On directed versions of 1-2-3 Conjecture

Mariusz Woźniak

Department of Discrete Mathematics AGH University, Kraków, Poland

* * *

(Kyoto, 2016)

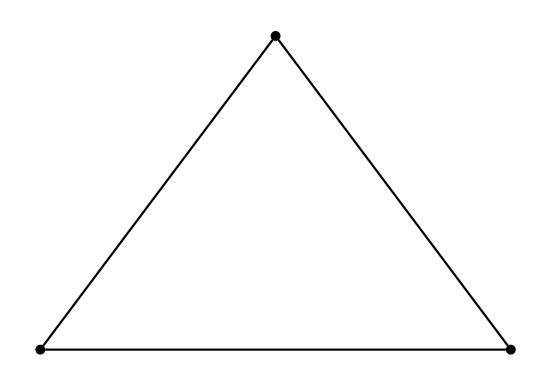
Joint work with

Mirko Horňák (UPJS, Košice, Slovakia) and

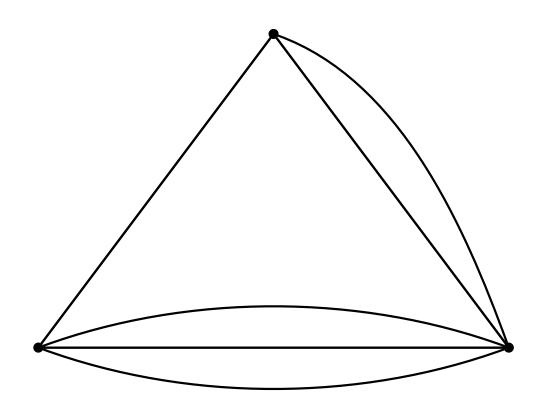
Joint work with

Mirko Horňák (UPJS, Košice, Slovakia) and Jakub Przybyło (AGH University, Cracow, Poland)

Motivation



Motivation



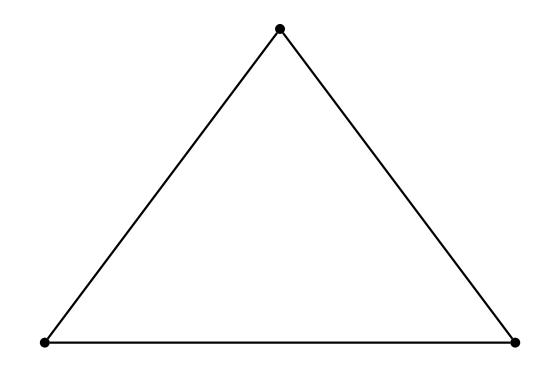
Irregularity strength

Parameter introduced by G.Chartrand, M.Jacobson, J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)

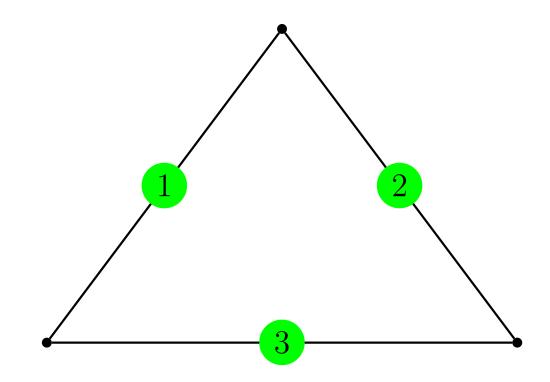
Irregularity strength

- Parameter introduced by G.Chartrand, M.Jacobson, J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)
- and is still intensely studied.

