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b) List of publications:

The following publications constitute a series on which the habilitation is
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(3) (2009) 705–725.

[CZ1] M.J. Capiński, P. Zgliczyński, Cone conditions and covering relations for
topologically normally hyperbolic manifolds, Discrete Contin. Dyn. Syst.
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[CR] M.J. Capiński, P. Roldán, Existence of a center manifold in a practical
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invariant manifolds, J. Differential Equations 259 (2015) 6215–6286.

c) Overview of academic accomplishments and applications:

Below we discuss the results. We start with the motivation. We recall the
classical normally hyperbolic manifold theorem and use it to pose questions,
which were the main motivation for the research. Section 2 places the work in
the context of current developments in the literature. In section 3 we present
the main theoretical results, and finish with applications presented in section 4.

1 Motivation

The theory of normally hyperbolic invariant manifolds has been developed by
Hirsch, Pugh, Shub [16] in the setting of discrete dynamical systems and by
Fenichel [6] for flows. The theory has found numerous applications. It is used
for the study of global perturbations, resonance and diffusion, and for investi-
gation of geometric properties of dynamical systems. It is frequently applied by
physicists, engineers, and mathematicians working on nonlinear problems from
a geometric viewpoint.
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In our discussion we shall focus mainly on the theory for discrete dynamical
systems. All of the results though can also be applied to ODEs, by considering
time shift maps along the flow.

We start with the definition of a normally hyperbolic manifold:

Definition 1. Let Λ ⊂ Rn be a manifold, invariant under f : Rn → Rn, i.e.,
f(Λ) = Λ, where f is a Cr-diffeomorphism, r ≥ 1. We say that Λ is a normally
hyperbolic invariant manifold if there exists a constant C > 0, rates

0 < λ < µ−1 < 1 (1)

and a splitting for every x ∈ Λ

Rn = Eux ⊕ Esx ⊕ TxΛ

such that

v ∈ Eux ⇔ ‖Dfn(x)v‖ ≤ Cλ|n| ‖v‖ , n ≤ 0,

v ∈ Esx ⇔ ‖Dfn(x)v‖ ≤ Cλn ‖v‖ , n ≥ 0,

v ∈ TxΛ⇔ ‖Dfn(x)v‖ ≤ Cµ|n| ‖v‖ , n ∈ Z.

The Esx is the stable (contracting) eigenspace, and Eux is unstable (expand-
ing) eigenspace. Intuitively, an invariant manifold Λ is normally hyperbolic,
if the dynamics on Λ is weaker than the dynamics in the stable and unstable
directions. This is reflected in the assumption (1), which we will refer to as the
rate condition. (This condition is also frequently referred to as the spectral gap
condition throughout the literature.)

In the sequel, we will assume that Λ is compact or that f is uniformly Cr

in a neighbourhood of Λ.
Given a normally hyperbolic invariant manifold we define its unstable and

stable manifold as

Wu (Λ, f) = {y ∈ Rn|d (fn(y),Λ) ≤ Cyλ
|n|, n ≤ 0},

W s (Λ, f) = {y ∈ Rn|d (fn(y),Λ) ≤ Cyλ
n, n ≥ 0}.

The manifolds Wu (Λ, f) , W s (Λ, f) are foliated by

Wu (x, f) = {y ∈ Rn| ‖fn(y)− fn(x)‖ ≤ Cx,yλ
|n|, n ≤ 0},

W s (x, f) = {y ∈ Rn| ‖fn(y)− fn(x)‖ ≤ Cx,yλ
n, n ≥ 0}.

We define

l = min

{
r,
|lnλ|
lnµ

}
.

Theorem 2. [16] Let fε : Rn → Rn be a family of Cr diffeomorphisms with r ≥
1. Assume that Λ is a normally hyperbolic invariant manifold for f0 with rates
λ, µ. Then there exists an ε0 > 0 such that for |ε| < ε0 there exist Cl normally
hyperbolic manifolds Λε invariant under fε, with rates λ, µ. The manifolds
Wu (Λε, fε) , W

s (Λε, fε) are Cl and the fibers Wu (x, fε) , W
s (x, fε) are Cr.

The manifolds Λε are Cl close to Λ. The same holds for the stable/unstable
manifolds and their fibers.
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Remark 3. The statement of Theorem 2 written out in [16] is weaker in terms
of regularity of the manifold. Theorem 2 reflects the current development in the
theory, and its modern survey can be found in [22].

The results of the habilitation address the following questions:

1. Theorem 2 relies on the fact that the dynamics on Λ is weaker than the
associated contraction and expansion. (This is reflected in the rate condi-
tion (1) in the definition of a normally hyperbolic manifold.) Is it possible
to obtain a version of the theorem without assuming (1)?

2. Theorem 2 needs the existence of Λ as one of its assumptions. Is it possible
to provide a non-perturbative version of the theorem, which would not
need to assume existence of a manifold?

3. Theorem 2 establishes the existence of stable/unstable manifolds and
fibers, but does not provide information about their size and position-
ing. Is it possible to obtain explicit estimates on size and position of
Wu (Λε, fε) , W

s (Λε, fε) and Wu (x, fε) , W
s (x, fε)?

4. Theorem 2 does not give explicit bounds on the size of the perturbation
under which the manifolds persist. Is it possible to provide explicit esti-
mates for the parameter ε0 from Theorem 2?

We now make several comments on above questions to place our results in
their context.

The first question is subtle. There are examples [17] in which in the absence
of rate conditions (1) an invariant manifold can be destroyed, under arbitrarily
small perturbation, to a set which is not even a topological manifold. This does
not mean though that the manifold vanishes or that it is completely destroyed.
This problem has been studied by Floer in [11]. He has shown that if the
perturbation is small enough, then we have an invariant set with a cohomology
ring that contains the cohomology of the unperturbed manifold as a subring.
We take a different approach in [C]. We establish existence of an invariant set
that contains a graph over Λ. The advantage of our method is that it does
not need to assume the existence of a normally hyperbolic manifold and to use
perturbation theory. The method from [2] can also be applied in a perturbative
setting to determine an explicit size of the perturbation of the system under
which the invariant set persists. This is the subject of results presented in
section 3.1.

The second question is partially answered in [C]. The method is not pertur-
bative, and ensures existence of an invariant set within a given neighbourhood,
provided that certain assumptions, referred to later as “covering conditions”, are
satisfied. These assumptions though do not ensure that the invariant set is a
manifold. In Section 3.2 we present the results from [CZ1], where by adding ad-
ditional assumptions, which are later referred to as “cone conditions”, it can be
determined that the invariant set is indeed a manifold, with normally hyperbolic-
type properties. The paper [CZ1] does not address the issue of regularity of the
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manifold. The regularity can be established by considering additional assump-
tions, which we refer to as the “rate conditions”. This is the subject of the
paper [CZ2], and the results are presented in section 3.3. All results mentioned
above are not perturbative, and give explicit estimates on where the invariant
manifold is positioned.

