7 = -0.38367247647373
τ̄ = 0.24444305938687
ᾱ = 0.0

Table 6: Numerical data for the proof of Theorem 5 giving an approximate solution to Fc = 0, for the
operator (61), for c = 2.05991609689 for which we have a double collision of a family of R-symmetric
periodic orbits for the equal masses system; see Figure 9. In the bold font we have singled out the first
coefficient of x4, which is the time s4 and not the physical coordinate of the collision point, for which
we have x̂ = 0. (See Equations (60) and (61).)

Proof. The proof follows along the same lines as the proof of Theorem 4. We do
not write out the details of all the estimates since we feel that this brings little added
value12. In the operator Fc from Equation (61) we have taken s2 = 3.3 and s5 = 0.3.
The fact that s2 involves a long integration time caused a technical problem for us in
obtaining an estimate for d

dcπŷx (c). To get a good enough estimate to establish that
d
dcπŷx (c) > 0 we needed to include additional points y1, . . . , ym in the shooting scheme
and extend Fc to include

φα (x1, s)− y1, φα (y1, s)− y2, . . . φα (ym−1, s)− ym, φα (ym, s)− x2,

where s = s2/ (m+ 1) . We took m = 8, and the point X0 wich serves as our approxima-
tion for Fc = 0 is written out in Table 6. The proof took under 10 seconds on a standard
laptop.

Remark 30 (MatLab with IntLab versus CAPD). We note that the computer pro-
grams implemented in C++ using the CAPD library run much faster than the programs
implemented in MatLab using IntLab to manage the interval arithmetic. This is not sur-
prising, as compiled programs typically run several hundred times faster than MatLab
programs, and the use of interval arithmetic only complicates things. Moreover, CAPD
is a well tested, optimized, general purpose package, while our IntLab codes were written
specifically for this project. The CAPD library, due to its efficient integrators, allowed us
to perform almost all of the proofs without subdividing the time steps, which was needed
for the MatLab code (see Remark 24 and comments at the end of section 7.2), except
for the proof of Theorem 5 (see Table 6). In particular, little time has been spent on
optimizing these codes. Nevertheless, it is nice to have rigorous integrators implemented
in multiple languages, and the codes for validating the 2D stable/unstable manifolds at
L4 were written in IntLab and have not been ported to C++.

12The code for the proof is made available on the personal web page of Maciej Capiński.
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Appendix A.

Proof of Theorem 29. From Equation (64) and since r > 0 we see that Z+ Y
r ≤ 1,

which since Y, r > 0 gives
Z < 1. (A.1)

Now, define the Newton operator

T (x) = x−AF (x). (A.2)

For x1, x2 ∈ B(x0, r), by the mean value theorem and (63), we see that

‖T (x1)− T (x2)‖ ≤ sup
x∈B(x0,r)

‖DT (x)‖‖x1 − x2‖

= sup
x∈B(x0,r)

‖Id−ADF (x)‖ ‖x1 − x2‖

≤ Z‖x1 − x2‖,

and since Z < 1 we conclude that T is a contraction on B(x0, r).
To see that T maps B(x0, r) into itself, for x ∈ B(x0, r) by Equations (62)–(64) we

have

‖T (x)− x0‖ ≤ ‖T (x)− T (x0)‖+ ‖T (x0)− x0‖
≤ sup
x∈B(x0,r)

‖DT (z)‖‖x− x0‖+ ‖AF (x0)‖

≤ Zr + Y

≤ r

hence T (x) ∈ B(x0, r).
By the Banach contraction mapping theorem there is a unique x̂ ∈ B(x0, r) so that

T (x̂) = x̂. (A.3)

Now observe that for every x ∈ B(x0, r), including x̂, by Equations (63) and (A.1)
we have that

‖Id−ADF (x̂)‖ ≤ Z < 1.

Then
ADF (x̂) = Id− (Id−ADF (x̂)) = Id−B

with ‖B‖ < 1. By the Neumann series theorem we see that ADF (x̂) is invertible. It
therefore follows that both A and DF (x̂) are also invertible.

From Equations (A.2) and (A.3) we see that AF (x̂) = 0. But A is invertible, so it
follows that F (x̂) = 0, as required.
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Appendix B.

Here follows a terse description of the local stable/unstable manifold parameteriza-
tions used in the proofs in Sections 7.3 and 7.4. Much more complete information is
found in [16, 78, 79]. In the present discussion f : U → Rd denotes the (real analytic)
PCRTB vector field, and Lj is one of the equilateral triangle libration points – so that
j = 4, 5. We are interested in parameter values where Df(L4,5) has complex conjugate
stable/unstable eigenvalues

±α± iβ,

with α, β > 0. We write λ = −α+iβ when considering the stable manifold, and λ = α+iβ
when considering the unstable.

Our goal is to develop a formal series expansion of the form

wκj (z1, z1) =

∞∑
m=0

∞∑
n=0

pmnz
m
1 z

n
2 , (B.1)

where j = 4 or 5 depending on wether we are based at L4 or L5, and κ = s or u
depending on wether we considering the stable or unstable manifold. Here pmn ∈ C4 for
all (m,n) ∈ N2. Moreover, we take

p00 = Lj ,

where j = 4, 5, and
p10 = ξ, and p01 = ξ,

where ξ, ξ ∈ C4 are complex conjugate eigenvectors associated with the complex conju-
gate eigenvalues λ, λ̄ ∈ C.

