
On directed versions of 1-2-3 Conjecture

Mariusz Woźniak
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J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)

and is still intensely studied.
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Definitions

coloring of a graph G = (V,E):
f : E −→ {1, 2, . . . , k}

for x ∈ V , σ(x) =
∑

x∈e

f(e)

Two vertices x, y are distinguished if
σ(x) 6= σ(y).

irregularity strength is minimum k such that there exists
an f distinguishing all vertices.
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We distinguish only neighbors;

First considered by M. Karoński, T. Łuczak and A.
Thomasson (2004)

1-2-3 Conjecture. The set of colors {1, 2, 3} suffices to
distinguish neighbors by the sums σ.

(G connected, G 6= K2)

χσ ≤ 3,
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Local version. What is known?

1-2-3 Conjecture is true for some families of graphs. In
particular for bipartite graphs.

χσ ≤ 5
(M. Kalkowski, M. Karoński, F. Pfender; 2011)
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Digraphs. Definitions

D = (V,A);

coloring of a graph D = (V,A):
f : A −→ {1, 2, . . . , k}

for x ∈ V , σ+(x) =
∑

xy∈A

f(xy)

for x ∈ V , σ−(x) =
∑

yx∈A

f(yx)

In order to distinguish two vertices x, y we can use σ+

and σ−.
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Digraphs. First possibility

D = (V,A); f : A −→ {1, 2, . . . , k}

for x ∈ V we consider σ+(x)− σ−(x)

for xy ∈ E, the vertices x, y are distinguished iff
σ+(x)− σ−(x) 6= σ+(y)− σ−(y).

−→χ ±
Theorem. −→χ ± ≤ 2.
M. Borowiecki, J. Grytczuk, M. Pilśniak. Coloring chip
configurations on graphs and digraphs. Information
Processing Letters, 112:1-4, 2012.
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Digraphs. Second possibility

D = (V,A); f : A −→ {1, 2, . . . , k}

for x ∈ V we consider σ+(x)

for xy ∈ E, the vertices x, y are distinguished iff
σ+(x) 6= σ+(y).

−→χ +

Theorem. −→χ + ≤ 3.
O. Baudon, J. Bensmail, É. Sopena. An oriented
version of the 1-2-3 Conjecture. Discussiones
Mathematicae Graph Theory, 35(1):141-156, 2015
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Third possibility

D = (V,A); f : A −→ {1, 2, . . . , k}

for xy ∈ A, the vertices x, y are distinguished iff
σ+(x) 6= σ−(y).

Proposed by T. Łuczak
−→χ L

Unfortunately, such coloring is not always possible
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v4 v3

v3v4 ∈ A;

d+(v3) = 1⇒ σ+(v3) = f(v3v4)

d−(v4) = 1⇒ σ−(v4) = f(v3v4)

So, it is impossible to distinguish v3 from v4.

such an arc is called lonely.
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Third possibility. The main theorem

Theorem. Let D = (V,A) be a digraph without lonely
arcs.

Then−→χ L ≤ 3.
Emma Barme, Julien Bensmail, Jakub Przybyło,
Mariusz Woźniak, On a directed variation of the 1-2-3
and 1-2 Conjectures, submitted.
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Fourth possibility

D = (V,A); f : A −→ {1, 2, . . . , k}

for xy ∈ E, the vertices x, y are distinguished iff
σ−(x) 6= σ+(y).

‘inverse Łuczak’s problem’
←−χ L

As in Łuczak’s problem, such coloring is not always
possible
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x is a source, y is a sink,

xy ∈ A

A−(x) = ∅ and A+(y) = ∅

So, it is impossible to distinguish x from y.

then, the arc xy is called source-sink arc.
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If x is a source, y is a sink in the graph without yx arc,

xy ∈ A, A−(x) = {xy} and A+(y) = {xy}

σ−(x) = f(xy) and σ+(y) = f(xy)

So, again, it is impossible to distinguish x from y.

in this case, the arc xy is called source-sink edge.
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Fourth possibility = inverse Łuczak’s problem

Theorem. Let D = (V,A) be a digraph without
source-sink configurations (arcs or edges).

Then←−χ L exists.

A natural question is ...

whether three colors are enough?

Answer: no!
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An example

a c

b

da 6= b, a 6= c, a 6= d;

b 6= c, b 6= d;

c 6= d;
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Fourth possibility = inverse Łuczak’s problem

In general, for digraphs without source-sink
configurations, we have showed that
←−χ L is not bounded.

... because of lonely edges ....

So, maybe without such edges ... ?
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A conjecture

Conjecture. Let D = (V,A) be a digraph without
source-sink configurations

and without lonely arcs.

Then←−χ L ≤ 3.

For the moment, we are able to prove 4.
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