On directed versions of 1-2-3 Conjecture

Mariusz Woźniak

Department of Discrete Mathematics
AGH University, Kraków, Poland
(Kyoto, 2016)

Joint work with

Mirko Horřák (UPJS, Košice, Slovakia) and

Joint work with

Mirko Horňák (UPJS, Košice, Slovakia) and
Jakub Przybyło (AGH University, Cracow, Poland)

Motivation

Motivation

Irregularity strength

- Parameter introduced by G.Chartrand, M.Jacobson, J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)

Irregularity strength

- Parameter introduced by G.Chartrand, M.Jacobson, J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)
- and is still intensely studied.

Irregularity strength and coloring

Irregularity strength and coloring

Irregularity strength and coloring

Definitions

- coloring of a graph $G=(V, E)$:
$f: E \longrightarrow\{1,2, \ldots, k\}$

Definitions

- coloring of a graph $G=(V, E)$:
$f: E \longrightarrow\{1,2, \ldots, k\}$
for $x \in V, \sigma(x)=\sum_{x \in e} f(e)$

Definitions

- coloring of a graph $G=(V, E)$:
$f: E \longrightarrow\{1,2, \ldots, k\}$
- for $x \in V, \sigma(x)=\sum_{x \in e} f(e)$

Two vertices x, y are distinguished if $\sigma(x) \neq \sigma(y)$.

Definitions

- coloring of a graph $G=(V, E)$:
$f: E \longrightarrow\{1,2, \ldots, k\}$
- for $x \in V, \sigma(x)=\sum_{x \in e} f(e)$
- Two vertices x, y are distinguished if $\sigma(x) \neq \sigma(y)$.
- irregularity strength is minimum k such that there exists an f distinguishing all vertices.

Irregularity strength: local version

- We distinguish only neighbors;

Irregularity strength: local version

- We distinguish only neighbors;

First considered by M. Karoński, T. Łuczak and A. Thomasson (2004)

Irregularity strength: local version

- We distinguish only neighbors;
- First considered by M. Karoński, T. Łuczak and A. Thomasson (2004)
1-2-3 Conjecture. The set of colors $\{1,2,3\}$ suffices to distinguish neighbors by the sums σ.

Irregularity strength: local version

- We distinguish only neighbors;
- First considered by M. Karoński, T. Łuczak and A. Thomasson (2004)
1-2-3 Conjecture. The set of colors $\{1,2,3\}$ suffices to distinguish neighbors by the sums σ.
- (G connected, $G \neq K_{2}$)

Irregularity strength: local version

- We distinguish only neighbors;

First considered by M. Karoński, T. Łuczak and A.
Thomasson (2004)
1-2-3 Conjecture. The set of colors $\{1,2,3\}$ suffices to distinguish neighbors by the sums σ.

- (G connected, $G \neq K_{2}$)
- $\chi_{\sigma} \leq 3$

Local version. What is known?

1-2-3 Conjecture is true for some families of graphs. In particular for bipartite graphs.

Local version. What is known?

1-2-3 Conjecture is true for some families of graphs. In particular for bipartite graphs.

- $\chi_{\sigma} \leq 5$
(M. Kalkowski, M. Karoński, F. Pfender; 2011)

Digraphs. Definitions

$$
D=(V, A) ;
$$

Digraphs. Definitions

$$
D=(V, A) ;
$$

coloring of a graph $D=(V, A)$: $f: A \longrightarrow\{1,2, \ldots, k\}$

Digraphs. Definitions

$D=(V, A) ;$

coloring of a graph $D=(V, A)$: $f: A \longrightarrow\{1,2, \ldots, k\}$
for $x \in V, \sigma^{+}(x)=\sum_{x y \in A} f(x y)$

Digraphs. Definitions

$D=(V, A)$;
coloring of a graph $D=(V, A)$:
$f: A \longrightarrow\{1,2, \ldots, k\}$

- for $x \in V, \sigma^{+}(x)=\sum_{x y \in A} f(x y)$
- for $x \in V, \sigma^{-}(x)=\sum_{y x \in A} f(y x)$

Digraphs. Definitions

- $D=(V, A)$;
- coloring of a graph $D=(V, A)$:
$f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x \in V, \sigma^{+}(x)=\sum_{x y \in A} f(x y)$
- for $x \in V, \sigma^{-}(x)=\sum_{y x \in A} f(y x)$
- In order to distinguish two vertices x, y we can use σ^{+} and σ^{-}.

