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Abstract

We present a computer assisted proof or diffusion in the Planar Elliptic Restricted Three Body
Problem. We treat the elliptic problem as a perturbation of the circular problem, where the
perturbation parameter is the eccentricity of the primaries. The unperturbed system preserves
energy, and we show that for sufficiently small perturbations we have orbits with explicit energy
changes, independent from the size of the perturbation. The result is based on shadowing of orbits
along transversal intersections of stable/unstable manifolds of a normally hyperbolic cylinder.
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1. Introduction

Autonomous Hamiltonian systems have an integral of motion given by the Hamiltonian. We
shall refer to this integral as the energy. Our question is whether for an arbitrarily small pertur-
bation we can have orbits, which change in energy by a prescribed constant independent form
the size of the perturbation.

In our case, the system of interest is the Planar Restricted Three Body Problem that describes
the motion of a small massless particle under the gravitational pull of two large bodies. They
rotate on Keplerian orbits and we call them primaries. The motion of the massless particle is
on the same plane as the primaries. When the Keplerian orbit is circular, then in the coordinate
frame which rotates with the primaries we have an autonomous Hamiltonian system; the Planar
Circular Restricted Three Body Problem (PCR3BP). When the Keplerian orbits are elliptic, then
we deal with the Elliptic Problem (PER3BP), which is a time dependent Hamiltonian system.

The system we study has a normally hyperbolic invariant manifold (NHIM) prior to the
perturbation, with stable and unstable manifolds which intersect transversally. This means that
we consider an ‘apriori-chaotic’ system. (This is a much simpler problem than starting with a
fully integrable system; as in the famous example of Arnold [1].) Our diffusion mechanism is
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based on establishing the existence of trajectories that shadow the intersections of the stable and
unstable manifolds and change energy under the influence of the perturbation.

Our result is based on the geometric and shadowing results of Delshams, Gidea, de la Llave
and Seara. At the core of the mechanism is the scattering map [2]; that is a map which for
a point on the NHIM assigns another point from the NHIM, if their unstable and stable fibres
intersect in a nontrivial way. The benefit of studying a scattering map is twofold. Firstly, one can
exploit perturbative techniques to study the effect of the parameter on the scattering map. This is
typically done by using Melnikov integrals in the case of continuous systems, or Melnikov sums
in the case of discrete systems [2, 3]. Once the effects of the perturbation on the scattering map is
established, the second benefit is that there exist true orbits of the system, which will shadow the
‘pseudo orbits’ of the scattering map [4]. This means that if one can prove existence of ‘pseudo
orbits’ of the scattering map which have macroscopic changes in energy, then this ensures the
existence of true trajectories of the system that will do the same.

The strategy for proving diffusion using this scheme is described in [2, 3, 4, 5]. For our proof
we will use the results from [6], which provides a formulation for these methods, that can be
implemented to obtain a computer assisted proof. The main feature of [6] is that the assumptions
needed for the diffusion mechanism can be validated in a finite number of steps by checking
various bounds on the properties of the system.

In our case the components that need to be established are the following. We establish bounds
on the family of Lyapunov orbits in the PCR3BP, which constitute our NHIM prior to the pertur-
bation. Next we establish bounds for the local stable/unstable manifolds of the NHIM, and prove
that they intersect transversally. We ensure that the scattering map is well defined and obtain
explicit bounds on its dynamics. We also validate twist conditions, which ensure that the NHIM
after perturbation contains a Cantor set of KAM tori. Then we can apply the theorems from [6]
to prove diffusion. All the above steps can be established with the assistance of rigorous, interval
arithmetic based estimates, performed with the aid of a computer.

For proofs of diffusion in the PER3BP a computer assisted approach is not strictly necessary.
The paper [7] provides an analytic proof of diffusion in the PER3BP. This result also used the
scattering map theory and shadowing as the mechanism. To obtain the analytic proof though
[7] required that the mass of one of the primaries is sufficiently small, and that the angular
momentum of the massless particle is sufficiently large. The difference with the result from the
current paper is that we can work with the explicit mass of Jupiter and with the explicit energy of
a massless particle, which corresponds to that of the comet Oterma. As in [7] we have to assume
that the eccentricity of the system is sufficiently small.

A recent result which works with explicit masses, explicit energy and explicit interval of ec-
centricities that starts from zero and reaches a physical value is given in [8]. This is based on
a computer assisted construction of ‘correctly aligned windows’. The difference is that in the
current paper we only need to establish the intersections of the manifolds for the unperturbed
system, and check some explicit conditions from [6]. The shadowing of orbits is then automati-
cally taken care of by [4], and we do not need to carry out the explicit construction of windows
as in [8]. Our results are weaker though than [8].

The geometric setup for our method follows very closely that from [9, 10]. There are some
small differences though, the main being that we use Poincaré maps and compute finite Melnikov
sums, instead of Melnikov integrals. Our original plan was to follow directly the setup from [10],
but we have found that computing sharp bounds on integrals along trajectories is more difficult
than computing bounds on sums along discrete trajectories of Poincaré maps.
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Our tool for the computer assisted implementation is the CAPD2 library [11]. The tools
which we use are quite standard: The existence of the family of Lyapunov orbits as well as
the proof of their homoclinic orbits is done by exploiting symmetry properties of the PCR3BP,
combined with parallel shooting and the Krawczyk method. To establish bounds on the stable and
unstable manifolds and the transversality of their intersections needed to ensure that the scattering
map is well defined we use cones. The assumptions of theorems [6] leading to diffusion can then
be checked by computing sums along finite fragments of homoclinic orbits.

The paper is organised as follows. Section 2 contains preliminaries, which include the
Krawczyk method, introduction to the scattering map and the shadowing results for scattering
maps, as well as a short introduction to the restricted three body problem. In section 3 we state
the main result of the paper, which is written in Theorem 12. Section 4 contains the proof of the
main theorem. Some of the technical issues are delegated to the Appendix.

2. Preliminaries

2.1. Notations
For a set U in a topological space we will denote its interior by intU, its closure by Ū and its

boundary by ∂U.
We shall denote identity by Id. For a point p expressed in some coordinates p = (x, y) we

shall denote by πx and πy the projections onto the given coordinates, i.e. πx p = x and πy p = y. For
p = (p1, . . . , pn) we will write πi to denote the projection onto the i-th coordinate, i.e. πi p = pi.

We write ‖·‖max for the maximum norm in Rn, and for a matrix A write ‖A‖max for the matrix
norm induced by ‖·‖max.

We shall denote a k-dimensional torus as Tk, with the convention that T := Rmod 2π.

2.2. Krawczyk method
We refer to a cartesian product of intervals as an interval set. For a set U ⊂ Rn we shall

denote by [U] an interval set such that U ⊂ [U] . We refer to such set as an interval enclosure
of U. An interval enclosure is not unique. In our applications we shall consider interval enclo-
sures of objects of interest; namely: fixed points, periodic orbits, homoclinic orbits and invariant
manifolds. The smaller the interval enclosure is, the more accurate is our bound on the object of
interest. We shall refer to a matrix whose coefficients are intervals as an interval matrix.

For a C1 function F : Rn → Rn we denote by [DF (X)] ⊂ Rn×n the interval matrix enclosure
of the derivatives of F on X, namely we consider

[DF (X)] =

{
A =

(
ai, j

)
: ai j ∈

[
inf
x∈X

∂ fi
∂x j

(x) , sup
x∈X

∂ fi
∂x j

(x)
]}
.

Below theorem, known as the Krawczyk method, can be used to establish bounds on zeros of
functions.

Theorem 1. [12]Let F : Rn → Rn be a C1 function. Let X ⊂ Rn be an interval set, let x ∈ X, let
C ∈ Rn×n be a linear isomorphism and let

K (x, X, F) := x −CF (x) + (Id −C [DF (X)]) (X − x) .

2Computer Assisted Proofs in Dynamics: http://capd.ii.uj.edu.pl
3



If
K (x, X, F) ⊂ intX,

then there exists a unique point x∗ ∈ X for which

F (x∗) = 0.

2.3. Normally hyperbolic invariant manifolds and the scattering map

In this section we recall the results which we use for our diffusion mechanism. We follow the
setup from [6], which is based on the scattering map theory described in [2], and the diffusion
mechanism from [4], which is the main tool for our proof.

Definition 2. Let M be a smooth n-dimensional manifold, and let f : M → M be a Cr diffeo-
morphism, with r > 1. Let Λ ⊂ M be a compact manifold without boundary, invariant under f ,
i.e., f (Λ) = Λ. We say that Λ is a normally hyperbolic invariant manifold (with symmetric rates)
if there exists a constant C > 0, rates 0 < λ < µ−1 < 1 and a T f -invariant splitting for every
x ∈ Λ

TxM = Eu
x ⊕ E s

x ⊕ TxΛ

such that

v ∈ Eu
x ⇔

∥∥∥D f k(x)v
∥∥∥ ≤ Cλ−k ‖v‖ , k ≤ 0, (1)

v ∈ E s
x ⇔

∥∥∥D f k(x)v
∥∥∥ ≤ Cλk ‖v‖ , k ≥ 0, (2)

v ∈ TxΛ⇒
∥∥∥D f k(x)v

∥∥∥ ≤ Cµ|k| ‖v‖ , k ∈ Z. (3)

Let d (x,Λ) stand for the distance between a point x and the manifold Λ. Given a normally
hyperbolic invariant manifold and a suitable small tubular neighbourhood U ⊂ M of Λ one
defines its local unstable and local stable manifold [13] as

Wu
Λ ( f ,U) =

{
y ∈ M | f k(y) ∈ U, d

(
f k(y),Λ

)
≤ Cyλ

|k|, k ≤ 0
}
,

W s
Λ ( f ,U) =

{
y ∈ M | f k(y) ∈ U, d

(
f k(y),Λ

)
≤ Cyλ

k, k ≥ 0
}
,

where Cy is a positive constant, which can depend on y. We define the (global) unstable and
stable manifolds as

Wu
Λ ( f ) =

⋃
n≥0

f n
(
Wu

Λ ( f ,U)
)
, W s

Λ ( f ) =
⋃
n≥0

f −n
(
W s

Λ ( f ,U)
)
.

The manifolds Wu
Λ

( f ,U), W s
Λ

( f ,U), Wu
Λ

( f ) and W s
Λ

( f ) are foliated by

Wu
x ( f ,U) =

{
y ∈ M | f k(y) ∈ U, d( f k(y), f k(x)) ≤ Cx,yλ

|k|, k ≤ 0
}
,

W s
x ( f ,U) =

{
y ∈ M | f k(y) ∈ U, d( f k(y), f k(x)) ≤ Cx,yλ

k, k ≥ 0
}
,

where x ∈ Λ and Cx,y is a positive constant, which can depend on x and y,

Wu
x ( f ) =

⋃
n≥0

f n
(
Wu

f −n(x) ( f ,U)
)
, W s

x ( f ) =
⋃
n≥0

f −n
(
W s

f n(x) ( f ,U)
)
.
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Let

l < min
{

r,
| log λ|
log µ

}
. (4)

The manifold Λ is Cl smooth, the manifolds Wu
Λ

( f ) ,W s
Λ

( f ) are Cl−1 and Wu
x ( f ), W s

x ( f ) are
Cr [2]. Normally hyperbolic manifolds, as well as their stable and unstable manifolds and their
fibres persist under small perturbations [13].