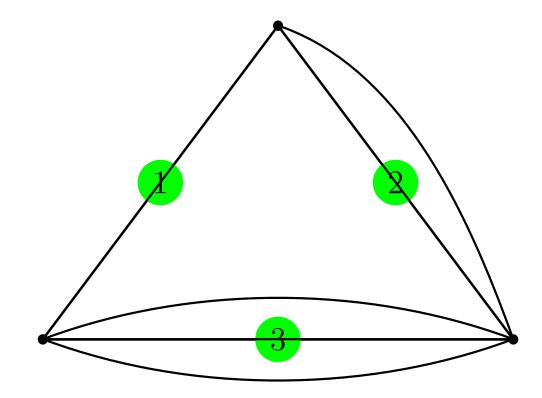
Irregularity strength and coloring



Irregularity strength and coloring



Irregularity strength and coloring



• coloring of a graph G = (V, E): $f: E \longrightarrow \{1, 2, \dots, k\}$

- coloring of a graph G = (V, E): $f: E \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$, $\sigma(x) = \sum_{x \in e} f(e)$

• coloring of a graph G = (V, E): $f: E \longrightarrow \{1, 2, \dots, k\}$

• for
$$x \in V$$
, $\sigma(x) = \sum_{x \in e} f(e)$

• Two vertices x, y are distinguished if $\sigma(x) \neq \sigma(y)$.

• coloring of a graph G = (V, E): $f: E \longrightarrow \{1, 2, \dots, k\}$

• for
$$x \in V$$
, $\sigma(x) = \sum_{x \in e} f(e)$

- Two vertices x, y are distinguished if $\sigma(x) \neq \sigma(y)$.
- irregularity strength is minimum k such that there exists an f distinguishing all vertices.

We distinguish only neighbors;

- We distinguish only neighbors;
- First considered by M. Karoński, T. Łuczak and A. Thomasson (2004)

- We distinguish only neighbors;
- First considered by M. Karoński, T. Łuczak and A. Thomasson (2004)

1-2-3 Conjecture. The set of colors $\{1, 2, 3\}$ suffices to distinguish neighbors by the sums σ .

- We distinguish only neighbors;
- First considered by M. Karoński, T. Łuczak and A. Thomasson (2004)

1-2-3 Conjecture. The set of colors $\{1, 2, 3\}$ suffices to distinguish neighbors by the sums σ .

 $G \text{ connected, } G \neq K_2)$

- We distinguish only neighbors;
- First considered by M. Karoński, T. Łuczak and A. Thomasson (2004)

1-2-3 Conjecture. The set of colors $\{1, 2, 3\}$ suffices to distinguish neighbors by the sums σ .

- $(G \text{ connected}, G \neq K_2)$
- $\chi_{\sigma} \leq 3$,

Local version. What is known?

1-2-3 Conjecture is true for some families of graphs. In particular for bipartite graphs.

Local version. What is known?

- 1-2-3 Conjecture is true for some families of graphs. In particular for bipartite graphs.
- $\chi_{\sigma} \leq 5$ (M. Kalkowski, M. Karoński, F. Pfender; 2011)

D = (V, A);

- D = (V, A);
- coloring of a graph D = (V, A): $f: A \longrightarrow \{1, 2, \dots, k\}$

- D = (V, A);
- coloring of a graph D = (V, A): $f : A \longrightarrow \{1, 2, \dots, k\}$

• for
$$x \in V$$
, $\sigma^+(x) = \sum_{xy \in A} f(xy)$

$$D = (V, A);$$

• coloring of a graph D = (V, A): $f: A \longrightarrow \{1, 2, \dots, k\}$

• for
$$x \in V$$
, $\sigma^+(x) = \sum_{xy \in A} f(xy)$

• for
$$x \in V$$
, $\sigma^{-}(x) = \sum_{yx \in A} f(yx)$

D = (V, A);

• coloring of a graph D = (V, A): $f: A \longrightarrow \{1, 2, \dots, k\}$

• for
$$x \in V$$
, $\sigma^+(x) = \sum_{xy \in A} f(xy)$

• for
$$x \in V$$
, $\sigma^{-}(x) = \sum_{yx \in A} f(yx)$

In order to distinguish two vertices x, y we can use σ⁺ and σ⁻.

 $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x) \sigma^-(x)$

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x) \sigma^-(x)$
- for $xy \in E$, the vertices x, y are distinguished iff $\sigma^+(x) \sigma^-(x) \neq \sigma^+(y) \sigma^-(y)$.

