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We shall consider

edge colorings of graphs and use these colorinings to
distinguish the vertices of the graphs.

I. proper colorings

(joint work with R. Kalinowski, M. Pilśniak and J.
Przybyło form AGH University)

II. general colorings

(joint work with O.Baudon and J.Bensmail from LaBRI
and J. Przybyło form AGH University)
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Proper edge coloring

Coloring of a graph G = (V,E): f : E −→ {1, 2, . . . , k}
Proper: if e1 ∩ e2 6= ∅ =⇒ f(e1) 6= f(e1).

Parametr - chromatic index χ′.

Vizing’s Theorem
∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

A graph is Class 1 if χ′(G) = ∆(G),

A graph is Class 2 if χ′(G) = ∆(G) + 1.
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Color-set (palette) at vertex x ∈ V :
S(x) = {f(e) : x ∈ e}
Two vertices x, y are distinguished if S(x) 6= S(y).
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1+2.
Graph Theory Week, Banach Centre 1996 (Horňák +
Favaron)
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Terminology, notation

χ′
s = obs

new proposal
vdi
( vertex-distinguishing index)

Remark. We assume that our graph has neither K2 nor
two K1 as components.
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Conjecture 1.

vdi (G) ≤ n + 1
where n = |V |.
Example (!): complete graphs K2p.
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in the case of cycles of length n

a palette contains exactly 2 colors

So, the number of all possible 2-element sets is
(

k
2

)

, if we use k colors,

We have
(

k
2

)

≥ n

vdi ≥
√
2n.
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Conjecture 2.

π ≤ vdi (G) ≤ π + 1

where π = max
i

{

min
k

{

k :

(

k

i

)

≥ ni

}}

where ni denotes the number of vertices of degree i.

Actually, first formulated in Soták’s Master thesis (1992;
in slovak).

Still open despite of many papers: mainly by
P.N.Balister with:
B.Bollobás, O.M.Riordan, R.H.Schelp, A.Kostoczka,
Hao Li.
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Color walks

f : E(G) → {1, 2, , ...} - a proper coloring of a graph G

each walk starting from x ∈ V defines a sequence of
colors (αi) called a color walk

W (x) - the set of all color walks starting from x,

two vertices x and y are similar if W (x) = W (y).

µ(G) - the minimum number of colors in a proper
edge-coloring of a graph G such that no two distinct
vertices are similar.
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Main result

Let G be a connected graph of order n ≥ 3. Then

µ(G) ≤ ∆(G) + 1

except for four graphs of small orders: C4, K4, C6, K3,3

R. Kalinowski, M. Pilśniak, J. Przybyło and M. Woźniak,
How to personalize the vertices of a graph?, European
Journal of Combinatorics, 40 (2014), 116–123.
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Let G be a connected graph of order n ≥ 3. Then

µ(G) ≤ χ′(G) + 1

(main theorem for graphs class I)
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An application

An automorphism ϕ of G: ϕ : V (G) 7→ V (G),

induces ϕ′ : E(G) 7→ E(G).

A (vertex- or edge-) coloring c of a graph G breaks an
automorphism ϕ of G if ϕ does not preserve colors of c.

How many colors we need in a coloring that breaks
every non-trivial automorphism of G?.
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An application

considerd first by Albertson and Collins, 1996 in the
case of vertex general coloring

but may be considered also for edge coloring
(Kalinowski, Pilśniak, 2013),

in both cases the coloring can be proper [proper, vertex
-Collins, Trenk 2006]

Another possibility: endomorphisms instead of
automorphisms [W. Imrich, R. Kalinowski, F. Lehner
and M. Pilśniak].
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is the least number d such that the edges of G have a
proper coloring with d colors that is preserved only by
the identity automorphism of G.

Assumption: G has not K2 as a connected component.

Theorem (Kalinowski, Pilśniak, 2013+)
Let G be a connected graph of order n ≥ 3. Then
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D(G) ≤ ∆(G) + 1
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The proof

is based on the fact that χ′
D(G) ≤ µ(G).

Suppose that φ is a nontrivial automorphism of G
preserving an edge-coloring and all vertices of G are
distinguished by color walks in this coloring.

φ nontrivial ⇒ ∃x ∈ V : x 6= φ(x)

φ preserves the coloring ⇒ φ preserves the walks

W (φ(x)) = W (x),

so x and φ(x) are not distinguished by color walks in
this coloring,

a contradiction.



χ′
D = 3, µ = 4
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Joint work with

Olivier Baudon and Julien Bensmail from LaBRI,
Bordeaux and

Jakub Przybyło from AGH, Krakow

On decomposing regular graphs into locally irregular
subgraphs, European Journal of Combinatorics, 49
(2015), 90–104.



Motivation

b b

b



Motivation

b b

b

b b

b



Irregularity strengh

Parameter introduced by G.Chartrand, M.Jacobson,
J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)



Irregularity strengh

Parameter introduced by G.Chartrand, M.Jacobson,
J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)

more than 50 papers on irregularity strength and many
concerning its variations



Irregularity strengh

Parameter introduced by G.Chartrand, M.Jacobson,
J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)

more than 50 papers on irregularity strength and many
concerning its variations

exact results concerning many classes of graphs,



Irregularity strengh

Parameter introduced by G.Chartrand, M.Jacobson,
J.Lehel, O.Oellerman, S.Ruiz and F.Saba (1986)

more than 50 papers on irregularity strength and many
concerning its variations

exact results concerning many classes of graphs,

Even for trees is not completely solved.