From now let (M, ω) be a smooth symplectic manifold. Let us assume that Λ ⊂ M is a
normally hyperbolic invariant manifold for a Cr symplectic map f : M → M, where r > 1. We
assume that Λ is even dimensional and symplectic with the symplectic form ω|Λ, and that f |Λ is
symplectic on Λ. We define two maps,

Ω+ : W s
Λ( f )→ Λ,

Ω− : Wu
Λ ( f )→ Λ,

where Ω+(x) = x+ iff x ∈ W s
x+

( f ), and Ω−(x) = x− iff x ∈ Wu
x− ( f ) . These are referred to as the

wave maps.

Definition 3. We say that a manifold Γ ⊂ Wu
Λ

( f ) ∩W s
Λ

( f ) is a homoclinic channel for Λ if the
following conditions hold:

(i) for every x ∈ Γ

TxW s
Λ ( f ) + TxWu

Λ ( f ) = TxM, (5)
TxW s

Λ ( f ) ∩ TxWu
Λ ( f ) = TxΓ, (6)

(ii) the fibres of Λ intersect Γ transversally in the following sense

TxΓ ⊕ TxW s
x+

( f ) = TxW s
Λ ( f ) , (7)

TxΓ ⊕ TxWu
x− ( f ) = TxWu

Λ ( f ) , (8)

for every x ∈ Γ,

(iii) the wave maps (Ω±)|Γ : Γ→ Λ are diffeomorphisms onto their image.

Definition 4. Assume that Γ is a homoclinic channel for Λ and let

ΩΓ
± := (Ω±) |Γ.

We define a scattering map σΓ for the homoclinic channel Γ as

σΓ := ΩΓ
+ ◦

(
ΩΓ
−

)−1
: ΩΓ
− (Γ)→ ΩΓ

+ (Γ) .

We have the following theorem, which is the basis for the diffusion mechanism from the subse-
quent section.

Theorem 5. [4] Assume that f : M → M is a sufficiently smooth map, Λ ⊂ M is a normally
hyperbolic invariant manifold with stable and unstable manifolds which intersect transversally
along a homoclinic channel Γ ⊂ M, and σ is the scattering map associated to Γ.
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Let m1, . . . ,ml ∈ N be a fixed sequence of integers. Let {xi}i=0,...,l be a finite pseudo-orbit in
Λ, that is a sequence of points in Λ of the form

xi+1 = f mi ◦ σΓ (xi) , i = 0, . . . , l − 1, l ≥ 1. (9)

Then for every δ > 0 there exists an orbit {zi}i=0,...,l of f in M, with zi+1 = f ki (zi) for some ki > 0,
such that d (zi, xi) < δ for all i = 0, . . . , l.

Remark 6. The result can be immediately extended to the case where we have a finite number
of scattering maps σ1, . . . , σL to shadow

xi+1 = f mi ◦ σαi (xi) , i = 0, . . . , l − 1, l ≥ 1,

for two prescribed sequences m1, . . . ,ml ∈ N and α1, . . . , αl ∈ {1, . . . , L}; see [4, Theorem 3.7].

Remark 7. Theorem 5 has been simplified taking advantage of our particular setting. See com-
ments in [6, Remark 6].

2.4. Diffusion mechanism
In this section we recall the results from [6]. These are based on [4], but were adapted in [6]

to allow for computer assisted validation of the required assumptions.
Consider the following family of Hamiltonian systems Hε : R4 × T → R, that depends

smoothly on the parameter ε ∈ R, which generates the following ODE in the extended phase
space

x′ = J∇xHε (x, t) , (10)
t′ = 1,

where

J =

(
0 Id
−Id 0

)
, for Id =

(
1 0
0 1

)
.

Let Φε
t be the flow of (10). We refer to Hε=0 as the unperturbed system. We make the following

important assumption
Hε=0 (x, t) = H (x) ,

where H : R4 → R; in other words, we assume that the unperturbed system is autonomous and
hence H is a constant of motion.

Consider a Poincaré section Σ in R4 for the system x′ = J∇H (x), and consider a section
Σ̃ = Σ × T for the perturbed system (10) in the extended phase space. Let us consider a Pioncaré
map

fε : Σ̃→ Σ̃. (11)

We assume that for ε = 0 the map fε=0 has a normally hyperbolic invariant manifold Λ0 ⊂ Σ̃.
The coordinates on Σ̃ can be identified with R3 × T. We will write θ ∈ T for the extended

phase space (time) coordinate. We assume that one of the remaining coordinates on Σ̃ is the
energy, expressed by the Hamiltonian H. We will write I for this coordinate. Since for ε = 0 the
energy is preserved we have

πI f0 (z) = πIz for all z ∈ Σ̃. (12)
6



Figure 1: The setting for Theorem 9. [6]

We assume that Λ0 is parameterised by θ, I. For the remaining two coordinates on Σ̃ we will
write u and s and equip Σ̃ with the standard symplectic from ω = du ∧ ds + dθ ∧ dI. Due to the
Hamiltonian nature of the system, the map fε is symplectic. We assume that

Λ0 = {(u, s, I, θ) : u = s = 0} ,

is a normally hyperbolic invariant manifold for f0. The coordinates u and s stand for the ‘unsta-
ble’ and ‘stable’ coordinates of Λ0, respectively. We assume also that for sufficiently small ε the
manifold Λ0 is perturbed to Λε, which contains a Cantor set of one dimensional KAM invariant
tori.

Let g : R × R3 × T→ R3 × T be defined as

g (ε, x) :=
1
ε

( fε(x) − f0(x)) .

Then
fε(x) = f0(x) + εg(ε, x).

The following theorem provides conditions under which for any sufficiently small ε > 0 there
exists a point xε and a number of iterates nε for which

πI
(
f nε
ε (xε) − xε

)
> 1. (13)

We first give a definition and follow with the statement of the theorem.

Definition 8. Consider the topology on Λ0 ∩ {I ∈ [0, 1]} induced by Λ0. We say that an open set
S ⊂ Λ0 ∩ {I ∈ [0, 1]} is a strip in Λ0 iff

S ∩ {z ∈ Λ0 : πIz = ι} , ∅ for any ι ∈ [0, 1] .

Theorem 9. [6] Assume that there is a neighborhood U of Λ0 and a positive constant Lg such
that for every z ∈ Λ0, xu ∈ Wu

z ( f0,U), xs ∈ W s
z ( f0,U),

|πI (g(0, xu) − g (0, z))| ≤ Lg ‖xu − z‖ ,

|πI (g(0, xs) − g (0, z))| ≤ Lg ‖xs − z‖ .
(14)

Assume also that there exist positive constants C, λ, where λ ∈ (0, 1), such that for every z ∈ Λ0
and every xu ∈ Wu

z ( f0,U), xs ∈ W s
z ( f0,U) we have∥∥∥ f n

0 (z) − f n
0 (xu)

∥∥∥ < Cλ|n| for all n ≤ 0,∥∥∥ f n
0 (z) − f n

0 (xs)
∥∥∥ < Cλn for all n ≥ 0.

(15)
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Assume also that for ε = 0 we have the sequence of scattering maps σα : dom (σα) → Λ0 for
α = 1, . . . , L. Let S + ⊂ Λ0 be a strip. Assume that for every z ∈ S +

1. there exists an α ∈ {1, . . . , L} for which z ∈ dom (σα), and there exists a constant m ∈ N
such that

f m
0 ◦ σα (z) ∈ S +, (16)

2. there exists a point x ∈ Wu
z ( f0,U) ∩W s

σα(z) ( f0) such that f m
0 (x) ∈ W s

f m
0 (σα(z))( f0,U) and

m−1∑
j=0

πIg
(
0, f j

0 (x)
)
−

1 + λ

1 − λ
LgC > 0. (17)

(The choice of m and α can depend on z.)

Then for sufficiently small ε > 0 there exists an xε and nε > 0 such that

πI
(
f nε
ε (xε) − xε

)
> 1.

The following theorem can be used to establish orbits of the perturbed system, whose I
coordinate decreases.

Theorem 10. [6]Assume that conditions (14) and (15) are satisfied, and that for ε = 0 we have
the sequence of scattering maps σα : dom (σα) → Λ0 for α = 1, . . . , L. Let S − ⊂ Λ0 be a strip.
Assume that for every z ∈ S −

1. there exists an α ∈ {1, . . . , L} for which z ∈ dom (σα), and there exists a constant m ∈ N
such that

f m
0 ◦ σα (z) ∈ S −,

2. there exists a point x ∈ Wu
z ( f0,U) ∩W s

σα(z) ( f0) such that f m
0 (x) ∈ W s

f m
0 (σα(z))( f0,U) and

m−1∑
j=0

πIg
(
0, f j

0 (x)
)

+
1 + λ

1 − λ
LgC < 0.

(The choice of m and α can depend on z.)

Then for sufficiently small ε > 0 there exists an xε and nε > 0 such that

πI
(
xε − f nε

ε (xε)
)
> 1.

By combining the two strips S + and S − we obtain shadowing of any prescribed finite se-
quence of actions.

Theorem 11. [6] Assume that two strips S + and S − satisfy assumptions of Theorems 9 and 10,
respectively. If in addition

1. for every z ∈ S + there exists an n (which can depend on z) such that f n
0 (z) ∈ S −, and

2. for every z ∈ S − there exists an n (which can depend on z) such that f n
0 (z) ∈ S +,

then there exists anM such that for any given finite sequence {Ik}
N
k=0 and any given δ > 0, for

sufficiently small ε there exists an orbit of fε which εM-shadows the actions Ik; i.e. there exists
a point zε0 and a sequence of integers nε1 ≤ nε2 ≤ . . . ≤ nεN such that∥∥∥∥πI f

nεk
ε

(
zε0

)
− Ik

∥∥∥∥ < εM.
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2.5. The Planar Elliptic Restricted Three Body Problem

The Planar Elliptic Restricted Three Body Problem (PER3BP) describes the motion of a
massless particle (e.g., an asteroid or a spaceship), under the gravitational pull of two large
bodies, which we call primaries. The primaries rotate in a plane along Keplerian elliptical orbits
with eccentricity ε, while the massless particle moves in the same plane and has no influence on
the orbits of the primaries. We use normalized units, in which the masses of the primaries are µ
and 1−µ. We consider a frame of ‘pulsating’ coordinates that rotates together with the primaries,
making their position fixed on the horizontal axis [14]. The motion of the massless particle is
described via the Hamiltonian Hε : R4 × T→ R

Hε (X,Y, PX , PY , θ) =
(PX + Y)2 + (PY − X)2

2
−

Ω (X,Y)
1 + ε cos(θ)

,

Ω (X,Y) =
1
2

(
X2 + Y2

)
+

(1 − µ)
r1

+
µ

r2
,

r2
1 = (X − µ)2 + Y2,

r2
2 = (X − µ + 1)2 + Y2.