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x) \sigma^-(x)$

$$D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$$

- for $x \in V$ we consider $\sigma^+(x) \sigma^-(x)$
- for xy ∈ E, the vertices x, y are distinguished iff σ⁺(x) − σ⁻(x) ≠ σ⁺(y) − σ⁻(y).
 X +
- Theorem. $\overrightarrow{\chi}_{\pm} \leq 2$.

$$D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$$

- for $x \in V$ we consider $\sigma^+(x) \sigma^-(x)$
- Theorem. $\overrightarrow{\chi}_{\pm} \leq 2$.
- M. Borowiecki, J. Grytczuk, M. Pilśniak. Coloring chip configurations on graphs and digraphs. *Information Processing Letters*, 112:1-4, 2012.

 $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x)$

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x)$
- for $xy \in E$, the vertices x, y are distinguished iff $\sigma^+(x) \neq \sigma^+(y)$.

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x)$
- for $xy \in E$, the vertices x, y are distinguished iff $\sigma^+(x) \neq \sigma^+(y)$.
- $\overrightarrow{\chi}_+$

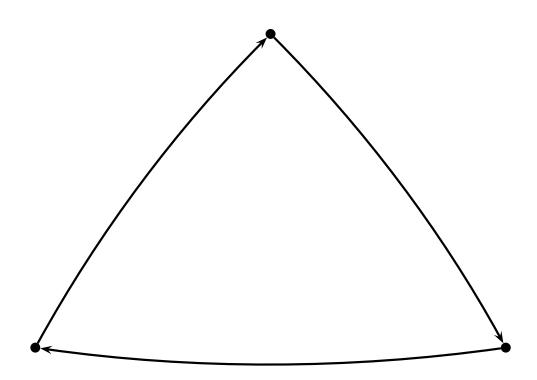
Digraphs. Second possibility

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x)$
- Theorem. $\overrightarrow{\chi}_+ \leq 3$.

Digraphs. Second possibility

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $x \in V$ we consider $\sigma^+(x)$
- Theorem. $\overrightarrow{\chi}_+ \leq 3$.
- O. Baudon, J. Bensmail, É. Sopena. An oriented version of the 1-2-3 Conjecture. *Discussiones Mathematicae Graph Theory*, 35(1):141-156, 2015

We need 3 colors



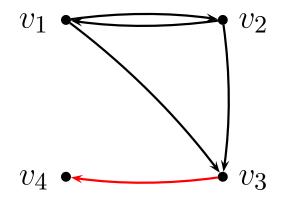
 $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in A$, the vertices x, y are distinguished iff $\sigma^+(x) \neq \sigma^-(y)$.

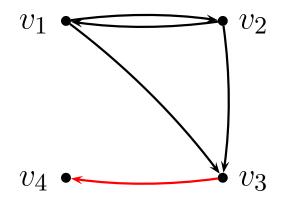
- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in A$, the vertices x, y are distinguished iff $\sigma^+(x) \neq \sigma^-(y)$.
- Proposed by T. Łuczak

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in A$, the vertices x, y are distinguished iff $\sigma^+(x) \neq \sigma^-(y)$.
- Proposed by T. Łuczak
- $\vec{\chi}_L$

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in A$, the vertices x, y are distinguished iff $\sigma^+(x) \neq \sigma^-(y)$.
- Proposed by T. Łuczak
- $\vec{\chi}_L$
- Unfortunately, such coloring is not always possible

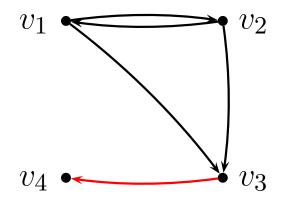


 $v_3v_4 \in A;$



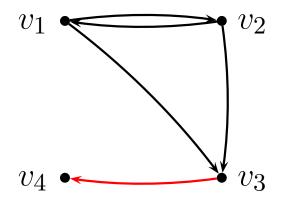
$$v_3v_4 \in A;$$

 $d^+(v_3) = 1 \Rightarrow \sigma^+(v_3) = f(v_3v_4)$

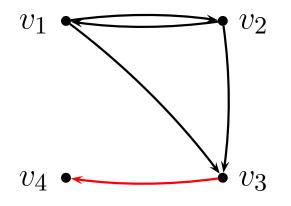


$$v_3v_4 \in A;$$

 $d^+(v_3) = 1 \Rightarrow \sigma^+(v_3) = f(v_3v_4)$
• $d^-(v_4) = 1 \Rightarrow \sigma^-(v_4) = f(v_3v_4)$