The paper [CZ2] gives also results which ensure explicit bounds on the posi-
tioning and slopes of Wu (Λε, fε) , W

s (Λε, fε) and Wu (x, fε) , W
s (x, fε), thus

answering the third question.
All of the methods mentioned above can also be applied in a perturbative

setting. If we consider a family of maps, then as long as assumptions hold for
each map, we can established existence of the manifolds. This way one can
obtain explicit estimates on the size of perturbations under which the manifolds
will survive, thus answering question 4.

Our objective was to develop a method that can be applier in practical set-
ting. The emphasis is on developing tools, which can be applied to produce
computer assisted proofs. The papers [CS] and [CR] contain examples of appli-
cations of the methodology. The paper [CS] considers the driven logistic map.
This is one of the classical examples which demonstrates that seemingly simple
numerical simulations can lead to incorrect conclusions (here the false evidence
points to chaotic dynamics, whereas in truth the system has a smooth attrac-
tor). This is a good example to test the theory, since due to numerical difficulty
it poses a real challenge. The paper [CR] gives a proof of existence and explicit
bounds for a centre manifold in the restricted three body problem (R3BP).
The R3BP is one of the classical examples in dynamical systems whose history
goes back 300 years to the works of Laplace, Newton and Poincaré [19, 20, 21].
The problem has been studied extensively. A method can prove its worth by
producing new results in the field.

2 Literature overview

In this section we place our results in the context of current developments in
the field.

In the standard approach to the proof of various invariant manifold theo-
rems, all considerations are done in suitable function spaces or sequences spaces.
Moreover, the results are perturbative and the existence of an invariant mani-
fold for an unperturbed map (or ODE) is usually assumed [5, 6, 7, 8, 9, 16, 22].
Typically these proofs do not give any computable bounds for the size of per-
turbation for which the invariant manifold exists.

Our results are in similar spirit to a number of results for establishing in-
variant manifolds that have recently emerged, which assume that there exists a
manifold that is ‘approximately’ invariant, and provide conditions that ensure
the existence of a true invariant manifold within a given neighbourhood. In [1]
Bates, Lu and Zeng present such approach within a context of semiflows, which
makes their method general and applicable to infinite dimensional systems and
PDEs. Compared to [1] our results is more explicit. Contrary to [1], where main
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theorems require that some constants are sufficiently small depending on other
constants, in our main theorem we just have several explicit inequalities. In
[4, 10, 12, 13, 14, 15] Calleja, Celletti, Haro, de la Llave, Figueras, Fontich and
Sire provide a framework and results for establishing existence of whiskered tori
with quasi periodic dynamics, which is suitable for computer assisted validation.

All above proofs are based on constructions in suitable function spaces. In
contrast, in our method the whole proof is made in the phase space. This
method is not entirely new. For example, a similar approach is adapted in
the proof of Jones [18] in the context of slow-fast system of ODEs. Jones
though considered a perturbation of a normally hyperbolic invariant manifold.
A topological approach has been applied by Berger and Bounemoura [2], where
persistence and smoothness of invariant manifolds is established using geometric
and topological methods. Their result relies though on a perturbation of a
normally hyperbolic invariant manifold. It is a later result to [C, CZ1] and uses
similar methodology. The improvement is that it establishes C1 regularity of
the manifolds. Another topological approach is that of Floer [11], who used the
Conley index to study the problem. His results are also perturbative.

In the current state of development there seem to be two methods that can
be applied to produce computer assisted proofs: the above mentioned works of
Calleja, Celletti, Haro, de la Llave, Figueras, Fontich and Sire [4, 10, 12, 13, 14,
15] and the method which is the topic of this presentation. The former is based
on a parametrisation method, which involves solving a fixed point equation in
a suitable function space. In order to do so, it is required to expand the map
(or vector field) to a high order Taylor or Fourier representation and to perform
manipulations on such series. This can be numerically costly. In contrast, our
method does not required such expansions and can be applied without the need
of estimating higher order derivatives. It can also be applied in the absence of
higher order differentiability of the considered manifolds (which is the usual set-
ting close to their breakdown). The tradeoff is that the parametrisation method
can produce more accurate enclosures. The two methods seem to complement
each other, the first focusing on the tools from functional analysis, and the
second on geometric and topological construction.

3 Theoretical framework

In this section we give the main theoretical results, which are based on the
papers [C,CZ1,CZ2].

3.1 Topologically normally hyperbolic sets [C]

In this section we relax the assumptions of the normally hyperbolic invariant
manifold theorem (Theorem 2) to consider topological hyperbolicity.

Before we present our results we need two auxiliary definitions. Let Bn de-
note a closed ball of radius R centred at zero in Rn. (Throughout the discussion
R will be fixed.)
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Figure 1: An h-set N , and a covering relation N
g

=⇒ N , in the setting of a
hyperbolic fixed point.

Definition 4. [23] An h-set, is an object consisting of the following data

1. N - a compact subset of Rk,

2. u, s ∈ {0, 1, 2, 3, . . .}, such that u+ s = k,

3. a homeomorphism ηN : Rk → Rk = Ru × Rs such that

ηN (N) = Bu ×Bs.

We consider the following subsets of Nη,

Nη = Bu ×Bs,
N−η = ∂Bu ×Bs,
N+
η = Bu × ∂Bs,

N− = η−1
N (N−η ),

N+ = η−1
N (N+

η ).

Definition 5. [23] Assume that N, M are h-sets. Let g : N → Rk be a
continuous map and let gη = ηM ◦ g ◦ η−1

N : Nη → Ru × Rs. We say that N
g-covers M , which we denote as

N
g

=⇒M,

if the following conditions are satisfied:
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1. There exists a continuous homotopy h : [0, 1] ×Nη → Ru × Rs such that
the following conditions hold true

h0 = gη,

h([0, 1], N−η ) ∩Mη = ∅,
h([0, 1], Nη) ∩M+

η = ∅.

2.1. If u > 0, then there exists a linear map A : Ru → Ru, such that

h1(x, y) = (Ax, 0), where x ∈ Ru and y ∈ Rs,
A(∂Bu) ⊂ Ru\Bu.

2.2. If u = 0, then
h1(y) = 0, for y ∈ Nη.

The idea behind Definition 5 is that the coordinate x ∈ Ru is the direction
of topological expansion and y ∈ Rs is the coordinate of topological contraction.
(The notations u, s stand for “unstable” and “stable”, respectively.)