(18)

The corresponding Hamilton equations are:

dX
dθ

=
∂Hε

∂PX
,

dPX

dθ
= −

∂Hε

∂X
,

dY
dθ

=
∂Hε

∂PY
,

dPY

dθ
= −

∂Hε

∂Y
,

(19)

where X,Y ∈ R are the position coordinates of the massless particle, and PX , PY ∈ R are the
associated linear momenta. The variable θ ∈ T is the true anomaly of the Keplerian orbits of the
primaries, where T denotes the 1-dimensional torus. The system is non-autonomous, thus we
consider it in the extended phase space, of dimension 5, with θ as an independent variable. We
use the notation Φε

t to denote the flow of (19) in the extended phase space, which includes θ ∈ T,
i.e.

Φε
t : R4 × T1 → R4 × T1.

When ε = 0 the primaries rotate around the center of mass along circular orbits. The PER3BP
becomes the Planar Circular Restricted Three Body Problem (PCR3BP). We shall use the nota-
tion Φt for the flow of the PCR3BP. Since the ODE of the PCR3BP is autonomous, this flow is
not in the extended phase space, i.e. for a given t ∈ R,

Φt : R4 → R4.

We naturally have the relation Φt (x) = πxΦ
0
t (x, θ) (for ε = 0 the right hand side does not depend

on the choice of θ).
In the PCR3BP the system has the following time reversing symmetry

R ◦ Φt = Φ−t ◦ R, (20)

where
R (X,Y, PX , PY ) = (X,−Y,−PX , PY ) .
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We say that an orbit x (t) is R-symmetric if

x(−t) = R (x(t)) .

Note that for such orbits we need to have πY x (0) = πPX x (0) = 0.
The Jacobi integral −2 · H0 is a preserved coordinate for the unperturbed system with ε = 0.

We shall refer to H0 as the energy. For a point x ∈ R4 we shall write

I(x) := H0 (x) .

3. Statement of the main result

The PCR3BP has five libration fixed points. Three of these are on {Y = 0}; we refer to them
as collinear and denote as L1, L2, L3. We use the convention, in which in the X,Y coordinates
the Jupiter, with mass µ lies to the left of the origin at (µ − 1, 0), and the Sun, with mass 1 − µ
is to the right of the origin at (µ, 0). One of the collinear libration points, which we denote as L1
lies between the Sun and Jupiter. Around this fixed point we have a family of Lyapunov periodic
orbits. Each orbit has different energy. The Lyapunov orbits are R-symmetric and we can choose
points belonging to the orbits of the form (X, 0, 0, PX), with suitable choices of X and PX . The
PX depends on the choice of X, so we shall write PX = PX (X).

The Lyapunov orbits considered by us will be parameterised by X. From now on, we will
write X ∈ R to denote the value X = X, which determines the choice of a point on the Lyapunov
orbit (X, 0, 0, PX (X)). This will allow us to make the distinction between X, which are values
parameterising the orbits and the coordinate X. We will be interested in the family of Lyapunov
orbits with

X ∈
[
−0.95,−0.95 + 10−9

]
. (21)

The energy of such orbits, measured by the Jacobi integral, is approximately 3.03, which is
the energy of the comet Oterma [15] that was observed in the Jupiter-Sun system. We choose to
work with this particular energy, since it has a physical meaning of a known celestial body, but
we could easily work with a different X-interval than (21), since there is nothing special about
the energy of Oterma. In fact, choosing a different energy level can make some technical aspects
of the computer assisted proof easier. (We elaborate on this in Remark 46.) We fix an energy
level of some physical object to show that the method can be applied in a concrete setting.

For each X from (21) the corresponding Lyapunov orbit has a different energy I(X). We will
show that for sufficiently small ε > 0, that is for the PER3BP, we can visit the arbitrary I(X) for
X from (21). We shall refer to these as diffusing orbits. Formally, the main result of this paper is
as follows.

Theorem 12. (Main theorem) Let I(X) denote the energy of a Lyapunov orbit starting from a
given Lyapunov orbit, i.e.

I (X) = H (X, 0, 0, PX(X)) .

There exists a constantM > 0 such that for an arbitrary (finite) sequence X1, . . . ,XN from the
interval (21) and for sufficiently small ε > 0, there exists a sequence tε1, . . . , t

ε
n and a point xε

such that ∥∥∥∥H
(
Φε

tεi
(xε)

)
− I (Xi)

∥∥∥∥ < εM for i = 1, . . . ,N.

10



Remark 13. The interval (21) is very narrow. The actual physical distance between the two
points on the Lyapunov orbits on the section {Y = 0}, which correspond to endpoints of (21) is
about 1 km. This means that the diffusion established by us is over a very narrow range, but it is
not completely negligible.

Remark 14. The proof was performed with computer-assisted tools, and for the interval (21) it
took 17 minutes, running on a single thread on a standard laptop. Our computer assisted proof
could be performed on other X-intervals, which combined together would lead to diffusion over
longer distances. Such proof could be performed by parallel computations on a cluster. We are
more interested in the proof of concept rather than in obtaining long intervals by brute force, so
we have not performed such validation.

4. Proof of the main result

The proof is performed in the following steps:

1. establish the existence of the family of Lyapunov orbits, which will form the NHIM Λ0,
2. establish bounds for the local stable/unstable manifolds of Λ0,
3. prove that the stable and unstable manifolds of Λ0 intersect transversally, and that we have

a homoclinic channel along the intersection,
4. prove that Λ0 is perturbed to Λε, which contains a Cantor set of KAM tori.
5. apply Theorem 11 to obtain the existence of diffusing orbits.

Section 4.1 sets out a parallel shooting method, which is then used for the steps 1 and 3 in
sections 4.2 and 4.4, respectively. Sections 4.3, 4.5 and 4.6 deal with steps 2, 4 and 5, respec-
tively.

4.1. Parallel shooting for symmetric orbits
Here we consider the PCR3BP and work with the flow Φt in R4. Let us consider a C1 function

p : R → R4. For now we leave p unspecified. Later on, depending on the choice of p we will
use the below method to establish either bounds on the points along a Lyapunov orbit, or for a
homoclinic orbit to a Lyapunov orbit.

Let us define the following function

F : R × R × R4 × . . . × R4︸           ︷︷           ︸
n

→ R4 × . . . × R4︸           ︷︷           ︸
n

× R × R,

as

F (s, τ, x1, . . . , xn) := (22)(
Φτ (p(s)) − x1,Φτ (x1) − x2, . . . ,Φτ (xn−1) − xn, πYΦτ (xn) , πPX Φτ (xn)

)
.

We see that if we find a point x∗ = (s, τ, x1, . . . , xn) such that

F (x∗) = 0, (23)

then by taking x0 = p(s) and xn+1 = Φτ (xn) we obtain

Φτ (xi) = xi+1 for i = 0, . . . , n.
11



Moreover, since

πY xn+1 = πYΦτ (xn) = 0, πPX xn+1 = πPX Φτ (xn) = 0,

we see that xn+1 is R-symmetric, i.e. xn+1 = R (xn+1) . If we now define xn+k = R (xn+2−k),
for k = 2, . . . , n + 2 then by (20) we will obtain an R-symmetric orbit x(t), which starts from
x (0) = x0, and for which

Φτ (xi) = xi+1 for i = 0, . . . , 2n + 1.

Solving of (23) can be done by means of the Krawczyk method. The first step is to obtain an
approximate solution of (23) by iterating (using non-rigorous numerics)

xi+1 = xi − (DF (xi))−1 F (xi) . (24)

After a few iterates of (24) we obtain a point x around which we can construct a cube X and
validate that we have the solution of (23) inside of X by using Theorem 1. (We take C as the
non-rigorously computed inverse of the derivative C = (DF (x))−1.)

4.2. Bounds for Lyapunov orbits
When we fix some X ∈ R and choose the function p : R→ R4 as

p (s) = (X, 0, 0, s) , (25)

then the methodology form section 4.1 can be used to obtain a sequence of points x0, . . . , x2n+2
along an R-symmetric periodic orbit. This is because by the definition of F

Φ(n+1)τ (x0) = xn+1,

and since x0 and xn+1 are self R-symmetric, by (20)

Φ(n+1)τ (xn+1) = Φ(n+1)τ ◦ R (xn+1) = R ◦ Φ−(n+1)τ (xn+1) = R (x0) = x0.

We thus see that x0 is a point on an R-symmetric periodic orbit with period T = 2 (n + 1) τ.
An advantage of the method is that we can obtain a bound for a whole family of Lyapunov

orbits. This can be done by considering an interval instead of a single X, for our validation. The
computer assisted computation allows us to obtain a bound on F(x) and DF (x) for (22). This
way we obtain a bound for points which lie on Lyapunov orbits for an interval of values X. In
our case we take the interval (21) and use this method to validate the following result:

Lemma 15. Let r := 3.633 · 10−9. For every X from the interval (21) there exists an

s(X) ∈ −0.84134724633 + [−r, r]

such that
x0(X) = (X, 0, 0, s(X)) (26)

is a point, which lies on a Lyapunov orbit, which we denote as LX. Moreover, we have a sequence
of points along LX, which passes within the r distance (in maximum norm) of the points from
Table 1. Moreover, we have the following bound T (X) for the period of LX

T (X) ∈ [3.0417517493, 3.0417517846] (27)
12



n X Y PX PY

0 -0.9499999995 0 0 -0.84134724633
1 -0.95011002908 0.010872319337 -0.012750492306 -0.84566628682
2 -0.95027977734 0.020942127841 -0.021798848297 -0.85701977629
3 -0.95016249921 0.02964511208 -0.02595601236 -0.87222441368
4 -0.94945269037 0.036681290981 -0.026117965229 -0.88881047965
5 -0.94799596417 0.041912835694 -0.023738329652 -0.90554260324
6 -0.94578584443 0.045275924414 -0.020027448005 -0.92194698888
7 -0.94292354313 0.046741951127 -0.015815875271 -0.93784624844
8 -0.93958019632 0.046310536541 -0.011642040196 -0.9531124603
9 -0.93596962345 0.044016227704 -0.0078569213076 -0.96756323289
10 -0.93232909834 0.039939546482 -0.0046935571959 -0.98092506113
11 -0.92890403848 0.034218254755 -0.0022984843476 -0.99282861416
12 -0.92593321085 0.027056429274 -0.00073280826007 -1.0028268728
13 -0.92363228182 0.018728871729 4.5125264188e-05 -1.0104387689
14 -0.92217533629 0.0095779013399 0.00019712976878 -1.0152203731
15 -0.92167641746 0 0 -1.0168530766

Table 1: Midpoints of our enclosure of points along the family of Lyapunov orbits, computed using (23) with n = 14.

Remark 16. In Table 1 we write out half of the points along the family of periodic orbits, since
the second half (the remaining fourteen points, to be precise) follows from the R-symmetry.