Digraphs. First possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$

Digraphs. First possibility

$$
D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}
$$

for $x \in V$ we consider $\sigma^{+}(x)-\sigma^{-}(x)$

Digraphs. First possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x \in V$ we consider $\sigma^{+}(x)-\sigma^{-}(x)$
- for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x)-\sigma^{-}(x) \neq \sigma^{+}(y)-\sigma^{-}(y)$.

Digraphs. First possibility

$D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
for $x \in V$ we consider $\sigma^{+}(x)-\sigma^{-}(x)$

- for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x)-\sigma^{-}(x) \neq \sigma^{+}(y)-\sigma^{-}(y)$.
$\vec{\chi}_{ \pm}$

Digraphs. First possibility

$D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
for $x \in V$ we consider $\sigma^{+}(x)-\sigma^{-}(x)$
for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x)-\sigma^{-}(x) \neq \sigma^{+}(y)-\sigma^{-}(y)$.
$\vec{\chi}_{ \pm}$

- Theorem. $\vec{\chi}_{ \pm} \leq 2$

Digraphs. First possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x \in V$ we consider $\sigma^{+}(x)-\sigma^{-}(x)$
- for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x)-\sigma^{-}(x) \neq \sigma^{+}(y)-\sigma^{-}(y)$.
$\vec{\chi}_{ \pm}$
- Theorem. $\vec{\chi}_{ \pm} \leq 2$
- M. Borowiecki, J. Grytczuk, M. Pilśniak. Coloring chip configurations on graphs and digraphs. Information Processing Letters, 112:1-4, 2012.

Digraphs. Second possibility

$$
D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}
$$

Digraphs. Second possibility

$$
D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}
$$

for $x \in V$ we consider $\sigma^{+}(x)$

Digraphs. Second possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x \in V$ we consider $\sigma^{+}(x)$
- for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x) \neq \sigma^{+}(y)$.

Digraphs. Second possibility

$D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
for $x \in V$ we consider $\sigma^{+}(x)$
for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x) \neq \sigma^{+}(y)$.
$\vec{\chi}_{+}$

Digraphs. Second possibility

$D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
for $x \in V$ we consider $\sigma^{+}(x)$
for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x) \neq \sigma^{+}(y)$.
$\vec{\chi}_{+}$
Theorem. $\vec{\chi}_{+} \leq 3$

Digraphs. Second possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x \in V$ we consider $\sigma^{+}(x)$
- for $x y \in E$, the vertices x, y are distinguished iff
$\sigma^{+}(x) \neq \sigma^{+}(y)$.
$\vec{\chi}_{+}$
- Theorem. $\vec{\chi}_{+} \leq 3$
O. Baudon, J. Bensmail, É. Sopena. An oriented version of the 1-2-3 Conjecture. Discussiones Mathematicae Graph Theory, 35(1):141-156, 2015

We need 3 colors

Third possibility

$$
D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}
$$

Third possibility

$$
D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}
$$

for $x y \in A$, the vertices x, y are distinguished iff $\sigma^{+}(x) \neq \sigma^{-}(y)$.