To provide some intuition for the Definitions 4 and 5, let us illustrate the
setting in the case of a hyperbolic fixed point (see Figure 1). I such a case we can
take Nη = Mη to be a small box surrounding the fixed point. The homotopy
h corresponds to a projection onto the unstable coordinate in the linearized
coordinates of hyperbolic expansion and contraction. The homeomorphism η is
the local change of coordinates around the fixed point.

Let us note that the class of functions satisfying Definition 5 is broader than
those having a hyperbolic invariant set. In particular, Definition 5 does not
require the function to be differentiable.

We now set up the notations needed for topological normal hyperbolicity.
Let D be a compact set in Rk. Let us assume that there exists a neighbourhood
U of D and a homeomorphism φ : U → Rk, such that

φ(D) = Λ×N,

where N = Bu×Bs and Λ is a compact c = k−u−s dimensional sub-manifold,
without a boundary, in Rk.

We consider a homeomorphism

f : U → U.

We will look for an invariant set in the interior of D, which projects onto the
manifold φ−1(Λ, 0, 0). The exact meaning of this statement will be made clear
in the formulation of the result.

A point x in Λ × N will be represented as x = (λ, x, y), where λ, x, and y
correspond to Λ, Bu and Bs coordinates respectively. For a given point λ ∈ Λ
we will use the notations fλ and, f−1

λ for functions

fλ, f
−1
λ : N → Ru+s,
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Figure 2: Example of a function which satisfies covering conditions.

defined as

fλ(x, y) := πx,y ◦ φ ◦ f ◦ φ−1(λ, x, y),

f−1
λ (x, y) := πx,y ◦ φ ◦ f−1 ◦ φ−1(λ, x, y),

where πx,y is the projection onto the x, y coordinates. In line with Definition 5
we will adapt a notation in which x will be the unstable and y will be the stable
coordinate (in the topological sense of covering relations) for the maps fλ.

Definition 6. If for any λ ∈ Λ

N
fλ

=⇒ N, (2)

and

N
f−1
λ=⇒ N. (3)

Then we say that f satisfies covering conditions.

Remark 7. For (3) we make a natural assumption that the roles of the stable
and unstable directions are reversed with respect to (2). The coordinates x
become the stable coordinates and y the unstable coordinates for the maps
f−1
λ .

We give a simple example of a function which satisfies covering conditions
in Figure 2. In this example D ⊂ R3 and Λ = S1. The cut from the left plot
is depicted in grey on the right. Thus, the front and back face of φ(D) on the
right hand plots coincide.

The following theorem is the main result from [C]. It gives a tool for the
establishing an invariant set for the map f .

9



Theorem 8. [C, Theorem 3.1] If f : U → U is a homeomorphism which
satisfies covering conditions, then for any λ ∈ Λ the set

Kλ := {x ∈ D|fm(x) ∈ D for all m ∈ Z, and

x = φ−1(λ, x, y) for some x ∈ Bu, y ∈ Bs}

is nonempty and lies in the interior of D.

It is important to note that in Definition 6 we do not assume any expansion
or contraction properties for the coordinate λ. In contrast to condition (1), the
dynamics on this coordinate can be much stronger than the dynamics on x, y.
What is only needed is that the x and y are coordinates of topological expansion
and contraction, respectively.

3.2 Topologically normally hyperbolic manifolds [CZ1]

In this section we extend the results from section 3.1, by adding additional
assumptions, which ensure that the invariant set obtained in Theorem 8 is a C0

normally hyperbolic manifold, with associated stable and unstable manifolds.
Let Λ be a c-dimensional manifold without boundary and let N be an h-set.

To formulate the results we will make an additional assumption that

Λ = (R/Z)
c
, (4)

i.e. Λ is a c-dimensional torus and that

D = Λ×N = Λ×Bu ×Bs ⊂ Λ× Ru × Rs. (5)

We will also assume that the radius R of the balls Bu, Bs in N satisfies R < 1
4 .

The results in [CZ1] are written in more generality in the context of vector
bundles. Here we simplify the setting to focus on the main features, without
going into technical details.

We consider two functions

Qh, Qv : Rc × Ru × Rs → R,

defined as

Qh (λ, x, y) = −γ ‖λ‖2 + α ‖x‖2 − β ‖y‖2 ,

Qv (λ, x, y) = −γ ‖λ‖2 − α ‖x‖2 + β ‖y‖2 ,

where α, β, γ ∈ R and α, β, γ > 0. These functions can be used to define cones.
In Figure 3 we see the level sets of Qh and Qv for 0 < c1 < c2. The sets
{Qh ≥ 0} and {Qv ≥ 0} consist of cones starting from the origin; we refer to
these sets as horizontal and vertical cones, respectively.

We consider an invertible map

f : Λ× Ru × Rs → Λ× Ru × Rs.
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Figure 3: The level sets {Qh = c1}, {Qv = c1} (in light gray) and {Qh = c2},
{Qv = c2} (in dark gray), for 0 < c1 < c2.

Definition 9. We say that f satisfies (Q,m) cone conditions, if for any x1,x2 ∈
D such that Q (x1 − x2) ≥ 0,

Q (f (x1)− f (x2)) > mQ (x1 − x2) . (6)

The intuition behind above definition is as follows. Let us consider Q = Qh
and m > 1. The condition Qh (x1 − x2) ≥ 0 states that x2 lies within the
horizontal cone centred at x1. For such two points (6) implies that we have
expansion in terms on the level sets of Qh. Intuitively this means that x1 and
x2 will be pushed apart in the horizontal direction.

We now write out the main result from [CZ1].

Theorem 10. [CZ1, Theorem 4.7] If f satisfies covering conditions and there
exists an m > 1 such that f satisfies (Qh,m) cone conditions and f−1 satisfies
(Qv,m) cone conditions, then:

1. There exists a continuous function

χ : Λ→ intD,

such that πλχ(λ) = λ, and

χ (Λ) = {x ∈ D : fn (x) ∈ D for all n ∈ Z} .

2. There exist C0 submanifolds Wu, W s such that

Wu ∩W s = χ (Λ) .

Wu consists of all points whose backward iterations converge to χ (Λ) , and
W s consists of all points whose forward iterations converge to χ (Λ).
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The results from [CZ1] are written in a more general setting than above.
They treat the case of a vector bundle over a base which is a compact mani-
fold without boundary (and not only a trivial bundle over a torus, which was
discussed here). This involves setting up the assumptions using the atlas of the
manifold, which makes them more involved than above. This also allows more
flexibility, allowing for instance to have different Qh and Qv in different local
maps. In such general setting, the definition of the covering condition also needs
to be written in terms of local maps, making it somewhat more complicated than
Definition 6.