Remark 17. Our estimate on the distance from the points from Table 1 obtained by our computer
program varies from point to point and is frequently more accurate than stated in Lemma 15,
where we simply write out the single r, which is the upper bound that can be applied to all the
points.

4.3. Bounds on the unstable manifolds of Lyapunov orbits
In the previous section we have shown how to compute the bound on the family of Lyapunov

orbits LX containing points x0(X) given by (26), with X from the interval (21). Here we fix a
single periodic orbit for some X from (21) and discuss how one can obtain a computer validated
enclosure of its local unstable manifold. Before we give the method, we introduce some notation.

We consider a Poincaré section Σ = {Y = 0} and define ρ : R4 → R and P : R4 → R4 as

ρ (x) = inf {t > 0 : Φt (x) ∈ Σ} ,

P (x) = Φρ(x) (x) .

In other words, ρ is the time along the flow to the section, and P is the map which goes to the
section along the flow.

Remark 18. The ρ and P do not need to be globally defined. Whenever we will use these func-
tions in our computer assisted proofs, the CAPD library verifies that the considered sets lie
within the domains of these maps, and that they are properly defined throughout the performed
validations. (If a set would not belong to the domain, the program would return an error and
terminate.)

Let us fix X from (21) and a Lyapunov orbit LX containing x0 = x0(X) given by (26). Denote
the period of this orbit as T = T (X). For convenience, let us write N = 2n + 2, so that for our
points x0, . . . , xN on the Lyapunov orbit, whose bounds we established in Lemma 15 we have

ΦT/N (xi) = xi+1 for i = 0, . . . ,N − 1, (28)
xN = x0.
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Note that from (26) we see that x0 ∈ Σ.
Let us consider now a sequence of invertible matrices Ai ∈ R4×4 for i = 0, . . . ,N, with

A0 = AN and define the following maps

fi : R4 → R4, for i = 1, . . . ,N,

as

fi (v) := A−1
i

(
ΦT/N (Ai−1v + xi−1) − xi

)
, for i = 1, . . . ,N − 1,

fN (v) := A−1
N (P (AN−1v + xN−1) − xN) = A−1

0 (P (AN−1v + xN−1) − x0) . (29)

In other words, for i = 1, . . . ,N − 1 we consider time shift maps along the flow, expressed in
local coordinates around xi. The last map, fN , maps to the section Σ = {Y = 0} ⊂ R4. This means
that fN ◦ . . . ◦ f1|Σ : Σ→ Σ. From (28) it follows that

fi (0) = 0 for i = 1, . . . ,N.

For F : R4 → R4 defined as
F = fN ◦ . . . ◦ f1 (30)

we see that the origin is a fixed point. Our objective will be to establish bounds on the unstable
manifold of the origin. To be more precise, we shall establish bounds on the intersection of the
unstable manifold of the Lyapunov orbit with Σ, which is the unstable manifold of the origin for
the map F|Σ.

First we introduce some notion.

Definition 19. Let ‖·‖ be some norm in R3. Let Q : R4 → R be the function

Q (v1, . . . , v4) = |v1| − ‖(v2, v3, v4)‖ . (31)

We define the cone centered at a point v ∈ R4 as

Q+ (v) :=
{
w ∈ R4 : Q (w − v) ≥ 0

}
.

We consider a sequence of cones defined by Qi : R4 → R, for i = 0, . . . ,N and assume that

QN = Q0.

We take the norms ‖·‖i for Qi from (31) as

‖(x1, x2, x3)‖i = max
{
|x1| /ai,1, . . . , |x3| /ai,3

}
where ai,k ∈ (0, 1) are fixed coefficients for i = 1, . . . ,N and k = 1, 2, 3. In other words, we use
different norms in (31) to define different cones. Note that |y| ≥ ‖(x1, x2, x3)‖i is equivalent to
ai,k |y| ≥ |xk |, for k = 1, 2, 3, so the cone Q+

i (v) can be expressed as

Q+
i (v) =

{
v + (t, tx1, tx2, tx3) : xk ∈

[
−ai,k, ai,k

]
for k = 1, 2, 3 and t ∈ R

}
. (32)

Remark 20. The form (32) is convenient, since then cones defined by Q+
i can be represented in

a computer assisted implementation by a set

Vi = [1] ×
[
−ai,1, ai,1

]
× . . . ×

[
−ai,3, ai,3

]
.

What we mean by this is that

Q+
i (v) = {v + tw : w ∈ Vi and t ∈ R} . (33)
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Definition 21. Let B ⊂ R4. We say that fi satisfies cone conditions in B iff for every v ∈ B

fi
(
Q+

i (v) ∩ B
)
⊂ Q+

i+1 ( fi(v)) . (34)

Below lemma is our main tool for establishing bounds on the unstable manifold of the origin
for the map (30).

Lemma 22. [16, Lemma 6.3] Let B := [−1, 1]4 ⊂ R4. Assume that f1, . . . , fN satisfy cone
conditions in B. Let m > 1 and assume that for F = fN ◦ . . . ◦ f1 the matrix DF (0) has a single
eigenvalue λ satisfying |Re λ| > m and the absolute values of the real parts of the remaining
eigenvalues below m. If also for every v ∈ Q+

i (0) ∩ B,

‖ fi (v)‖ > m ‖v‖ , (35)

then the unstable manifold of the origin for the map F is parameterised as a smooth curve
pu : [−1, 1]→ B which satisfies

pu (0) = 0,
π1 pu = Id,

pu ([−1, 1]) ⊂ Q+
0
(
pu (u)

)
, for every u ∈ [−1, 1] ,

and
d

du
pu (u) ∈ Q+

0 (0) , for every u ∈ [−1, 1] .

Remark 23. In [16, Lemma 6.3] is stated for the setting where F is a full turn along the periodic
orbit. Here we have a sequence of local maps, which when composed constitute the full turn. The
proof in such setting is analogous to [16], by using the graph transform method. The only needed
modification with respect to [16] is that here the graphs need to be propagated successively by
f1, f2, . . . , fN , after which they return to the same local coordinates. The graph transform for
each successive fi follows from an identical construction as the one from [16] (which there is
done for the single F). By composing the graph transforms for the successive fi we obtain a
graph transform for F.

Remark 24. The benefit of considering several maps and shooting is that this requires shorter
integration times, which improves accuracy in the interval arithmetic computations. This is the
only reason why we shoot between 29 points along Lyapunov orbits, instead of considering a
single turn.

Remark 25. In our computer assisted proof, we choose A0 so that the derivative of F = fN ◦ . . .◦
f1 at the origin is close to diagonal. The eigenvalues of F are λ, 1

λ
, 1, 0. (The zero comes from

the fact that fN maps to the section Σ.) We can validate the bound on λ by using the Gersgorin
theorem. We choose the remaining Ai so that the derivatives of fi at the origin are close to
diagonal.

Remark 26. The validation of cone conditions is done as follows. Take an interval set Vi for
which we have (33). Then by the mean value theorem the fact that[

D fi (B)
]
Vi ⊂ Qi+1 (0) (36)
15



implies (34). To check (36) it is enough to compute the interval set w =
[
D fi (B)

]
Vi and validate

that [
w
π1w

]
⊂ Vi+1.

This means that the cone condition is straightforward to validate from the interval enclosure of
the derivative of the map.

In our computer assisted proof we use the following lemma to validate (35) for the maximum
norm.

Lemma 27. Consider Q (v1, . . . , v4) = |v1| − ‖(v2, v3, v4)‖ with

‖(x1, x2, x3)‖ = max {|x1| /a1, |x1| /a2, |x3| /a3} ,

where a1, a2, a3 ∈ (0, 1). Take f : B→ R4 such that f (0) = 0 and let

[
D f (B)

]
=

(
A11 A12
A21 A22

)
, (37)

where A11, A12, A21 and A22 are 1 × 1, 1 × 3, 3 × 1 and 3 × 3 interval matrices, respectively. If
A11 > c > 0 and m = c − ‖A12‖max max (a1, a2, a3), then

‖ f (v)‖max ≥ m ‖v‖max for every v ∈ Q+ (0) ∩ B.

Proof. The proof is given in Appendix A.
A mirror result can be formulated to obtain a bound in the other direction. This is relevant

for the method for obtaining the bound (14) outlined in Appendix C. We place this lemma here
since it follows from similar arguments to Lemma 22.

Lemma 28. Consider Q (v1, . . . , v4) = |v1| − ‖(v2, v3, v4)‖ with

‖(x1, x2, x3)‖ = max {|x1| /a1, |x1| /a2, |x3| /a3} ,

where a1, a2, a3 ∈ (0, 1). Take f : B→ R4 and let

[
D f (B)

]
=

(
A11 A12
A21 A22

)
, (38)

where A11, A12, A21 and A22 are 1 × 1, 1 × 3, 3 × 1 and 3 × 3 interval matrices, respectively. If

a := max (a1, a2, a3) , (39)
m̄ := max (|A11| + a ‖A12‖max , ‖A21‖max + a ‖A22‖max) , (40)

then
‖ f (v)‖max ≤ m̄ ‖v‖max for every v ∈ Q+ (0) ∩ B.

Proof. The proof is given in Appendix B.

Remark 29. In practice, the term A11 in (37)–(38), is associated with hyperbolic expansion,
and dominates in (40). Also, in our application the number a from (39) is small, so we obtain
m ≈ m̄ ≈ |A11|; naturally m < m̄.

16



With the aid of Lemma 22 we have validated the following result.

Lemma 30. Let r = 3 · 10−8, B = [−r, r]4, and let

A0 =


0.280324 −0.220733 0.280324 0

0 0 0 0.816632
1 0 −1 −1

−0.343269 1 −0.343269 0

 . (41)

Consider L = 5 · 10−6 and cones defined as

Q+
0 (v) = {v + (t, tx2, tx3, tx4) : xk ∈ [−L, L] for k = 2, 3, 4 and t ∈ R} .

Then the unstable manifold of the origin for the map F is parameterised as a smooth curve
pu : [−r, r]→ B which satisfies

pu (0) = 0,
π1 pu = Id,

pu ([−r, r]) ⊂ Q+
0
(
pu (u)

)
, for every u ∈ [−r, r] ,

and
d
du

pu (u) ∈ Q+
0 (0) , for every u ∈ [−r, r] .

Corollary 31. The curve wu (u) := x0 + A0 pu (u) lies on the unstable manifold of the Lyapunov
orbit containing x0. The curve wu (u) is contained in x0 + A0Q+

0 (0) and d
du wu (u) ∈ A0V0 where

V0 = {1} × [−L, L] × [−L, L] × [−L, L] .

Since to define F in (30) we take fN = P (see (29)), and P maps to Σ, we know that wu (u) ⊂ Σ.

Remark 32. The matrices Ai used for the coordinate changes as well as the cones Qi are chosen
automatically by our computer program. We do not write them out here, since the important
bounds for the proof are at the point x0 = x0(X), and are given in Lemma 30.