 $v_3v_4 \in A;$ $d^+(v_3) = 1 \Rightarrow \sigma^+(v_3) = f(v_3v_4)$ • $d^-(v_4) = 1 \Rightarrow \sigma^-(v_4) = f(v_3v_4)$ So, it is impossible to distinguish v_3 from v_4 .



 $v_3v_4 \in A;$ $d^+(v_3) = 1 \Rightarrow \sigma^+(v_3) = f(v_3v_4)$ $d^-(v_4) = 1 \Rightarrow \sigma^-(v_4) = f(v_3v_4)$

So, it is impossible to distinguish v_3 from v_4 .

such an arc is called lonely.

Third possibility. The main theorem

• Theorem. Let D = (V, A) be a digraph without lonely arcs.

Third possibility. The main theorem

- Theorem. Let D = (V, A) be a digraph without lonely arcs.
- Then $\overrightarrow{\chi}_L \leq 3$.

Third possibility. The main theorem

- Theorem. Let D = (V, A) be a digraph without lonely arcs.
- Then $\overrightarrow{\chi}_L \leq 3$.
- Emma Barme, Julien Bensmail, Jakub Przybyło, Mariusz Woźniak, On a directed variation of the 1-2-3 and 1-2 Conjectures, submitted.

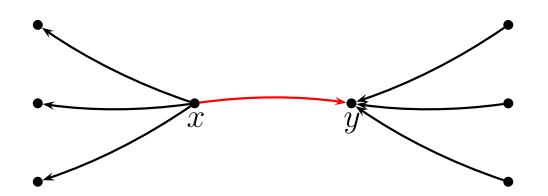
 $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.

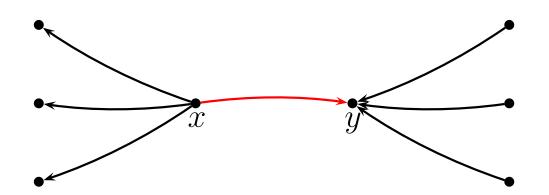
- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.
- 'inverse Łuczak's problem'

- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.
- 'inverse Łuczak's problem'
- $\overleftarrow{\chi}_L$

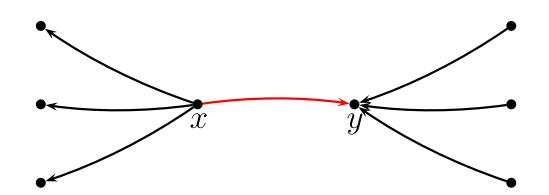
- $D = (V, A); f : A \longrightarrow \{1, 2, \dots, k\}$
- for $xy \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.
- 'inverse Łuczak's problem'
- $\overleftarrow{\chi}_L$
- As in Łuczak's problem, such coloring is not always possible



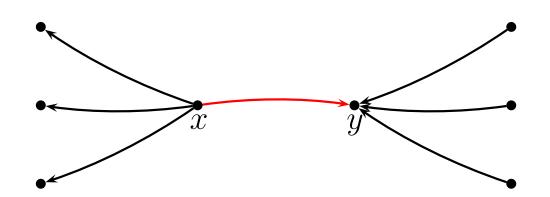
x is a source, y is a sink,



x is a source, y is a sink, $xy \in A$



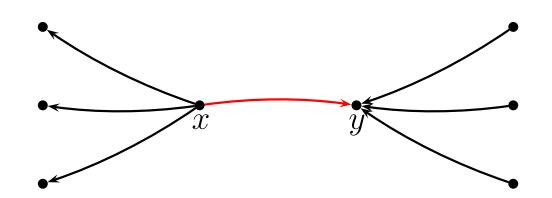
x is a source, *y* is a sink, $xy \in A$ • $A^{-}(x) = \emptyset$ and $A^{+}(y) = \emptyset$



x is a source, y is a sink, $xy \in A$ $A^{-}(x) = \emptyset$ and $A^{+}(y) = \emptyset$

So it is impossible to distinguish r fr

So, it is impossible to distinguish x from y.