The paper [CZ1] also demonstrates how covering conditions and cone con-
ditions can be verified. It is shown that they can be validated based on the
estimates on the derivatives of f and f−1. The method is applied to a family
of rotating Hénon maps, producing an existence proof of normally hyperbolic
invariant curves for the maps over a given range of parameters. This example
is presented in more detail in section 4.3.

3.3 Geometric proof for normally hyperbolic invariant man-
ifolds [CZ2]

The drawback of the method [CZ1] is that the manifolds obtained in Theorem
10 are known only to be continuous. This is to be expected, since the proof
is based on C0 assumptions on the map. A natural question is if by adding
additional assumptions one can obtain higher order regularity. This is the topic
of this section.

As in (4), we assume that Λ is a torus, and consider a set D of the form (5).
We now consider a Ck+1 map, for k ≥ 1,

f : D → Λ× Ru × Rs.

We will write f as f = (fλ, fx, fy), where fλ, fx, fy stand for projections onto
Λ, Ru and Rs, respectively.

Remark 11. The results from [CZ2] do not require f to be invertible. This is
an improvement compared to [CZ1], which required invertibility.

We consider a constant RΛ < 1
2 and assume that the radius R of the balls

Bu, Bs is small enough so that R < 1
2RΛ. For a point x ∈ D we will use the

notation
P (x) = {z ∈ D | ‖πλx− πλz‖ ≤ RΛ/2}.

To formulate our result, we need to define a number of constants. First we
state the following auxiliary definition:

Definition 12. Let A : Rn → Rn be a linear map. Let ‖x‖ be any norm on
Rn, then we define

m(A) = max {L ∈ R : ‖Ax‖ ≥ L‖x‖ for all x ∈ Rn} .
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For an interval matrix A ⊂ Rk×n we set

m(A) = inf
A∈A

m(A).

Let L ∈
(

2R
RΛ
, 1
)

, and let us define the following constants:

µs,1 = sup
x∈D

{∥∥∥∥∂fy∂y (x)

∥∥∥∥+
1

L

∥∥∥∥ ∂fy
∂(λ, x)

(x)

∥∥∥∥} ,
µs,2 = sup

x∈D

{∥∥∥∥∂fy∂y (x)

∥∥∥∥+ L

∥∥∥∥∂f(λ,x)

∂y
(x)

∥∥∥∥} ,
ξu,1 = inf

x∈D

{
m

(
∂fx
∂x

(x)

)
− 1

L

∥∥∥∥ ∂fx
∂ (λ, y)

(x)

∥∥∥∥} ,
ξu,1,P = inf

x∈D
m

[
∂fx
∂x

(P (x))

]
− 1

L
sup
x∈D

∥∥∥∥ ∂fx
∂ (λ, y)

(x)

∥∥∥∥ ,
ξu,2 = inf

x∈D

{
m

(
∂fx
∂x

(x)

)
− L

∥∥∥∥∂f(λ,y)

∂x
(x)

∥∥∥∥} ,
µcs,1 = sup

x∈D

{∥∥∥∥ ∂f(λ,y)

∂ (λ, y)
(x)

∥∥∥∥+ L

∥∥∥∥∂f(λ,y)

∂x
(x)

∥∥∥∥} ,
µcs,2 = sup

x∈D

{∥∥∥∥ ∂f(λ,y)

∂ (λ, y)
(x)

∥∥∥∥+
1

L

∥∥∥∥ ∂fx
∂ (λ, y)

(x)

∥∥∥∥} ,
ξcu,1 = inf

x∈D

{
m

(
∂f(λ,x)

∂(λ, x)
(x)

)
− L

∥∥∥∥∂f(λ,x)

∂y
(x)

∥∥∥∥} ,
ξcu,1,P = inf

x∈D
m

[
∂f(λ,x)

∂(λ, x)
(P (x))

]
− L sup

x∈D

∥∥∥∥∂f(λ,x)

∂y
(x)

∥∥∥∥ ,
ξcu,2 = inf

x∈D

{
m

(
∂f(λ,x)

∂ (λ, x)
(x)

)
− 1

L

∥∥∥∥ ∂fy
∂(λ, x)

(x)

∥∥∥∥} .
These constants can be thought of to measure the strength of the map in given
projections, in terms of selected coordinates. We need them to define an analog
of the rate condition (1) from Definition 1.

Definition 13. We say that f satisfies rate conditions of order k ≥ 1 if ξu,1,
ξu,1,P , ξu,2, ξcu,1, ξcu,1,P , ξcu,2 are strictly positive, holds

µs,1 < 1 < ξu,1,P ,

µcs,1
ξu,1,P

< 1,
µs,1
ξcu,1,P

< 1,

µcs,2
ξu,1

< 1,
µs,1
ξcu,2

< 1,

13
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Figure 4: A function which satisfies backward cone conditions.

and for all j satisfying k ≥ j ≥ 1,

(µcs,1)
j+1

ξu,2
< 1,

µs,2
(ξcu,1)j+1

< 1.

We see that Definition 13 has more inequalities than the standard rate con-
dition (1) from Definition 1. The reason for this is that we work in a non-
perturbative setting. Our results will imply the existence of an invariant mani-
fold inside of the set D. To this end, we measure various rates of contraction and
expansion on the entire set D. We can not measure them along the eigenspaces
of the manifold (as is done in Definition 1), since we we do not assume its
existence.

To formulate the main result of [CZ2] we need one more definition.

Definition 14. Let Qv(x) ⊂ D be a set defined as

Qv(x) = {(λ, x, y) : ‖(λ, x)− πλ,xx‖ ≤ 1/L ‖y − πyx‖} .

We say that f satisfies backward cone conditions if the following condition is
fulfilled:

If x1,x2, f(x1), f(x2) ∈ D and f(x1) ∈ Qv (f(x2)) then x1 ∈ Qv (x2) .

The sets Qv(x) are cones originating from x (see Figure 4). We refer to
them as vertical cones. Intuitively, a function satisfies backward cone conditions
if images of two points can be vertically aligned in terms of Qv, only provided
that the points themselves are vertically aligned. This property is depicted in
Figure 4.

An assumption that a function satisfies backward cone condition might seem
artificial. In [CZ2] though it is shown that it is necessary to establish existence
of a normally hyperbolic manifold, and that without it the invariant sets can
have a Cantor type structure.