Remark 33. To validate assumption (35) of Lemma 22 we have used Lemmas 27 and obtaining
m = 1.2767546773, for the bound from (35).

Remark 34. We have also obtained the following bound by using Lemma 28 for maps (29)

‖ fi (vi)‖max ≤ m̄ ‖vi‖max for vi ∈ Q+
i (0) ∩ B and i = 1, . . . ,N,

where m̄ = 1.2767636743.

So far we have discussed how to obtain a bound on the fiber for a fixed point at the origin
of our section-to-section map F defined in (30). Such fixed point resulted from intersecting the
Lyapunov orbit with {Y = 0}. In the future discussion we will need to consider the problem in
the extended phase space, since the PER3BP is not autonomous. In the extended phase space the
fixed point at the origin for F becomes an invariant curve {0} × T. The unstable fiber for a given
point (0, λ), with λ ∈ T, on this curve is contained in the extended phase space. Since the return
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times to the section {Y = 0} differ from point to point, such fiber does not need to be contained
in {θ = λ}. Below we discuss a method with which we establish bounds on the unstable fibers of
points from {0} × T in the extended phase space.

To make the above discussion more precise, we consider the flow of the PCR3BP in the
extended phase space and denote it as Φ̃t. We consider the Poincaré section Σ̃ = {Y = 0} = Σ×T,
define ρ̃ : R4 × T→ R and define P̃ : R4 × T→ R4 × T as

ρ̃ (x) = inf
{
t > 0 : Φ̃t (x) ∈ Σ̃

}
,

P̃ (x) = Φ̃ρ̃(x) (x) .

Let also Ã0 be a 5 × 5 matrix defined as

Ã0 =

(
A0 0
0 1

)
, (42)

where A0 is from (41). We define F̃ : Σ̃→ Σ̃ as

F̃ (x, θ) = Ã−1
0

(
P̃2

(
(x0, 0) + Ã0 (x, θ)

)
− (x0, 0)

)
.

Then {0} × T becomes a an invariant curve for the map F̃. We will now show how to obtain
bounds for the unstable fibers of a point (0, λ) on such curve, in the extended phase space.

Lemma 35. Let r and L be the constants considered in Lemma 30. Let M ∈ R, M > 0. Consider
cones in the extended phase space defined as

Q̃+
0 (v) = {v + (t, tx2, tx3, tx4, tθ) : xk ∈ [−L, L] for k = 2, 3, 4, θ ∈ [−M,M] and t ∈ R} .

If for every λ ∈ T the unstable eigenvector of DF̃ (0, λ) is contained in Q̃+
0 (0) and if F̃ satisfies Q̃+

0
cone conditions on [−r, r]4×T, then for every λ ∈ T the unstable fiber Wu

(0,λ)(F̃) is parameterised
by p̃u

λ : [−r, r]→ R4 × T satisfying (below pu is the function established in Lemma 30)

πR4 p̃u
λ (u) = pu (u) and p̃u

λ (u) ∈ Q̃+
0 (0, λ) for u ∈ [−r, r]. (43)

In particular ∣∣∣πθ p̃u
λ (u) − λ

∣∣∣ ≤ rM. (44)

For the family of Lyapunov orbits with X from the interval (21) we can take M = 3.

Proof. For every λ the unstable fiber Wu
(0,λ)(F̃) is tangent at (0, λ) to the eigenvector of

DF̃ (0, λ) . This implies that sufficiently close to (0, λ) this fiber is in Q̃+
0 (0, λ). Every point

x ∈ Wu
(0,λ)(F̃) can be expressed as x = F̃m (z) for an arbitrary m ∈ N , and for some appropriate

point z = z(m) ∈ Wu
F̃−m(0,λ)

(F̃). By taking sufficiently large m the point z can be chosen as close to

{0} × T as we want, which means that we can choose m large enough so that z ∈ Q̃+
0

(
F̃−m(0, λ)

)
.

Since z ∈ Q̃+
0

(
F̃−m(0, λ)

)
, by the fact that F̃ satisfies cone condition we obtain that x = F̃m (z) ∈

Q̃+
0 (0, λ) . This means that for Wu

(0,λ)(F̃) ∩ ([−r, r]4 × T) ⊂ Q̃+
0 (0, λ). Since the PCR3BP is

autonomous, πR4 Wu
(0,λ)(F̃) does not depend on λ, and is parameterised by pu (u) from Lemma 30.

We have thus established (43).

18



n X Y PX PY

0 -0.95000000242 -0 -1.0427994645e-08 -0.84134724275
1 -0.94997599415 0.032508255048 -0.026407880234 -0.87841641186
2 -0.94367569216 0.046559121408 -0.016859552423 -0.93400981538
3 -0.93185570859 0.039269494574 -0.0043284590814 -0.98260192685
4 -0.9227740512 0.014134265524 0.00018569728993 -1.0132585163
5 -0.92342538156 -0.017741502784 -8.9504023812e-05 -1.0111198858
6 -0.9332873018 -0.041191398464 0.0054636769818 -0.97749478375
7 -0.94483412083 -0.046015557539 0.018549243384 -0.92767343656
8 -0.95017205833 -0.029473079334 0.025907589742 -0.87187283933
9 -0.95002477482 0.0043928225728 -0.0053602054156 -0.84205223945
10 -0.94968890529 0.035271238551 -0.026402429149 -0.88508159957
11 -0.94246936536 0.046807227358 -0.015244331177 -0.94027843983
12 -0.93053821073 0.037102593271 -0.003488949681 -0.9875100719
13 -0.92242610924 0.010464221796 -0.00019611370513 -1.0149474376
14 -0.92456420774 -0.021092391132 -0.00083603746 -1.0083700678
15 -0.93548053074 -0.042380742641 0.0047663014948 -0.97130987256
16 -0.94730307615 -0.043772642856 0.016236744567 -0.91841934035
17 -0.95320906454 -0.022318932226 0.012564889629 -0.85729285711
18 -0.96070049024 0.017216683341 -0.061196504134 -0.84499124342
19 -0.98081741509 0.044653406262 -0.11087155568 -0.94184521723
20 -1.0057774379 0.042684693077 -0.12465612254 -1.0610257866
21 -1.0281206713 0 0 -1.2112777154

Table 2: Midpoints of our enclosure o homoclinic orbits for our family of Lyapunov orbits.

The condition (44) follows from the fact that p̃u
λ (u) ∈ Q̃+

0 (0, λ) by computing∣∣∣πT p̃u
λ (u) − λ

∣∣∣ ≤ M
∣∣∣πx1 p̃u

λ (u)
∣∣∣ = M

∣∣∣πx1 pu (u)
∣∣∣ = M |u| ≤ rM.

With computer assistance, we have validated that for every X from the interval (21), the
unstable eigenvector of DF̃ (0, λ) is contained in

{1} × [−3 · 10−6, 3 · 10−6]3 × [2.7763408157, 2.7918430312] ⊂ Q̃+
0 (0).

We have also validated the cone conditions using the method described in Remark 26.

Remark 36. By choosing Ã0 more carefully, instead of just adding 1 in the lower diagonal term
in (42), we could reduce the constant M in Lemma 35. We have opted for (42) for the sake of
simplicity, since the established M is good enough for the proof of the main result.

4.4. Intersection of stable/unstable manifolds of Lyapunov orbits
The way we establish intersection of the stable and unstable manifolds of Lyapunov orbits is

similar to the method from section 4.2. We use the parallel shooting from section 4.1 combined
with the bounds on the unstable manifold established in section 4.3. We fix X from (21) and
consider p : R→ R4 for the shooting operator (22) to be

p (s) = x0(X) + A0 pu (s) , (45)

where pu is the function from which parameterises the intersection of the unstable manifold of
LX with {Y = 0}, whose bounds we have obtained in Lemma 30. (The choice of A0 and the
bounds on pu (s) , together with its derivative are written out in Lemma 30).

By the R-symmetry of the PCR3BP we know that R (p (s)) is a point on the stable manifold
of LX. If for F defined by (22) we validate that for some s ∈ (0, 1) and h ∈ R we have

F (s, h, x1, . . . , xn) = 0,
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Figure 2: A homoclinic orbit to LX.

then taking x0 := p (s) and xn+1 := Φh (xn) we obtain a sequence of points

x0, . . . , xn, xn+1,R (xn) , . . . ,R (x0) , (46)

along an intersection of the stable and unstable manifolds of LX. With this method we have
managed to obtain the following result.

Lemma 37. For every X from (21) the stable and unstable manifolds of LX intersect. Moreover,
the intersection is along a R-symmetric homoclinic orbit, which contains a sequence of points
along it that lies r = 1.96 · 10−7 close to the orbit written out in Table 2; see also Figure 2.

Remark 38. In Table 2 we write out half of the points along the homoclinic, since the second
half (the remaining twenty one points, to be precise) follows from the R-symmetry.

Remark 39. Our estimate on the distance from the points from Table 2 obtained by our computer
program varies from point to point and is frequently more accurate than stated in Lemma 37,
where we simply write out the single r, which is the upper bound that can be applied to all the
points.

Remark 40. From the method we also obtain a bound on the integration time h between the
consecutive points along the homoclinic. We have obtained that

h ∈ [0.34246881126, 0.34246888642]. (47)

We now show that the established intersection is transversal.

Lemma 41. For every X from the interval (21) the intersection of the stable and unstable mani-
folds of LX is transversal when considered in the three dimensional constant energy level.

Proof. We consider Σ{X<−1} = {Y = 0, X < −1} ⊂ R4 and we will study the intersections of
the stable/unstable manifolds of LX on this section. (See Figure 2.)

Let us denote by Wu
LX

and W s
LX

the unstable and stable manifolds of LX, respectively. These
are two dimensional tubes, contained in the three dimensional constant energy level {H = h∗} for
h∗ = H (LX). We have established that Wu

LX
and W s

LX
intersect along a homoclinic orbit, which

passes through the points (46). The point xn+1 belongs to Σ{X<−1}. (From (22) we know that
20



πY xn+1 = 0 and from Table 2 we see that πX xn+1 < −1, so xn+1 ∈ Σ{X<−1}.) The vector field at
xn+1 has a non zero Y-component. This means that the tangent spaces to the stable and unstable
manifolds at xn+1 span the coordinate Y .

The manifolds Wu
LX

and W s
LX

intersect with Σ{X<−1} at xn+1 along one dimensional curves.
(Note that some of the points from the unstable/stable manifolds can collide with Jupiter. Those
that reach Σ{X<−1} close to xn+1 intersect the section along one dimensional curves.) The section
Σ{X<−1} is three dimensional, but LX, Wu

LX
and W s

LX
are contained in {H = h∗}. The set Σ{X<−1} ∩

{H = h∗} is two dimensional and can be parameterised3 by coordinates (X, PX). The Wu
LX
∩Σ{X<−1}

and W s
LX
∩ Σ{X<−1} are therefore one dimensional curves contained in a two dimensional space,

parameterised by (X, PX), and if we show that

πX,PX

(
Wu

LX ∩ Σ{X<−1}

)
intersect transversally with πX,PX

(
W s

LX ∩ Σ{X<−1}

)
at xn+1, (48)

then we will obtain transversal intersections of Wu
LX

with W s
LX

at xn+1 in {H = h∗} . (In more detail:
the vector field at xn+1 is tangent to Wu

LX
and W s

LX
at xn+1 and has a non zero Y-component; from

(48) we will have that the tangent spaces to Wu
LX

and W s
LX

at xn+1 span X, PX . In all we span a
three dimensional vector space, hence the intersection is transversal in {H = h∗} .)