Third possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x y \in A$, the vertices x, y are distinguished iff $\sigma^{+}(x) \neq \sigma^{-}(y)$.
- Proposed by T. Łuczak

Third possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x y \in A$, the vertices x, y are distinguished iff
$\sigma^{+}(x) \neq \sigma^{-}(y)$.
- Proposed by T. Łuczak
- $\vec{\chi}_{L}$

Third possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x y \in A$, the vertices x, y are distinguished iff $\sigma^{+}(x) \neq \sigma^{-}(y)$.
- Proposed by T. Łuczak
- $\vec{\chi}_{L}$
- Unfortunately, such coloring is not always possible

Lonely arcs

$v_{3} v_{4} \in A ;$

Lonely arcs

$v_{3} v_{4} \in A ;$
$d^{+}\left(v_{3}\right)=1 \Rightarrow \sigma^{+}\left(v_{3}\right)=f\left(v_{3} v_{4}\right)$

Lonely arcs

$v_{3} v_{4} \in A ;$
$d^{+}\left(v_{3}\right)=1 \Rightarrow \sigma^{+}\left(v_{3}\right)=f\left(v_{3} v_{4}\right)$
$d^{-}\left(v_{4}\right)=1 \Rightarrow \sigma^{-}\left(v_{4}\right)=f\left(v_{3} v_{4}\right)$

Lonely arcs

$v_{3} v_{4} \in A ;$
$d^{+}\left(v_{3}\right)=1 \Rightarrow \sigma^{+}\left(v_{3}\right)=f\left(v_{3} v_{4}\right)$
$d^{-}\left(v_{4}\right)=1 \Rightarrow \sigma^{-}\left(v_{4}\right)=f\left(v_{3} v_{4}\right)$
So, it is impossible to distinguish v_{3} from v_{4}.

Lonely arcs

$v_{3} v_{4} \in A ;$
$d^{+}\left(v_{3}\right)=1 \Rightarrow \sigma^{+}\left(v_{3}\right)=f\left(v_{3} v_{4}\right)$
$d^{-}\left(v_{4}\right)=1 \Rightarrow \sigma^{-}\left(v_{4}\right)=f\left(v_{3} v_{4}\right)$
So, it is impossible to distinguish v_{3} from v_{4}. such an arc is called lonely.

Third possibility. The main theorem

Theorem. Let $D=(V, A)$ be a digraph without lonely arcs.

Third possibility. The main theorem

Theorem. Let $D=(V, A)$ be a digraph without lonely arcs.
Then $\vec{\chi}_{L} \leq 3$

Third possibility. The main theorem

Theorem. Let $D=(V, A)$ be a digraph without lonely arcs.

- Then $\vec{\chi}_{L} \leq 3$

Emma Barme, Julien Bensmail, Jakub Przybyło, Mariusz Woźniak, On a directed variation of the 1-2-3 and 1-2 Conjectures, submitted.

Fourth possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$

Fourth possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
for $x y \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.

Fourth possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x y \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.
- 'inverse Łuczak's problem'

Fourth possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x y \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.
- 'inverse Łuczak's problem'
- $\overleftarrow{\chi}_{L}$

Fourth possibility

- $D=(V, A) ; f: A \longrightarrow\{1,2, \ldots, k\}$
- for $x y \in E$, the vertices x, y are distinguished iff $\sigma^{-}(x) \neq \sigma^{+}(y)$.
- 'inverse Łuczak's problem'
- $\overleftarrow{\chi}_{L}$
- As in Łuczak's problem, such coloring is not always possible

Source-sink arcs

x is a source, y is a sink,

Source-sink arcs

x is a source, y is a sink,
$x y \in A$

Source-sink arcs

x is a source, y is a sink,
$x y \in A$

- $A^{-}(x)=\emptyset$ and $A^{+}(y)=\emptyset$

Source-sink arcs

x is a source, y is a sink,
$x y \in A$

- $A^{-}(x)=\emptyset$ and $A^{+}(y)=\emptyset$

So, it is impossible to distinguish x from y.

Source-sink arcs

x is a source, y is a sink,
$x y \in A$

- $A^{-}(x)=\emptyset$ and $A^{+}(y)=\emptyset$

So, it is impossible to distinguish x from y.

- then, the arc $x y$ is called source-sink arc.