We can now formulate our main theorem:

Theorem 15. [CZ2, Theorem 16] If f satisfies covering conditions, rate con-
ditions of order k and backward cone conditions, then there exists a normally
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hyperbolic invariant manifold Λ∗ ⊂ D, with associated stable W s = W s (Λ∗, f)
and unstable Wu = Wu (Λ∗, f) manifolds.

The W s, Wu and Λ∗ are Ck manifolds, which are graphs of Ck functions

ws : Λ×Bs → Bu,

wu : Λ×Bu → Bs,

χ : Λ→ Bu ×Bs,

meaning that

W s =
{

(λ,ws(λ, y), y) : λ ∈ Λ, y ∈ Bs
}
,

Wu =
{

(λ, x, wu(λ, y)) : λ ∈ Λ, x ∈ Bu
}
,

Λ∗ = {(λ, χ(λ)) : λ ∈ Λ} .

Moreover, f|Wu is an injection, ws and wu are Lipschitz with constants L, and

χ is Lipschitz with the constant
√

2L√
1−L2

. The manifolds W s and Wu intersect

transversally, and
W s ∩Wu = Λ∗.

The manifolds W s and Wu are foliated by invariant fibers W s(x, f) and
Wu(x, f). The W s(x, f) and Wu(x, f) are graphs of Ck functions

wsx : Bs → Λ×Bu,
wux : Bu → Λ×Bs,

meaning that

W s(x, f) =
{

(wsx (y) , y) : y ∈ Bs
}
,

Wu(x, f) =
{

(πλw
u
x (x) , x, πyw

u
x (x)) : x ∈ Bu

}
.

The functions wsx and wux are Lipschitz with constants 1/L.

Theorem 15 can be used to establish the existence of a normally hyperbolic
invariant manifold inside of an explicitly given set D. It also gives the bounds
on its slope and on the slopes of the stable/unstable manifolds and the sta-
ble/unstable fibers. It also establishes that the stable/unstable manifolds (and
fibers) are represented as graphs over a given domain. In other words, it states
how far they extend and not only that they exist within some small, unspecified
neighbourhood of the manifold. The theorem is non-perturbative and can be
applied in the setting where a priori we do not know if the manifolds exists. It
also establishes the smoothness of these manifolds.

4 Examples of applications

In this section we give three applications of the methods presented in section 3.
The presented examples are taken from [CS,CR,CZ2].
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Figure 5: Misleading numerical plot of the attractor for T , obtained using
double precision (consisting of points), and the true invariant curves com-
puted with 128bit accuracy.

4.1 Driven logistic map [CS]

Consider a driven logistic map

T : S1 × R→ S1 × R,

defined as
T (λ, x) = (λ+ α, 1− (a0 + ε sin(2πλ))x2).

This differs from the well-known logistic map in the fact that the parameter
a has been replaced by a0 + ε sin(2πλ) and λ has a quasiperiodic dynamics.
Concretely, we consider the parameter values a0 = 1.31, ε = 0.3 and α = g

200 ,

where g is the golden mean g = (
√

5 − 1)/2. Hence the dynamics on the base
of the skew-product is slow. Numerical simulations in double precision (say,
with mantissa of 52 binary digits) suggest that the map possesses a chaotic
global attractor (see Figure 5). When the same simulations are done with
multiple precision, one can guess that the attractor consists of two invariant
curves (see Figure 5). The same example was considered for other values of α
and in a non-rigorous way in [3] to illustrate that one has to be careful with the
arithmetics in simulations.

In [CS] it is proved that T does in fact possess a contracting invariant man-
ifold, which consists of two smooth curves. This means in particular that the
plot obtained using double precision (Figure 5) does not shows the true dy-
namics. The method presented i sections 3.2 gives an estimate for the position
of these curves with 10−3 accuracy. The proof is conducted with computer as-
sistance, using rigorous, interval arithmetic based computations. This required
some fine-tuning of the method, due to the fact that the example is numerically
hard. It defies the standard numerical simulation, producing a false evidence
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Figure 6: The Sun has the mass 1 − µ and is fixed at P1 = (µ, 0). The Earth
with the mass µ is fixed at P2 = (µ − 1, 0). The third massless particle moves
in the XY plane.

of chaos, and the true dynamics is revealed only when performing numerics in
multiple precision. Validating the true result in interval arithmetic turned out
to be nontrivial.

4.2 Center manifold in the planar restricted three body
problem [CR]

The problem is defined as follows: two main bodies rotate in the plane about
their common center of mass on circular orbits under their mutual gravitational
influence. A third body moves in the same plane of motion as the two main
bodies, attracted by the gravitation of previous two but not influencing their
motion. The problem is to describe the motion of the third body.

We refer to the two large rotation bodies as the primaries. In [CR] the
chosen primaries are the Sun and the Earth. The third body can be regarded
as a satellite or a spaceship of negligible mass.

A convenient choice of coordinates for the problem is to consider a framework
which rotates with the primaries. This way the primaries can be positioned on
the X axis (Figure 6). It is also customary to rescale the masses µ1 and µ2 of
the primaries so that µ1 + µ2 = 1. After such rescaling the distance between
the primaries is 1. In the Sun-Earth system, the smaller mass is µ2 = µ =
3.040423398444176× 10−6 and the larger is µ1 = 1−µ. We use a convention in
which in the rotating coordinates the Sun is located to the right of the origin
at P1 = (µ, 0), and the Earth is located to the left at P2 = (µ− 1, 0).

The equations of motion of the third body take Hamiltonian form if we
consider positions X, Y and momenta PX = Ẋ − Y , PY = Ẏ + X. The
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P2

Figure 7: The projection onto X,Y, PX coordinates of the region containing
the center manifold. The centre manifold is a two dimensional disk, which lies
between the blue and green surfaces.

Hamiltonian is

H =
1

2
(P 2
X + P 2

Y ) + Y PX −XPY −
1− µ
r1
− µ

r2
,

where r1, r2 denote the distances from the third body to the larger and the
smaller primary, respectively (see Figure 6)

r2
1 = (X − µ)2 + Y 2,

r2
2 = (X − µ+ 1)2 + Y 2.

The vector field describing the motion of the massless particle is given by

F = J∇H, (7)

J =

(
0 id
−id 0

)
, id =

(
1 0
0 1

)
.

The restricted three body problem in a rotating frame has five equilibrium
points. Three of them, denoted L1, L2 and L3, lie on the X-axis and are usually
called the ‘collinear’ equilibrium points (see Figure 6). In [CR] the main focus
of investigation is in the neighbourhood of the point L1.