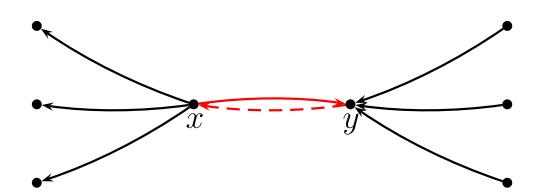


x is a source, y is a sink, $xy \in A$

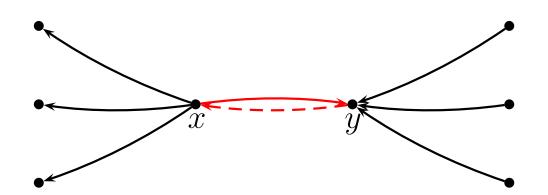
• $A^-(x) = \emptyset$ and $A^+(y) = \emptyset$

So, it is impossible to distinguish x from y.

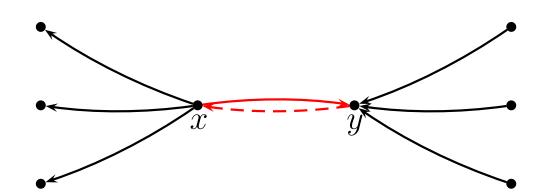
• then, the arc xy is called **source-sink arc**.



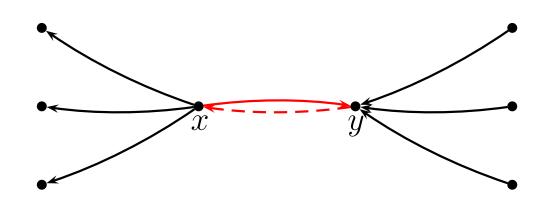
If x is a source, y is a sink in the graph without yx arc,



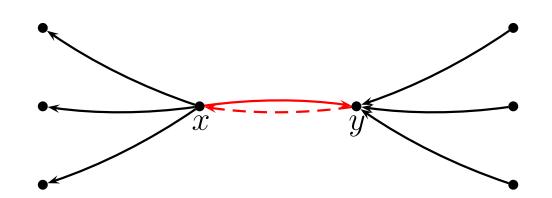
If x is a source, y is a sink in the graph without yx arc, $xy \in A$, $A^{-}(x) = \{xy\}$ and $A^{+}(y) = \{xy\}$



If x is a source, y is a sink in the graph without yx arc, $xy \in A, A^{-}(x) = \{xy\} \text{ and } A^{+}(y) = \{xy\}$ • $\sigma^{-}(x) = f(xy) \text{ and } \sigma^{+}(y) = f(xy)$



If x is a source, y is a sink in the graph without yx arc, $xy \in A, A^{-}(x) = \{xy\} \text{ and } A^{+}(y) = \{xy\}$ • $\sigma^{-}(x) = f(xy) \text{ and } \sigma^{+}(y) = f(xy)$ So, again, it is impossible to distinguish x from y.



If x is a source, y is a sink in the graph without yx arc, xy ∈ A, A⁻(x) = {xy} and A⁺(y) = {xy}
σ⁻(x) = f(xy) and σ⁺(y) = f(xy)
So, again, it is impossible to distinguish x from y.
In this case, the arc xy is called source-sink edge.

• Theorem. Let D = (V, A) be a digraph without source-sink configurations (arcs or edges).

• Theorem. Let D = (V, A) be a digraph without source-sink configurations (arcs or edges).

Then $\overleftarrow{\chi}_L$ exists.

• Theorem. Let D = (V, A) be a digraph without source-sink configurations (arcs or edges).

Then $\overleftarrow{\chi}_L$ exists.

A natural question is ...

• Theorem. Let D = (V, A) be a digraph without source-sink configurations (arcs or edges).