Let τ : R4 → R, P : R4 → Σ{X<−1} be defined as

τ (x) := inf
{
t > 0 : Φt (x) ∈ Σ{X<−1}

}
,

P (x) := Φτ(x) (x) .

The curve Wu
LX
∩ Σ{X<−1} can be obtained by computing P ◦ p (s). (See (45) for the definition of

p (s) .) By the R-symmetry of the PCR3BP the W s
LX
∩Σ{X<−1} is equal to R◦P◦ p (s). Let s∗ ∈ R

be such that P ◦ p (s∗) = xn+1. If we establish that

πX
d
ds
P ◦ p (s) |s=s∗ > 0 and πPX

d
ds
P ◦ p (s) |s=s∗ > 0, (49)

then

πX
d
ds
R ◦ P ◦ p (s) |s=s∗ = πX

d
ds
P ◦ p (s) |s=s∗ > 0, (50)

πPX

d
ds
R ◦ P ◦ p (s) |s=s∗ = −πPX

d
ds
P ◦ p (s) |s=s∗ < 0, (51)

and from (49–51) we will obtain (48).
In section 4.3 we have established that (see Lemma 30 and Corollary 31)

d
ds

p (s) ∈ Ã0V0, (52)

where V0 is a set
V0 = {1} × [−L, L] × [−L, L] × [−L, L] ,

with L = 5 ·10−6. The set V0 represents a cone, as described in Remark 20. We can propagate the
bound (52) to the point xn+1 using cone propagation method described in Remark 26. We have
thus validated that

πX,PX

d
ds
P ◦ p (s) |s=s∗ ∈ {uV | u > 0 and V = {1} × [4.06081, 4.06404]} .

This establish (49) and finishes our proof.

3On Σ{X<−1} the coordinate PY can be computed from X, PX since H(X,Y = 0, PX , PY ) = h∗.
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4.5. Persistence of the family of Lyapunov orbits

Recall that a Lyapunov orbit starting from x0(X) (see (26)), which has a period T (X), is given
as

LX = {Φt (x0(X)) : t ∈ [0,T (X)]} .

Let us denote the normally hyperbolic invariant manifold consisting of the family of Lyapunov
orbits as

ΛL = {LX : X are from the interval (21)} ⊂ R4.

We shall also use the following notation for the manifold in the extended phase space:

Λ̃L = ΛL × T. (53)

To prove persistence of Λ̃L we shall use the following theorem:

Theorem 42. [10] Assume that
d

dX
T (X) , 0 (54)

and also
d

dX
H(x0(X)) , 0. (55)

Then for sufficiently small perturbation ε from the PCR3BP to the PER3BP, the manifold Λ̃L is
perturbed into a O (ε) close normally hyperbolic manifold Λ̃ε

L, with boundary, which is invariant
under the flow induced by (19). Moreover, there exists a Cantor set of invariant tori in Λ̃ε

L.

We now discuss how we validate (54–55). Let us fix a single X from (26). From section 4.2
we know that there exists a τ = τ(X), and an even4 N ∈ N, such that for τ = τ(X) and for

x0 = x0 (X) = (X, 0, 0, s (X)) ,
xi+1 = Φτ (xi) for i = 0, . . . ,N − 1

we have
xN = x0,

and the period of the Lyapunov orbit starting from x0 is T (X) = Nτ (X).
Above was established by fixing X and solving for τ and s the following equation

πY,PX ΦτN/2 (X, 0, 0, s) = 0. (56)

(See (22) and (25); equation (22) provides us with the solution of (56) using parallel shooting.)
We can now define a function g : R3 → R2 as

g (X, s, τ) = πY,PX ΦNτ/2 (X, 0, 0, s)

and observe that
g (X, s(X), τ(X)) = 0. (57)

4In our case we take N = 30, see Table 1.
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This means that we can compute the derivatives of ds
dX and dτ

dX from the implicit function theorem;
i.e. by differentiating (57) with respect to X we obtain

∂g
∂X

+
∂g

∂ (s, τ)

( ds
dX
dτ
dX

)
= 0,

and provided that ∂g
∂(s,τ) is invertible we see that( ds

dX
dτ
dX

)
= −

(
∂g

∂ (s, τ)

)−1
∂g
∂X

. (58)

The partials ∂g
∂X
, ∂g
∂s and ∂g

∂τ
are 2×1 matrices, which can be computed as follows. Let ei ∈ R4,

for i = 1, . . . , 4, be a vector with 1 on i-th coordinate and zeros on the remaining coordinates.
Let F : R4 → R4 stand for the vector field of the PCR3BP. Then

∂g
∂X

(x0) = πY,PX DΦNτ/2 (x0) e1 = πY,PX DΦτ
(
xN/2−1

)
. . .DΦτ (x0) e1, (59)

∂g
∂s

(x0) = πY,PX DΦNτ/2 (x0) e4 = πY,PX DΦτ
(
xN/2−1

)
. . .DΦτ (x0) e4, (60)

∂g
∂τ

(x0) =
d
dτ
πX,PX ΦNτ/2(x0) =

N
2
πY,PXF

(
ΦNτ/2 (x0)

)
=

N
2
πY,PXF

(
xN/2

)
. (61)

Note that from the above ∂g
∂s and ∂g

∂τ
we obtain ∂g

∂(s,τ) =
(

∂g
∂s

∂g
∂τ

)
, which we can use in (58) to

compute ds
dX and dτ

dX .
Once ds

dX is established, we can easily compute

dH
dX

(x0(X)) =
∂H
∂X

(x0(X)) +
∂H
∂PY

(x0(X))
ds
dX

(X). (62)

We have used (58–62) to validate, with computer assistance, that we have the following:

Lemma 43. For every X from (21) we have

d
dX

x0 (X) ∈ {1} × {0} × {0} × [−4.530367,−4.530349] ,

d
dX

τ(X) ∈ [−0.5523403,−0.5522624] ,

d
dX

T (X) ∈ [−16.57021,−16.56787] ,

d
dX

H (x0 (X)) ∈ [−0.359187,−0.359185] .

Corollary 44. By Theorem 42 and Lemma 43 we obtain the persistence of the normally hyper-
bolic manifold Λ̃L (see (53)), which consists of our family of Lyapunov orbits in the extended
phase space.
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4.6. Proof of the main theorem
Recall that Φε

t is the flow of the PER3BP in the extended phase space. Let ρε : R4 × T→ R
be the time to the section {Y = 0}

ρε (x) = inf
{
t > 0 : Φε

t (x) ∈ {Y = 0}
}
,

and let Pε : R4 × T→ {Y = 0} be defined as

Pε (x) = Φε
ρ(x) (x) . (63)

The section {Y = 0} in the extended phase space is isomorphic with R3 ×T, which fits the setting
from section 2.4.

We consider a single point x∗ := x0 (−0.95) (x0(X) is defined in (26); see also (21) regarding
the choice of −0.95) and consider the matrix Ã0 from (42). We define

Σ̃ =
{
Ã−1

0 (x − x∗, θ) : x ∈ {Y = 0} , θ ∈ T
}
.

In other words, Σ̃ is the section {Y = 0} considered in the extended phase space, in the local
coordinates given by the affine change given by x∗ and Ã0. We decide to work in these local
coordinates since then we can directly use the estimates on the local unstable manifolds, which
were established in section 4.3. This is the reason why we choose Σ̃ as above.

To apply Theorem 11 we will choose our family of maps (11)

fε : Σ̃→ Σ̃

to be defined as
fε (x, θ) = Ã−1

0

(
Pε ◦ Pε

(
(x∗, 0) + Ã0 (x, θ)

)
− (x∗, 0)

)
. (64)

In other words, we consider the return map to the section {Y = 0} expressed in our local coordi-
nates.

Remark 45. The reason for taking a composition of two Pε in (64) is that for ε = 0 a Lyapunov
orbit intersects {Y = 0} in two points; or to be more precise, for ε = 0 a Lyapunov orbit becomes
an invariant torus in the extended phase space, which intersects {Y = 0} along two disjoint
curves. (See Figure 3.) When working with Pε ◦ Pε, each of these curves becomes an invariant
circle for fε=0.

Prior to the perturbation, for ε = 0, we define our normally hyperbolic invariant manifold
Λ0 ⊂ Σ̃ as (see (53) for the definition of Λ̃L)

Λ0 := Λ̃L ∩ Σ̃.

The manifold Λ0 is foliated by invariant circles for the map f0. Note that for ε = 0 the energy is
preserved, so for

I(x) := H0

(
(x∗, 0) + Ã0x

)
(65)

we see that
I ( f0 (x)) = I(x). (66)

We treat I as our conserved variable when ε = 0 and write

πI x = I(x).
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Figure 3: The manifold Λ0 projected onto coordinates (X,Y, θ) on the left, and in coordinates (I, θ) on the right.

Thus, condition (66) plays the role of (12).
We can write fε as

fε (x) = f0 (x) + εg (ε, x)

where
g (ε, x) =

1
ε

( fε (x) − f0 (x)) . (67)

To compute the change of the energy after an iterate of fε (x) we compute

πI fε (x) = πI f0 (x) + επIg (ε, x) = πI x + επIg (ε, x) ,

where πIg (ε, x) is

πIg (ε, x) =
1
ε

[
I ( fε (x)) − I ( f0 (x))

]
=

1
ε

[
I ( fε (x)) − I (x)

]
.

It follows from the above that

πIg (0, x) =
d
dε

I( fε(x))|ε=0 = DI ( f0 (x))
∂ f0
∂ε

(x) = ∇I ( f0 (x)) ·
∂ f0
∂ε

(x) . (68)

(In the above equation · is the scalar product.)
We are now ready for the proof of our main result.
Proof of Theorem 12. We start by describing our system for ε = 0. While discussing the

system for ε = 0 we will recall some results for the PCR3BP established in the previous sections.
We need to keep in mind that these were considered in coordinates (X,Y, PX , PY ) ∈ R4; without
the extended time coordinate θ.

The manifold Λ0 is invariant under f0 and in coordinates X,Y, PX , PY , θ can be written as

Λ0 = {(x0 (X) , θ) : X is from (21), θ ∈ T} ⊂ R4 × T.