Since L1 is a saddle-center fixed point, the centre manifold theorem ensures
that there exists a centre manifold associated to it. The centre manifold theorem
though is local in nature and does not specify how far the manifold extends.
In [CR] the method described in section 3.2 was used to prove that the centre
manifold extends over a given neighbourhood around L1. Figure 7 shows the
region throughout which the manifold spans. The objective was to show that
the method can produce a macroscopic region.

The method from section 3.2 is for maps, and the restricted three body prob-
lem is determined by a Hamiltonian ODE. To apply the method, the conditions
which ensure covering and cone conditions were derived directly from the esti-
mates on the vector field. To extend the manifold as far as possible from L1,
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in [CS] the problem is considered in suitable coordinates. These were chosen to
be the change of coordinates that puts (7) in a normal form. Thus, the proof
consisted of merging the theory of normal forms together with rigorous, interval
arithmetic based, computer assisted computations, to validate assumptions of
Theorem 10.

4.3 Rotating Hńeon map [CZ2]

We consider a one dimensional torus (circle) Λ and a family of rotating Hénon
maps fε : Λ× R2 → Λ× R2,

fε(λ, x, y) = (λ+ c+ εx cos(2πλ)), 1 + y − ax2 + ε cos(2πλ), bx). (8)

We take a = 0.68, b = 0.1 and an arbitrary constant c ∈ R. We investigate the
existence and smoothness of the normally hyperbolic invariant manifold and its
associated stable/unstable manifolds for a range of parameters ε ∈ [0, 1/100] .

For ε = 0 the map (8) has an invariant normally hyperbolic manifold (circle)

Λ∗0 = {(λ, x∗, y∗) : λ ∈ S1},

where

x∗ =
−(1− b)−

√
(1− b)2 + 4a

2a
≈ −2.043 3,

y∗ = bx∗ ≈ −0.204 33.

The question considered in [CZ2] is for which ε > 0 the manifold persists,
and what can be said about its regularity. It is proved that the manifold persists
from ε = 0 to ε = 1

100 . It is also shown that the manifold is Ck smooth. Table 1
shows the regularity of the manifold established using Theorem 15. Once again,
the proof is computer assisted.

ε k ε k ε k
[0, 0.0001] 737 [0.0005, 0.001] 73 [0.005, 0.006] 11
[0.0001, 0.0002] 368 [0.001, 0.002] 36 [0.006, 0.007] 9
[0.0002, 0.0003] 245 [0.002, 0.003] 24 [0.007, 0.008] 8
[0.0003, 0.0004] 184 [0.003, 0.004] 17 [0.008, 0.009] 7
[0.0004, 0.0005] 147 [0.004, 0.005] 14 [0.009, 0.01] 6

Table 1: The Ck regularity of the normally hyperbolic manifold for various
parameters.

The main aim of this example was to demonstrate that Theorem 15 can be
effectively used to establish estimates on the smoothness of the manifolds.
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[3] Henk W. Broer, Carles Simó, and Renato Vitolo. Chaos and quasi-
periodicity in diffeomorphisms of the solid torus. Discrete Contin. Dyn.
Syst. Ser. B, 14(3):871–905, 2010.

[4] Renato C. Calleja, Alessandra Celletti, and Rafael de la Llave. A KAM
theory for conformally symplectic systems: efficient algorithms and their
validation. J. Differential Equations, 255(5):978–1049, 2013.

[5] Marc Chaperon. Stable manifolds and the Perron-Irwin method. Ergodic
Theory Dynam. Systems, 24(5):1359–1394, 2004.

[6] Neil Fenichel. Persistence and smoothness of invariant manifolds for flows.
Indiana Univ. Math. J., 21:193–226, 1971/1972.

[7] Neil Fenichel. Asymptotic stability with rate conditions. Indiana Univ.
Math. J., 23:1109–1137, 1973/74.

[8] Neil Fenichel. Asymptotic stability with rate conditions for dynamical sys-
tems. Bull. Amer. Math. Soc., 80:346–349, 1974.

[9] Neil Fenichel. Asymptotic stability with rate conditions. II. Indiana Univ.
Math. J., 26(1):81–93, 1977.
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5. Other academic accomplishments

5.1 Publications

Below is a list of publications, which are not a part of the habilitation:

Research papers:

[A1] M. J. Capiński, K. Wójcik, Isolating Segments for Carathéodory Systems
and Existence of Periodic Solutions, Proc. Am. Math. Soc. 131, no. 8
(2003), 2443–2451.

[A2] M. J. Capiński and P. Zgliczyński, Covering relations and non-autonomous
perturbations of ODEs, Discrete Contin. Dyn. Syst. Ser. A, 14 (2006),
281–293.

[A3] M. J. Capiński and P. Zgliczyński, Transition tori in the planar restricted
elliptic three-body problem, Nonlinearity 24 (2011) 1395–1432.

[A4] M. J. Capiński, Computer assisted existence proofs of Lyapunov orbits at
L2 and transversal intersections of invariant manifolds in the Jupiter-Sun
PCR3BP. SIAM J. Appl. Dyn. Syst., 11(4) (2012), 1723–1753.

[A5] M. J. Capiński Hedging Conditional Value at Risk with options European
Journal of Operational Research 242 (2015) 688–691.

[A6] M. J. Capiński, A. Wasieczko Geometric Proof of Strong Stable/Un-stable
Manifolds, with Application to the Restricted Three Body Problem, Topo-
logical Methods in Nonlinear Analysis Volume 46, No. 1 (2015), 363–399.

Submitted article:

[P1] M.J. Capiński, M. Gidea, R. de la Llave, Arnold diffusion in the planar el-
liptic restricted three-body problem: mechanism and numerical simulation,
http://arxiv.org/abs/1510.00591, submitted to Nonlinearity

Books:

[B1] M. J. Capiński, T. Zastawniak, Numerical Methods in Finance with C++,
Cambridge University Press (2012).

[B2] M. J. Capiński, P. E. Kopp, Portfolio Theory and Risk Management, Cam-
bridge University Press (2014).

Citation statistics:

The papers in total (including both the habilitation series as well as the
remaining articles) are cited 34 times by 29 authors on the MathSciNet Math-
ematical Reviews. The number of citations on Web of Science is 39, with the
h-index=4.

We now give an overview of the publications [A1–A6,P1] and the books
[B1,B2].
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5.1.1 Time dependent perturbations of ODEs [A1, A2]

The paper [A1] deals with a time periodic system, in which the right hand side
satisfies Carathéodory conditions; that is, satisfies only measurability assump-
tions on the time variable. It extends a geometric method of isolating segments
to such setting and establishes a theorem which ensures existence of periodic
solutions.