Source-sink edge

If x is a source, y is a sink in the graph without $y x$ arc,

Source-sink edge

If x is a source, y is a sink in the graph without $y x$ arc, $x y \in A, A^{-}(x)=\{x y\}$ and $A^{+}(y)=\{x y\}$

Source-sink edge

If x is a source, y is a sink in the graph without $y x$ arc, $x y \in A, A^{-}(x)=\{x y\}$ and $A^{+}(y)=\{x y\}$
$\sigma^{-}(x)=f(x y)$ and $\sigma^{+}(y)=f(x y)$

Source-sink edge

If x is a source, y is a sink in the graph without $y x$ arc, $x y \in A, A^{-}(x)=\{x y\}$ and $A^{+}(y)=\{x y\}$
$\sigma^{-}(x)=f(x y)$ and $\sigma^{+}(y)=f(x y)$
So, again, it is impossible to distinguish x from y.

Source-sink edge

If x is a source, y is a sink in the graph without $y x$ arc, $x y \in A, A^{-}(x)=\{x y\}$ and $A^{+}(y)=\{x y\}$
$\sigma^{-}(x)=f(x y)$ and $\sigma^{+}(y)=f(x y)$
So, again, it is impossible to distinguish x from y.

- in this case, the arc $x y$ is called source-sink edge.

ourth possibility $=$ inverse Łuczak's problem

Theorem. Let $D=(V, A)$ be a digraph without source-sink configurations (arcs or edges).

ourth possibility = inverse Łuczak's problem

Theorem. Let $D=(V, A)$ be a digraph without source-sink configurations (arcs or edges).
Then $\overleftarrow{\chi}_{L}$ exists.

ourth possibility $=$ inverse Łuczak's problem

Theorem. Let $D=(V, A)$ be a digraph without source-sink configurations (arcs or edges).
Then $\overleftarrow{\chi}_{L}$ exists.

- A natural question is ...

ourth possibility = inverse Łuczak's problem

- Theorem. Let $D=(V, A)$ be a digraph without source-sink configurations (arcs or edges).
Then $\overleftarrow{\chi}_{L}$ exists.
- A natural question is ...
whether three colors are enough?

ourth possibility = inverse Łuczak's problem

Theorem. Let $D=(V, A)$ be a digraph without source-sink configurations (arcs or edges).
Then $\overleftarrow{\chi}_{L}$ exists.

- A natural question is ...
whether three colors are enough?
- Answer: no!

An example

An example

$a \neq b ;$
$a \neq c$;

An example

$a \neq b ;$
$a \neq c$;
$a \neq d ;$

An example

$a \neq b, a \neq c, a \neq d ;$

An example

$a \neq b, a \neq c, a \neq d ;$

- $b \neq c, b \neq d$;

An example

$a \neq b, a \neq c, a \neq d ;$

- $b \neq c, b \neq d$;
$c \neq d ;$

ourth possibility = inverse Łuczak's problem

- In general, for digraphs without source-sink configurations, we have showed that

ourth possibility = inverse Łuczak's problem

- In general, for digraphs without source-sink configurations, we have showed that
$\overleftarrow{\chi}_{L}$ is not bounded.

ourth possibility $=$ inverse Łuczak's problem

- In general, for digraphs without source-sink configurations, we have showed that
$\overleftarrow{\chi}_{L}$ is not bounded
... because of lonely edges

ourth possibility = inverse Łuczak's problem

- In general, for digraphs without source-sink configurations, we have showed that
$\overleftarrow{\chi}_{L}$ is not bounded.
... because of lonely edges
- So, maybe without such edges ... ?

A conjecture

Conjecture. Let $D=(V, A)$ be a digraph without source-sink configurations

A conjecture

Conjecture. Let $D=(V, A)$ be a digraph without source-sink configurations and without lonely arcs.

A conjecture

Conjecture. Let $D=(V, A)$ be a digraph without source-sink configurations and without lonely arcs.
Then $\overleftarrow{\chi}_{L} \leq 3$

A conjecture

Conjecture. Let $D=(V, A)$ be a digraph without source-sink configurations
and without lonely arcs.
Then $\overleftarrow{\chi}_{L} \leq 3$

- For the moment, we are able to prove 4.

The end

The end

Thank you