We use the parameterization method to characterize wκj . While we refer the interested
reader to [78, 79] for much more complete discussion of this method, we remark that the
main idea is to solve the invariance equation

λz1
∂

∂z1
wκj (z1, z2) + λz2w

κ
j (z1, z2) = f(wκj (z1, z2)), (B.2)

subject to the constraints

wκj (0, 0) = Lj ,
∂

∂v
wκj (0, 0) = ξ, and

∂

∂w
wκj (0, 0) = ξ.

It can be show that if wκj solves Equation (B.2) subject to these constraints, then it
parameterizes a local stable/unstable manifold at Lj .

To solve Equation (B.2) numerically we insert the power series ansatz of Equation
(B.1), expand the nonlinearities, and match like powers of z1 and z2. This procedure
leads to homological equations of the form(

Df(p00)− (mλ+ nλ)Id
)
pmn = Rmn,

describing the power series coefficients pmn for m + n ≥ 2. Here Rmn is a nonlinear
function of the coefficients of order less than m + n, whose computation in the case of
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m \ n 0 1 2

0

 0.0
0.0
0.866
0.0


 0.012 + 0.018i
−0.025
−0.015 + 0.0067i

0.0034− 0.019i

 10−3

 −0.050 + 0.076i
−0.081− 0.190i
−0.054− 0.041i

0.140− 0.051i


1

 0.012− 0.018i
−0.025
−0.015− 0.0067i

0.0034 + 0.019i

 10−3

 0.37
−0.47
−0.09

0.12

 10−4

 0.041 + 0.055i
−0.130− 0.070i
−0.036− 0.048i

0.110 + 0.060i


2 10−3

 −0.050− 0.076i
−0.081 + 0.190i
−0.054 + 0.041i

0.140 + 0.051i

 10−4

 0.041− 0.055i
−0.130 + 0.070i
−0.036 + 0.048i

0.110− 0.060i

 0

p03 = 10
−5

 −0.14 + 0.18i
−0.26− 0.76i

0.11 + 0.09i
−0.47 + 0.11i

 p30 = 10
−5

 −0.14− 0.18i
−0.26 + 0.76i

0.11− 0.09i
−0.47− 0.11i



Table B.7: Approximate power series coefficients pmn for the parameterization of the local stable
manifold of L4 for the equal masses case µ = 1/2.

the PCRTBP is discussed in more detail in [16]. Note that if f is real analytic, then the
coefficients have the symmetry

pnm = pmn,

and we obtain the real image of P by evaluating on complex conjugate variables w = v.
Since the order zero and order 1 coefficients are determined by Lj and its eigendata,

we can compute pmn for all 2 ≤ m+n ≤ N by recursively solving the linear homological
equations to any desired order N ≥ 2. We obtain the approximation

wκ,Nj (z1, z2) =

N∑
m+n=0

pmnz
m
1 z

n
2 .

For example, in the PCRTBP with µ = 1/2, Table B.7 shows approximate coefficients
for the stable manifold at L4, computed to order N = 3. The data has been truncated
at only two or three significant figures to make it fit in the table. Note that the complex
conjugate structure of the coefficients is seen in the table. The table is included to give
the reader a sense of the form of the data in these calculations, and could be used to
very approximately reproduce some of the results in the present work.

For the calculations in the main body of the text, we take N = 12 and compute the
pmn by recursively solving the homological equations using interval arithmetic. Moreover,
using the a-posteriori analysis developed in [17], we obtain a bound of the form

∞∑
m+n=13

‖pmn‖ ≤ 1.4× 10−13,

on the norm of the tail of the parameterization. The analysis is very similar to the a-
posteriori analysis of the Newton Krawczyk Theorem 29 promoted in the present work,
adapted to the context of Banach spaces of infinite sequences.

Note that this “little ell one” norm bounds the C0 norm of the truncation error
on the unit disk, and that Cauchy bounds can be used to estimate derivatives of the
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parameterization on any smaller disk. Thus we actually take

Pκj (θ) = wκj (0.9 cos(θ) + 0.9 sin(θ)i, 0.9 cos(θ)− 0.9 sin(θ)i),

as our local parameterization, where

wκj (z1, z2) = wκ,Nj (z1, z2) + wκ,∞j (z1, z2),

is a polynomial plus a tail which has

wκ,∞j (z1, z2) =

∞∑
n+m=N+1

pmnz
m
1 z

n
2 ,

and
sup

|z1|,|z2|<1

∥∥wκ,∞j (z1, z2)
∥∥ ≤ 1.4× 10−13.

The 0.9 gives up a portion of the disk, allowing us to bound the derivatives needed in
the Newton-Kantorovich argument.
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of freedom problems in celestial mechanics, J. Nonlinear Sci. 31 (4) (2021) Paper No. 68, 33.
doi:10.1007/s00332-021-09721-5.
URL https://doi.org/10.1007/s00332-021-09721-5
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[56] M. J. Capiński, Computer assisted existence proofs of Lyapunov orbits at L2 and transversal in-
tersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst. 11 (4)
(2012) 1723–1753. doi:10.1137/110847366.
URL http://dx.doi.org/10.1137/110847366

[57] J. Galante, V. Kaloshin, Destruction of invariant curves in the restricted circular planar three-body
problem by using comparison of action, Duke Math. J. 159 (2) (2011) 275–327. doi:10.1215/

00127094-1415878.
URL https://doi.org/10.1215/00127094-1415878
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