For ε = 0 the inner dynamics produced by f0 on the manifold is given as

(x0 (X) , θ) 7→ (x0 (X) , θ + T (X)) , (69)

where T (X) is the period of the Lyapunov orbit LX. Thus Λ0 is an invariant cylinder, foliated by
invariant curves.
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Recall that for a given single Lyapunov orbit LX, we have established in Lemma 30 the
bounds on a curve pu(u), with u ∈ (−r, r), which lies along the intersection of the two dimensional
local unstable manifold of LX (for the PCR3BP in R4) with the section {Y = 0}. Let us emphasize
the dependence of pu(u) on X by writing pu

X
(u). The unstable manifold of Λ0 for f0, considered

in {Y = 0} (in the extended phase space) is three dimensional, and in the coordinates X, PX , PY , θ,
can locally be written as

Wu
Λ0

=
{(

pu
X

(u) , θ
)

: X is from (21), u ∈ (−r, r) , θ ∈ T
}
.

By considering the R-symmetry of the PCR3BP, in the extended phase space, and restricted to
{Y = 0}, i.e.

R̃ (X, PX , PY , θ) := (X,−PX , PY , θ) ,

we obtain the local stable manifold

W s
Λ0

= R̃
(
Wu

Λ0

)
.

We will now show that for ε = 0 we have a well defined (and global) scattering map

σ : Λ0 → Λ0. (70)

For this we first need to establish a homoclinic channel. By Lemmas 37, 41 we know that the
two dimensional stable and unstable manifolds of LX in the PCR3BP in R4 intersect transversally
(when considered on a three dimensional fixed energy set {H0 = I}, where I = H0 (LX)) along
an R-symmetric homoclinic orbit, which contains a point which we shall denote here as γ (I) ∈
{Y = 0}. The two dimensional stable and unstable manifolds of a given Lyapunov orbit LX, when
intersected with {Y = 0}, become one dimensional curves in {Y = 0} which intersect at γ (I). Let
us denote these curves as wu

I (u) and ws
I (s), and work under a convention that wu

I (0) = ws
I (0) =

γ (I). (This can always be ensured by re-parameterising the curves.) We have added the subscript
I to emphasize the dependence of the curves on the choice of the energy level: on different energy
levels we have a different Lyapunov orbits, that lead to different curves. We have shown during
the proof of Lemma 41 that the tangent vectors to these curves span the X, PX plane, i.e.

span
(
πX,PX

d
du

wu
I (u)|u=0, πX,PX

d
ds

ws
I(s)|s=0

)
= R2. (71)

We shall take

Γ := {(γ (I) , θ) : I = H0 (LX) , X is from (21) and θ ∈ T} ⊂ Σ̃ (72)

and prove that it is a well defined homoclinic channel by showing (5–8).
It will be convenient for us to check the transversality conditions (5–8) in coordinates X, PX , I, θ.

In these coordinates we can parameterise Λ0 by I, θ (see Figure 3)

Λ0 =
{(
πX,PX x0 (X) , I, θ

)
: I ∈ R, θ ∈ T, H0 (LX) = I

}
.

Close the intersection of the stable and unstable manifold at (γ (I) , θ), we can parameterise the
manifold Wu

Λ0
by I, θ, u as follows

Wu
Λ0

=
{(
πX,PX wu

I (u) , I, θ
)

: I ∈ R, θ ∈ T, u ∈ R
}
.
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We can similarly parameterise the manifold Wu
Λ0

by I, θ, s

W s
Λ0

=
{(
πX,PX ws

I (s) , I, θ
)

: I ∈ R, θ ∈ T, s ∈ R
}
,

and parameterise Γ by I, θ as in (72). We see that at a point (γ (I) , θ) ∈ Γ

T(γ(I),θ)Wu
Λ0

= span
{(
πX,PX

d
du

wu
I (u) |u=0, 0, 0

)
,

(
πX,PX

d
dI

wu
I (0) , 1, 0

)
, (0, 0, 0, 1)

}
, (73)

T(γ(I),θ)W s
Λ0

= span
{(
πX,PX

d
ds

ws
I (s) |s=0, 0, 0

)
,

(
πX,PX

d
dI

ws
I (0) , 1, 0

)
, (0, 0, 0, 1)

}
, (74)

T(γ(I),θ)Γ = span
{(
πX,PX

d
dI
γ (I) , 1, 0

)
, (0, 0, 0, 1)

}
. (75)

We know that γ (I) results from the intersection of wu
I (u) and ws

I (s) at u = s = 0

γ (I) = wu
I (0) = ws

I (0) ,

so
πX,PX

d
dI
γ (I) = πX,PX

d
dI

wu
I (0) = πX,PX

d
dI

ws
I (0) . (76)

We now see that from (71), (73–76) we have (5–6).
We now turn to proving (7–8). For a fixed I let us take x = x0 (X) where X is such that

H0 (LX) = I. Let us also consider a fixed λ ∈ T. We see that the unstable and stable fibres of the
point (x, λ) ∈ Λ0 are parameterised by u and s, respectively, as

Wu
(x,λ) =

{(
πX,PX wu

I (u) , I, θu
I,λ (u)

)
: u ∈ R

}
,

W s
(x,λ) =

{(
πX,PX ws

I (s) , I, θs
I,λ (s)

)
: s ∈ R

}
,

where θu
I,λ, θ

s
I,λ : R → T are some functions, which parameterise the fibers along the angle

coordinate. Hence for every I, θ

T(γ(I),θ)Wu
(x,θ) = span

{(
πX,PX

d
du

wu
I (u) |u=0, 0,

d
du
θu

I,θ (u) |u=0

)}
, (77)

T(γ(I),θ)W s
(x,θ) = span

{(
πX,PX

d
ds

ws
I (s) |s=0, 0,

d
ds
θs

I,θ (s) |s=0

)}
. (78)

From (74), (75), (76) and (78) we obtain (7). Similarly, from (73), (75), (76) and (77) we have
(8). We have thus shown that Γ is a well defined homoclinic channel.

We now discuss the scattering map (70) associated with Γ. For fibers Wu
(x−,θ−) and W s

(x+,θ+) to
intersect we must have x+ = x−, since if this was not the case then the points x−, x+ would lie on
different energy levels, and their fibres would not meet. This means that

σ (x, λ) = (x, πθσ (x, λ)) ,

We now show how to obtain estimates for πθσ (x, λ).
For every (x, λ) ∈ Λ0 we have the homoclinic orbit established in section 4.4 (see in particular

Table 2) with the initial point x0 = x0 (x, λ) lying on the unstable fiber established in Lemma 35.
From (44) it follows that

|πθx0 (x, λ) − λ| ≤ Mr = 3 · 3 · 10−8.
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As the point x0 (x, λ) is iterated by f0 the angle θ changes. From Remark 40 we know that after
the full excursion along the homoclinic from Table 2 we return to the neighbourhood of Λ0 at an
angle πθx0 (x, λ) + 42 · h, where h = h(x) is from the interval (47). Such homoclinic excursion
takes five iterates of f0 (see Table 2) so

πθ f 5
0 (x0 (x, λ)) = πθx0 (x, λ) + 42 · h.

We know that f 5
0 (x0 (x, λ)) lies in the stable fiber of f 5

0 (σ (x, λ)). We also know that

f 5
0 (σ (x, λ)) = f 5

0 (x, πθσ (x, λ)) = (x, πθσ (x, λ) + 5T (x)) ,

where T (x) is the period of the Lyapunov orbit. From Lemma 35 and the R-symmetry of the
system since f 5

0 (x0 (x, λ)) ∈ W s
f 5
0 (σ(x,λ))

we have∣∣∣∣πθ ( f 5
0 (x0 (x, λ)) − f 5

0 (σ (x, λ))
)∣∣∣∣ ≤ Mr.

This allows us to obtain the following estimate for the scattering map

πθσ (x, λ) = πθσ (x, λ) + 5T (x) − 5T (x)

= πθ f 5
0 (σ (x, λ)) − 5T (x)

= πθ f 5
0 (x0 (x, λ)) + πθ

(
f 5
0 (σ (x, λ)) − f 5

0 (x0 (x, λ))
)
− 5T (x)

∈ πθx0 (x, λ) + 42 · h + [−Mr,Mr] − 5T (x)
= λ + (πθx0 (x, λ) − λ) + 42 · h + [−Mr,Mr] − 5T (x)
∈ λ + [−Mr,Mr] + 42 · h + [−Mr,Mr] − 5T (x)
∈ λ + [−0.82506903038,−0.82506533656]. (79)

We have thus obtained our bound for the scattering map of the unperturbed system.
We have finished our discussion about the unperturbed system. Now we turn to showing that

for sufficiently small ε > 0 the manifold Λ0 persists.
Recall the notation Λ̃L from (53), which stands for our family of Lyapunov orbits in the

extended phase space. Recall also that Λ0 = Λ̃L ∩ {Y = 0}. By Corollary 44 we know that
for sufficiently small ε the normally hyperbolic invariant manifold Λ̃L is perturbed to a nearby
manifold Λ̃ε

L. We thus obtain Λε := Λ̃ε
L∩{Y = 0} as the perturbation of Λ0. Since by Theorem 42

we know that Λ̃ε
L is a manifold with a boundary that consists of two, two dimensional invariant

KAM tori. These two tori intersected with {Y = 0} produce two curves, which are invariant under
fε. They become boundaries of Λε. Thus Λε is a normally hyperbolic invariant manifold, with
boundary, for fε. Similarly, all the two dimensional KAM tori in Λ̃ε

L become one dimensional
invariant tori in Λε.

We now turn to validating the assumptions of Theorem 11 to obtain our result. This will
be done in the local coordinates given by the affine change involving Ã0 and x∗, in which our
fε is expressed. Recall that in Lemma 30 and Corollary 31 we have established bounds on the
intersection of the local unstable manifold of a Lyapunov orbit with {Y = 0}. This bound is valid
in the following neighbourhood of Λ0

U = [−r, r]4 × T, (80)
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where r = 3 · 10−8 is the constant from Lemma 30. We have performed a computer assisted
validation that the constant Lg from (14) is

Lg = 90943. (81)

This value was computed using the method described in detail in Appendix C. The value ob-
tained in (81) is a large overestimate. By performing more careful checks, for instance by sub-
dividing U into small fragments, the bound can be significantly improved. Due to the small size
of the neighbourhood (80) in which we consider the local unstable manifold, we see that the
constant C from (15) can is very small:

C = r = 3 · 10−8. (82)

Thus the large value of Lg is not a problem for us, since Lg enters condition (17) multiplied by
C. We use the bound m̄ from Remark 34 to compute

λ = (m̄)−30 =
1

1525.16
.

The power 30 comes from the fact that to complete a full turn round a Lyapunov orbit involves
30 local maps (29); see Table 1. We consider the following strips5

S − = Λ0 ∩ {θ ∈ [0.65 − 0.125, 0.65 + 0.125]} ,
S + = Λ0 ∩ {θ ∈ [π + 0.65 − 0.125, π + 0.65 + 0.125]} .