Irregularity strengh and coloring

b b

b

b b

b



Irregularity strengh and coloring

b b

b

1 2

3

b b

b



Irregularity strengh and coloring

b b

b

1 2

3b b

b



Definitions

Coloring of a graph G = (V,E):
f : E −→ {1, 2, . . . , k}



Definitions

Coloring of a graph G = (V,E):
f : E −→ {1, 2, . . . , k}

for x ∈ V , σ(x) =
∑

x∈e

f(e)



Definitions

Coloring of a graph G = (V,E):
f : E −→ {1, 2, . . . , k}

for x ∈ V , σ(x) =
∑

x∈e

f(e)

Two vertices x, y are distinguished if
σ(x) 6= σ(x).



Definitions

Coloring of a graph G = (V,E):
f : E −→ {1, 2, . . . , k}

for x ∈ V , σ(x) =
∑

x∈e

f(e)

Two vertices x, y are distinguished if
σ(x) 6= σ(x).

irregularity strength is minimum k such that there exists
an f distinguishing all vertices.
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First considered by M. Karoński, T. Łuczak and A.
Thomasson (2004)

1-2-3 Conjecture. The set of colors {1, 2, 3} suffices to
distinguish neighbors by the sums σ.

(G connected, G 6= K2)

gndiΣ ≤ 3



General coloring - another possibility

a coloring defines at each vertex a multiset of colors



General coloring - another possibility

a coloring defines at each vertex a multiset of colors

we can distinguish the neighbors by multisets of colors



General coloring - another possibility

a coloring defines at each vertex a multiset of colors

we can distinguish the neighbors by multisets of colors

gndiM



General coloring - another possibility

a coloring defines at each vertex a multiset of colors

we can distinguish the neighbors by multisets of colors

gndiM
Conjecture. gndiM ≤ 3



... 2 conjectures ...

1-2-3 Conjecture
gndiΣ ≤ 3

gndiM ≤ 3



Local version. What is known?

gndiΣ ≤ 5
(M. Kalkowski, M. Karoński, F. Pfender; 2011)
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Local version. What is known?

gndiΣ ≤ 5
(M. Kalkowski, M. Karoński, F. Pfender; 2011)

gndiM ≤ 4
(L. Addario-Berry, R.E.L. Aldred, K. Dalal, B. A. Reed;
2005)

gndiM ≤ 3 for graphs with large minimum degree
(L. Addario-Berry, R.E.L. Aldred, K. Dalal, B. A. Reed;
2005)
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New approach

Definition. A locally irregular graph is a graph in which
the adjacent vertices have distinct degrees.

Such graphs exist for every order n.

We can investigate decompositions of graphs into
locally irregular subgraphs.

Such a decomposition (into k graphs) may be
considered as a coloring with k colors such that every
color class induces a locally irregular subgraph in G.
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Existence

Unfortunately, not every graph admits a decomposition
into locally irregular graphs.

Fortunately, such graphs can be easily characterized:

paths of odd length,

cycles of odd length,

graphs belonging to the family F .
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... adding odd paths with a triangle ...

b b b b b b b
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Theorem. If G is a connected graph,

G /∈ F , G 6= P2p+1. G 6= C2p+1,
then it can be decomposed into locally irregular
subgraphs.

Conjecture Every connected graph G,

G /∈ F , G 6= P2p+1. G 6= C2p+1, can be decomposed into
3 locally irregular subgraphs.
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An implication

if an edge uv ∈ E has color i assigned by a locally
irregular edge coloring, then the numbers of edges
colored with i incident with u and v must be distinct.

For, the graph induced by i is locally irregular.

So, u and v can be distinguished by multisets of colors



... 3 conjectures ...

1-2-3 Conjecture
gndiΣ ≤ 3

gndiM ≤ 3

decomposition
into 3 locally

irregular graphs
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(which improves the result for gndiM)
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Complexity

Can a graph be decomposed into two locally irregular
subgraphs? NP-complete [Julien Bensmail; 2013]

linear algorithm for determine how many subgraphs we
need in the case of trees [O. Baudon, J. Bensmail and
E. Sopena, 2013]
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J-F.Saclé i M.Woźniak, Neighbor Sum Distinguishing
Index, Graphs and Combinatorics 29 (2013),
1329–1336.



Many other problems ...

we just considered only sets of colors in the case of
proper colorings and sums of colors in the case of
general colorings, but there are other possibilities

For instance, one cay consider sums also in the case of
proper colorings

in order to get somewhat stronger results

see for instance: E. Flandrin, A. Marczyk, J. Przybyło,
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Many other problems ...

we just considered only sets of colors in the case of
proper colorings and sums of colors in the case of
general colorings, but there are other possibilities

For instance, one cay consider sums also in the case of
proper colorings

in order to get somewhat stronger results

see for instance: E. Flandrin, A. Marczyk, J. Przybyło,
J-F.Saclé i M.Woźniak, Neighbor Sum Distinguishing
Index, Graphs and Combinatorics 29 (2013),
1329–1336.

in the case of general colorings

sums, sets, multisets ... .
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see for instance: Evelyne FLANDRIN, Hao LI, Antoni
MARCZYK, Jean-François SACLÉ, Mariusz WOŹNIAK,
A note on neighbor expanded sum distinguishing index,
Discussiones Math. - Graph Theory, 2016.
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