Then $\overleftarrow{\chi}_L$ exists.

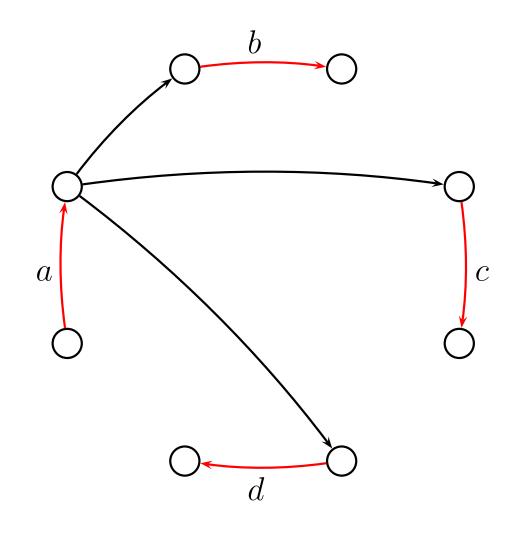
A natural question is ...

whether three colors are enough?

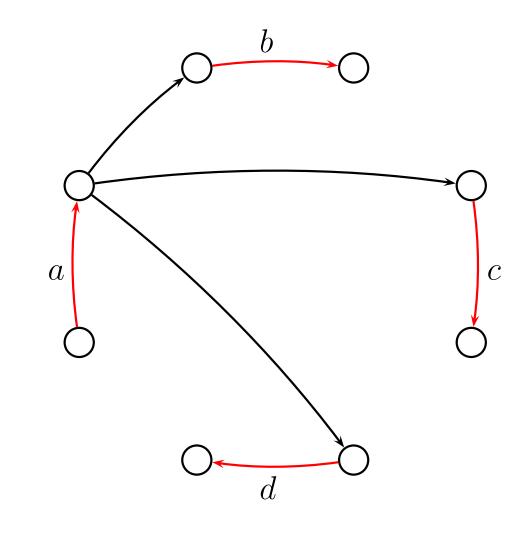
• Theorem. Let D = (V, A) be a digraph without source-sink configurations (arcs or edges).

Then $\overleftarrow{\chi}_L$ exists.

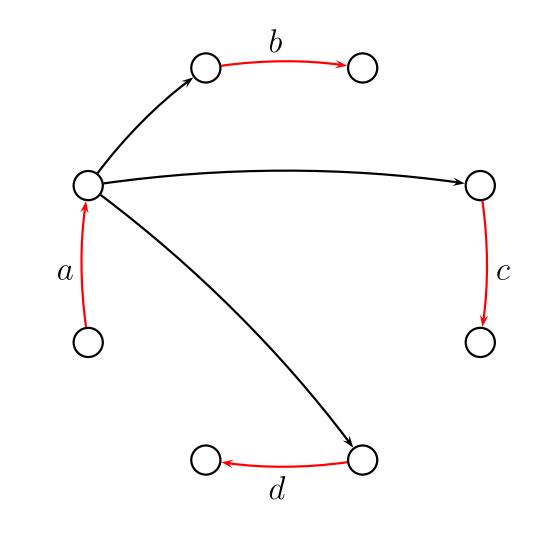
- A natural question is ... whether three colors are enough?
- Answer: no!



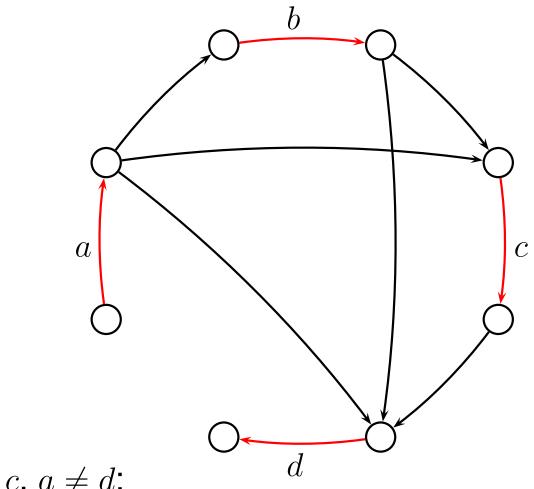
• $a \neq b$;