For each point z ∈ S + we compute m = m (z) such that condition (16) is fulfilled. Depending
on the choice of z the resulting m can differ. To compute it we used the bound on σ from (79) and
the fact that the inner dynamics is given by (69) with the bound on T (X) from (27). We check
the assumptions of Theorem 9 by subdividing S + into 25 fragments along the θ coordinate, and
validated the assumptions for each fragment independently. For the first three fragments for
which θ was closest to π + 0.65 − 0.125 it turned out that a good choice is m(z) = 21; for three
fragments with θ close to π + 0.65 + 0.125 we used m(z) = 25; and for the remaining we took
m(z) = 23. For z ∈ S + the point x ∈ Wu

z from condition 2. from Theorem 9, is taken as the first
point from homoclinic orbit from Lemma 37. For the alignment of x along θ we use the estimate
(44) from Lemma 35. We then validate that

m(z)−1∑
i=0

πIg
(
0, f i

0 (x)
)
−

1 + λ

1 − λ
LgC > 0. (83)

The inequality (83) is validated with the aid of computer assisted estimates.
In the similar fashion we validate the assumptions of Theorem 10.
Conditions 1. and 2. from Theorem 11 are simple to validate since for every point z =

(x0 (X) , λ) ∈ Λ0 we have
πθ f (z) = λ + T (X) ,

where T (X) is the period of the Lyapunov orbit, whose bound is known to us in (27).

5The positioning of the strips was motivated by computing
∑4

i=0 πIg
(
0, f i

0 (x)
)
, which represents the change of energy

after the homoclinic excursion along the homoclinic. These five terms in the sum play the leading role in (83). In Figure
4 we provide a plot of computer assisted bounds on

∑4
i=0 πIg

(
0, f i

0 (x)
)
, for different choices of πθz, and place our strips

S +, S − for reference in the figure.
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Figure 4: The computer assisted bound for the first five terms in the sum in (83), depending on πθz.

Remark 46. Due to the fact that we work with the particular family of Lyapunov orbits, which
correspond to the energy of the comet Oterma, it turned out that the m used in conditions 1. and
2. from Theorems 9 and 10 was a large number. This resulted in the need of large number of
iterates of f0 when computing (83), which meant long integration time. Also, we needed relatively
wide strips S +, S −. This meant that we needed many subdivisions of the strips to perform our
validation. The long integration time and the large number of sets increased the computational
time of our proof. By making a more careful choice of the energy level, one could focus on
Lyapunov orbits for which m would be smaller. We have chosen not to do so to demonstrate that
the method is applicable for the choice of energy dictated by a concrete physical object.

Appendix A. Proof of Lemma 27

Proof. Take v ∈ Q+ (0) ∩ B. Since ai ∈ (0, 1) we see that |v1| ≥ |vi| /ai−1 > |vi|, for i = 2, 3, 4.
Since f (0) = 0 from the mean value theorem we obtain

‖ f (v)‖max = ‖ f (v) − f (0)‖max

∈
∥∥∥[D f (B)

]
v
∥∥∥

max

= ‖(A11v1 + A12 (v2, v3, v4) , A21v1 + A22 (v2, v3, v4))‖max

≥ |A11v1 + A12 (v2, v3, v4)|
≥ (c − ‖A12‖max max (a1, a2, a3)) |v1|

= (c − ‖A12‖max max (a1, a2, a3)) ‖v‖max ,

as required.

Appendix B. Proof of Lemma 28

Proof. Let v = (v1, v2) where v1 = π1v and v2 = π2,3,4v. Since v ∈ Q+ (0) we see that

|v1| ≥ a−1 ‖v2‖max .
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From the mean value theorem we obtain

‖ f (v)‖max ∈
∥∥∥[D f (B)

]
v
∥∥∥

max

= ‖(A11v1 + A12v2, A21v1 + A22v2)‖max

≤ max (|A11| |v1| + ‖A12‖max ‖v2‖max , ‖A21‖max |v1| + ‖A22‖max ‖v2‖max)

≤ max (|A11| + a ‖A12‖max , ‖A21‖max + a ‖A22‖max) |v1|

= max (|A11| + a ‖A12‖max , ‖A21‖max + a ‖A22‖max) ‖v‖max

as required.

Appendix C. Lipschitz bounds for the perturbation term

Here we give a method, with which we can check (14) in the case when I(x) is defined as (65).
Below we start with Lemma 47, that can be applied to achieve this. We have found though that in
our particular case of the PER3BP, due to long integration times, a direct application of Lemma
47 leads to overestimates, which were too large for our needs. We therefore follow with Lemma
48, which can be used for an inductive computation of Lg by expressing fε as a composition of
maps. This allowed us to avoid long integration times and improved the estimate.

Lemma 47. Let D2I(x) stand for the Hessian of I at x. Consider x0, x1 ∈ R3×S and let x ⊂ R3×S
be a convex set which contains x0 and x1. Let v ⊂ R4 be the following interval enclosure

v> =

[(
∂ f0
∂ε

(x)
)>

D2I ( f0 (x)) D f0 (x) + DI ( f0 (x))
∂2 f0
∂x∂ε

(x)
]
.

If ‖v‖ ≤ Lg then
|πIg (0, x1) − πIg (0, x0)| ≤ Lg ‖x1 − x0‖ .

Proof. Let
xs := x0 + s (x1 − x0) .

From (68) we obtain

πIg (0, x1) − πIg (0, x0)

=

∫ 1

0

d
ds
∇I ( f0 (xs)) ·

∂ f0
∂ε

(xs) ds

=

∫ 1

0
D2I ( f0 (xs)) D f0 (xs) (x1 − x0) ·

∂ f0
∂ε

(xs) + ∇I ( f0 (xs)) ·
∂2 f0
∂x∂ε

(xs) (x1 − x0) ds

=

∫ 1

0

∂ f0
∂ε

(xs) · D2I ( f0 (xs)) D f0 (xs) (x1 − x0) + ∇I ( f0 (xs)) ·
∂2 f0
∂x∂ε

(xs) (x1 − x0) ds

=

(∫ 1

0

(
∂ f0
∂ε

(xs)
)>

D2I ( f0 (xs)) D f0 (xs) + DI ( f0 (xs))
∂2 f0
∂x∂ε

(xs) ds
)

(x1 − x0)

∈ v · (x1 − x0) ,

so
|πIg (0, x1) − πIg (0, x0)| ≤ ‖v‖ ‖x1 − x0‖ ≤ Lg ‖x1 − x0‖ ,
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as required.
We now consider the case where f is a composition of two functions f = f 1

ε ◦ f 2
ε . Our

objective will be to compute Lipschitz bound in terms of x for

g (ε, x) :=
1
ε

(
I ◦ f 2

ε ◦ f 1
ε (ε, x) − I(x)

)
. (C.1)

The following lemma gives the bound for πIg (0, x) from bounds for f 1
ε and f 2

ε .

Lemma 48. Assume that

fε = f 2
ε ◦ f 1

ε ,

g (ε, x) =
1
ε

( fε (x) − f0 (x)) ,

g1 (ε, x) =
1
ε

(
f 1
ε (x) − f 1

0 (x)
)
,

g2 (ε, x) =
1
ε

(
f 2
ε (x) − f 2

0 (x)
)
,

and that

‖πI (g1 (0, x1) − g1 (0, x0))‖ ≤ L1
g ‖x1 − x0‖ ,

‖πI (g2 (0, x1) − g2 (0, x0))‖ ≤ L2
g ‖x1 − x0‖ ,∥∥∥ f 1

0 (x1) − f 1
0 (x0)

∥∥∥ ≤ L1
f ‖x1 − x0‖ .

Then
‖πI (g (0, x1) − g (0, x0))‖ ≤

(
L2

gL1
f + L1

g

)
‖x1 − x0‖ .

Proof. Consider fixed x1, x0. Then

‖πIg (ε, x1) − πIg (ε, x0)‖

=

∥∥∥∥∥1
ε

(
I ◦ f 2

ε ◦ f 1
ε (x1) − I (x1) −

(
I ◦ f 2

ε ◦ f 1
ε (x0) − I (x0)

))∥∥∥∥∥
≤

∥∥∥∥∥1
ε

(
I ◦ f 2

ε ◦ f 1
ε (x1) − I ◦ f 1

ε (x1) −
(
I ◦ f 2

ε ◦ f 1
ε (x0) − I ◦ f 1

ε (x0)
))∥∥∥∥∥

+

∥∥∥∥∥1
ε

(
I ◦ f 1

ε (x1) − I (x1) −
(
I ◦ f 1

ε (x0) − I (x0)
))∥∥∥∥∥

=
∥∥∥∥πIg2

(
ε, f 1

ε (x1)
)
− πIg2

(
ε, f 1

ε (x0)
)∥∥∥∥ + ‖πIg1 (ε, x1) − πIg1 (ε, x0)‖

≤ L2
g

∥∥∥ f 1
ε (x1) + f 1

ε (x0)
∥∥∥ + L1

g ‖x1 + x0‖ + o (ε)

≤
(
L2

gL1
f + L1

g

)
‖x1 + x0‖ + o (ε)

and the result follows by passing with ε to zero.
The bound (14) computed in the proof (see section 4.6) is for the Poincaré map fε defined in

(64). This can be computed by considering

fε = fε,N ◦ . . . ◦ fε,1, (C.2)
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where fε,i are local maps of the form

fε,i (x) = A−1
i

(
Φε

t (xi−1 + Ai−1x) − xi
)

for i = 1, . . . ,N − 1,

fε,N (x) = A−1
0 (Pε (xN−1 + AN−1x) − x0) .

In the inductive application of Lemma 48 we can use the bound m̄ from Remark 34 and take
L1

f = m̄k at the k-th inductive step.
The energy after an iterate of a local map is

I
(
fε,i (x)

)
= H0

(
Φε

t (xi−1 + Ai−1x)
)
.

Since

d
dx

d
dε

H0
(
Φε

t (xi−1 + Ai−1x)
)

=
d
dx

(
∇H0

(
Φε

t (xi−1 + Ai−1x)
)
·
∂Φε

t

∂ε
(xi−1 + Ai−1x)

)
=

(
∂Φε

t

∂ε
(xi−1 + Ai−1x)

)>
D2H0

(
Φε

t (xi−1 + Ai−1x)
) ∂Φε

t

∂x
(xi−1 + Ai−1x) Ai−1

+ DH0
(
Φε

t (xi−1 + Ai−1x)
) ∂2Φε

t

∂x∂ε
(xi−1 + Ai−1x) Ai−1

the v> used for the computation of Lg for a local map fε,i by means of Lemma 47 is computed as

v> =

[(
∂Φε

t

∂ε
(x)

)>
D2H0

(
Φε

t (x)
) ∂Φε

t

∂x
(x) Ai−1 + DH0

(
Φε

t (x)
) ∂2Φε

t

∂x∂ε
(x) Ai−1

]
. (C.3)

(For the last local map fε,N we take Pε instead of Φε
t in (C.3).)
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[10] M. J. Capiński, M. Gidea, R. de la Llave, Arnold diffusion in the planar elliptic restricted three-body problem:
mechanism and numerical verification, Nonlinearity 30 (1) (2017) 329–360. doi:10.1088/1361-6544/30/1/

329.
URL https://doi.org/10.1088/1361-6544/30/1/329
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