The second paper [A2] considers a non periodic time dependent perturbation
of an autonomous ODE with certain symbolic dynamics properties. It is shown
that regardless of the fact that the perturbation is not time periodic, it can be
shown that the perturbed map will have the same symbolic dynamics properties.

5.1.2 Diffusion in the three body problem [A3, A4, A6, P1]

The papers [A3, A4, A6] deal with the the restricted three body problem, which
we discussed in section 4.2. The paper [A3] deals with the instability and diffu-
sion in the three body problem. It deals with a conjecture by V.I. Arnlod, which
states that a certain type of diffusion (called Arnold diffusion) is a generic prop-
erty and should be observed in the n-body. Even though the conjecture dates
back almost fifty years, it has not yet been proven up till this day. The paper
[A3] deals with a special case where the circular restricted three body prob-
lem is perturbed to an elliptic problem, where the primaries rotate on ellipses
instead of circles. The paper also considers a number of additional conditions
on the types of masses considered, and demonstrates a mechanism that leads
to diffusion in such setting. This is close to proving the Arnold conjecture,
except for two facts: 1) some of the assumptions of the theorems underlying
the diffusion mechanism have not been proven in [A3], but are only supported
by numerical evidence. 2) The mechanism of diffusion can not overcome dis-
tances which would be independent of the perturbation. It is apparent though
that such mechanism, with more careful treatment of the underlying geometry,
should lead to the proof of the conjecture.

It is in fact the case that the theory for the establishing of normally hy-
perbolic invariant manifolds, which was the main theme of the habilitation,
has been motivated by the need for overcoming some of the problems in the
constructions towards a proof of Arnold’s conjecture.

To this end, some of the methods that stem from the results [CZ1, CZ2]
have been tested on the restricted three body problem. The first paper [A4]
applies the methodology to produce a computer assisted proof for transversal
intersections of invariant manifolds in the restricted three body problem. Such
intersections are the main geometric features that are needed in the proof of
diffusion. The method proved efficient and established sharp bounds on the
manifolds and on their intersections. The paper [A6] shows a method for estab-
lishing homoclinic orbits in the restricted three body problem. This, again, is
one of the required steps towards a proof of diffusion.

In most recent work [P1], the construction from [A3] has been combined with
a shadowing mechanism that allows for diffusion over distances independent of
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the perturbation. This result is not fully rigorous and is based on some numerical
simulation. The construction though is performed in a way that would allow for
rigorous, computer assisted verification using the techniques from [CZ1, CZ2].
This would result in a full proof of the Arnold diffusion.

The work is ongoing and the proof of the Arnold conjecture seems in sight.

5.1.3 Mathematical finance [B1, B2, A5]

The books [B1,B2] are a part of the “Mastering mathematical finance” series
at Cambridge University Press. The series cover the core topics and the most
common electives offered in master’s programs in mathematical/quantitative
finance. The books are closely coordinated but each is self-contained, so that
they can be used efficiently in combination but also individually.

The book [B1] is driven by concrete computational problems in quantitative
finance. It is designed to provide aspiring quant developers with the needed
numerical techniques and programming skills. The book starts from scratch in
terms of programming skills, without requiring previous experience of C++. Be-
ginning with straightforward option pricing on binomial trees, the book gradu-
ally progresses towards more advanced topics, including nonlinear solvers, Monte
Carlo techniques for path-dependent derivative securities, finite difference meth-
ods for partial differential equations, and American option pricing by solving
a linear complementarity problem. The book is intended as a preparation for
work as an entry-level quant programmer and to give readers the confidence to
progress to more advanced skill sets involving C++ design patterns as applied
in finance.

The book [B2] is designed to give the needed tools to the readers for handling
risk assessments in modern finance. It provides a treatment of the scope and
limitations of mean-variance portfolio theory and introduces popular modern
risk measures. The discussion of risk measure such as Value at Risk (VaR)
and its more robust generalisations, including Average Value at Risk (AVaR),
brings recent developments in risk measures within range of some undergraduate
courses and includes a novel discussion of reducing VaR and AVaR by means of
hedging techniques. The chapters from [B2] dealing with AVaR reduction using
put options have lead to the methods, which were later compared with dynamic
hedging strategies, which was the topic of [A5].

5.2 Grants and awards

• Awarded four times with the Polish Ministry of Education Scholarship:
1997, 1998, 1999, 2000,

• S. Batory Trust scholarship for the Hillary term 1999/2000 at Oxford
University,

• Polish Ministry of Education PhD research grant 1 P03A 002 26, 2003-
2005,
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• Member of the European Union grant POKL 04.01.01 00-364/08, for the
development of interactive online studies in mathematical finance, 2009,

• Member in the Polish State Ministry of Science and Information Technol-
ogy grant N201 543238, 2009-2012,

• Kościuszko Foundation grant for an academic six month visit to University
of Texas at Austin 2010,

• Head of the Polish State Ministry of Science and Information Technology
grant “Diffusion in Hamiltonian systems” NCN 2012/05/B/ST1/00355,
2012-2015,

• Chancellor of AGH University awards for:

– academic accomplishments: 2010 - 3rd degree, 2012 - 2nd degree,
2014 - 1st degree,

– teaching and study development: 2015 - 1st degree,

• Takliński1 2015 award for achievements in developing new teaching mod-
ules, methods, materials and books.

5.3 Student supervision

I am an assistant supervisor of a PhD student Anna Wasieczko, who is writing
her thesis “Geometric Methods for Strong Stable and Unstable Manifolds in
Dynamical Systems” at Faculty of Mathematics, AGH University of Science
and Technology.

I am currently involved in a joint grant proposal for the ITN Marie Curie2

grant. The title of the call is “Global dynamics in hamiltonian systems”. The
objective is to create a university interlinked environment for PhD students.
Each of the participants is to supervise a PhD student, and the aim is for the
students to be involved in the activities of other departments. I am amongst
the following participants: Alessandra Celletti, Alfonso Sorrentino (Tor Ver-
gata University, Rome), Jean Pierre Marco (Pierre and Marie Curie Univer-
sity, Paris), Jacques Féjoz (Université Paris-Dauphine), Christos Efthymiopou-
los (Academy of Athens), Vered Rom-Kedar (Weizmann Institute, Rehovot),
Ernest Fontich, Angel Jorba (Barcelona University), Piotr Zgliczyński (Jagiel-
lonian University), Heinz Hanssmann (Utrecht University), Tere Seara, Amadeu
Delshams, Marcel Guardia (Universitat Politécnica de Catalunya). The pro-
posal is under preparation.

I have been a referee of the PhD of Ferenc A. Bartha, “Computer-aided
proofs and algorithms in analysis” at the Department of Mathematics, Univer-
sity of Bergen Norway.