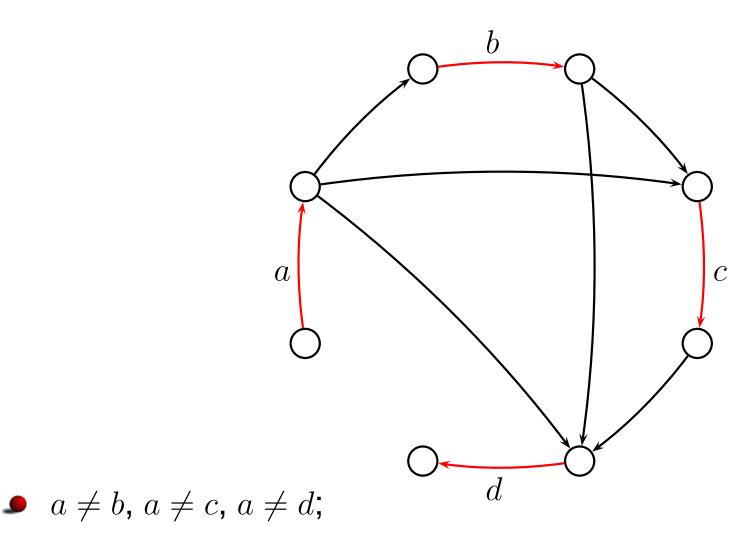


• $a \neq b$; • $a \neq c$;

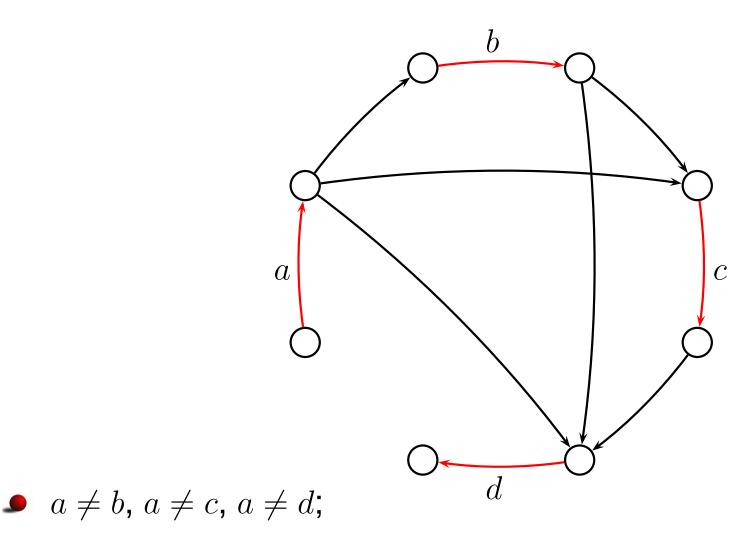


- $a \neq b$;
- $a \neq c$; $a \neq d$;





• $b \neq c, b \neq d;$



- $c \neq d$;

In general, for digraphs without source-sink configurations, we have showed that

In general, for digraphs without source-sink configurations, we have showed that

 $\overleftarrow{\chi}_L$ is not bounded.

In general, for digraphs without source-sink configurations, we have showed that

 $\overleftarrow{\chi}_L$ is not bounded.

... because of lonely edges

In general, for digraphs without source-sink configurations, we have showed that

 $\overleftarrow{\chi}_L$ is not bounded.

- ... because of lonely edges
- So, maybe without such edges ... ?

Conjecture. Let D = (V, A) be a digraph without source-sink configurations

Conjecture. Let D = (V, A) be a digraph without source-sink configurations and without lonely arcs.

Conjecture. Let D = (V, A) be a digraph without source-sink configurations

and without lonely arcs.

Then $\overleftarrow{\chi}_L \leq 3$.

Conjecture. Let D = (V, A) be a digraph without source-sink configurations

and without lonely arcs.

Then $\overleftarrow{\chi}_L \leq 3$.

For the moment, we are able to prove 4.

The end

The end

Thank you