I have also supervised over 30 MSc students.

1www.agh.edu.pl/en/staff-members/nagrody-i-odznaczenia/nagroda-im-prof-w-
taklinskiego/

2https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/
topics/2056-msca-itn-2016.html
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5.4 Peer reviews

I have been refereeing papers in the following journals:

• SIAM Journal on Applied Dynamical Systems (SIADS),

• Nonlinearity,

• Physica D: Nonlinear Phenomena,

• Communications in Nonlinear Science and Numerical Simulation,

• European Journal of Operational Research,

• Nonlinear Analysis Series A: Theory, Methods & Applications,

• Applied Numerical Mathematics.

5.5 International collaboration

Visiting positions:

• January 2008 - May 2008 and January 2009, visiting professor at the
African Institute for Mathematical Sciences, Muizenberg, Cape Town,
South Africa,

• September 2010 - December 2010, visiting professor, University of Texas
at Austin, United States,

• August 2012 - March 2013, visiting professor at Georgia Institute of Tech-
nology, United States.

Plenary talks at conferences:

• “Geometric methods for invariant manifolds in dynamical systems” four
lectures at JISD2012, http://www.ma1.upc.edu/recerca/jisd/jisd2012,

• “Computer assisted method for existence and higher order smoothness of
normally hyperbolic invariant manifolds” DyToComp 2012,
http://ww2.ii.uj.edu.pl/DyToComp2012,

• “Arnold diffusion in the elliptic restricted 3-body problem” GDHam15,
Nuria, Spain 2015, http://gdham15.ma1.upc.edu.

upcoming invited plenary talk:

• “Geometric methods and computer assisted proofs for invariant mani-
folds in dynamical systems”, 17th International Symposium on Scientific
Computing, Computer Arithmetic, and Verified Numerical Computation
SCAN’2016, Uppsala, Sweden, September 26-30, 2016.
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I regard three events as my main achievements in terms of international
recognition:

The first is the invitation to give a series of plenary lectures at the “Workshop
on Interactions Between Dynamical Systems and Partial Differential Equations”
(JISD2012) in Barcelona in 2012 (first item on the above list). These consisted of
four, one and a half hour lectures, in which I was invited to present my method-
ology for geometric and topological proofs for invariant manifolds in dynamical
systems. The workshop is an annual event. Each year four plenary speakers
are chosen to present their findings. The objective is to bring together young
researchers and phd students and expose them to important recent findings in
the fields of dynamical systems and partial differential equations. The workshop
is a popular event, with the number of participants each year oscillating around
seventy. An invitation to be one of the four plenary speaks is considered as a
sign of recognition amongst the community.

The second is the invitation to give a plenary talk at the “Global Dynamics
in Hamiltonian Systems” (GDHam15) conference in Nuria, Spain 2015 (third
item on the list of plenary talks). The conference was an event bringing together
a large number of the key figures in the community of celestial mechanics and
Hamiltonian systems. As a younger and aspiring academic, I considered it a
privilege to have the opportunity to give a plenary talk there.

The third is the invitation to give a plenary talk at SCAN’2016 (last item
on the list of plenary talks). This is a large international conference, bringing
together every two years over one hundred specialists in the field of verified
numerical computation. I have been chosen as one of the eight plenary speakers
for the upcoming event in 2016.

Other talks:

• “Transition chains in the planar restricted elliptic three body problem”
DyToComp 2006 and University of Barcelona dynamical systems seminar
2007,

• “Cone conditions and covering relations for normally hyperbolic invariant
manifolds”, University of Barcelona dynamical systems seminar 2008 and
Foundations on Computational Dynamics conference in Hong Kong 2008,

• “A topological method for the detection of normally hyperbolic invariant
manifolds” Workshop on Stability and Instability in Mechanical Systems,
Barcelona 2008,

• “Finding Normally Hyperbolic Invariant Manifolds Around L1 in the Re-
stricted 3-Body Problem” DyToComp 2009,

• “Computer Assisted Proof for Normally Hyperbolic Invariant Manifolds”
dynamical systems seminar, University of Barcelona 2009,

• “Detection of center manifolds and applications to space mission design”
University of KwaZulu-Natal, Durban 2009,
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• “Geometric methods for invariant manifolds in dynamical systems”, Uni-
versity of Texas, Austin 2010,

• “Transition Tori in the Planar Restricted Elliptic Three Body Problem”,
University of Texas, Austin 2010,

• “Predictability leads to chaos” Northeastern Illinois University, Chicago
2010 and University of Oklahoma 2010 seminars,

• “Finding the Center Manifold Around L1 in the Planar Restricted Three
Body Problem” 8th AIMS Conference on Dynamical Systems, Dresden
2010,

• “Computer Assisted Proof for Normally Hyperbolic Invariant Manifolds”
8th AIMS Conference on Dynamical Systems, Dresden 2010,

• “Computer Assisted Proof for Fibers of Invariant Manifolds in the Planar
Restricted Circular Three Body Problem” University of Barcelona 2011,

• “Computer Assisted Proof for Invariant Manifolds in the Restricted Three
Body Problem” Symposium on Classical and Celestial Mechanics, Siedlce
2011 and School and Conference on Computational Methods in Dynamics,
Trieste 2011,

• “Computer assisted method for higher order smoothness of normally hy-
perbolic invariant manifolds” Workshop on Rigorous Computations in Dy-
namical Systems, Uppsala 2011,

• “Computer assisted proofs for normally hyperbolic invariant manifolds”,
Georgia Tech, Atlanta, 2012,

• “Covering Relations and the Existence of Topologically Normally Hyper-
bolic Invariant Sets” International Conference on Dynamics of Differential
Equations, Georgia Tech, Atlanta 2013,

• “Geometric proof of strong stable/unstable manifolds” Yeshiva University
seminar, New York 2014,

• “Geometric proof of strong stable/unstable manifolds with application to
the Restricted 3 Body Problem” 10th AIMS Conference on Dynamical
Systems, Madrid 2014,

• “Arnold diffusion in the elliptic restricted 3-body problem” 10th AIMS
Conference on Dynamical Systems, Madrid 2014 and DyToComp 2015.

Current research projects:

• Bubble Intersections of Invariant Manifolds in the Lomeli Map; with Jordi
Lluis Figueras, Jason D. M. James and Warwick Tucker,
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• Arnold Diffusion in the Restricted Three-Body Problem: Computer As-
sisted Proof; with Marian Gidea and Rafael de la Llave,

• Computer assisted Melnikov method; with Piotr Zgliczyński,

• Lorenz attractor in the Morioka-Shimizu system; with Dmitry Turaev and
Piotr Zgliczyński.
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