Arbitrarily vertex decomposable graphs

Mariusz Woźniak
AGH University of Science and Technologie, Cracow, Poland

AVD graphs

Definition.

Let $G=(V, E)$ be a graph of order n and let \mathcal{P} be a graph property. A sequence $\left(n_{1}, \ldots, n_{k}\right)$ of non-negative integers is called admissible for G (with respect to \mathcal{P}) if

- for each its element n_{i} there exists an induced subgraph of G of order n_{i} having property \mathcal{P} and
- $\sum_{i} n_{i}=n$.

AVD graphs

An admissible sequence $\left(n_{i}\right)$ is realizable in G if there exists a partition of vertex set V_{i} of the vertex set of G such that

- $\left|V_{i}\right|=n_{i}$
- the induced subgraphs $G\left[V_{i}\right]$ have property \mathcal{P}.

A graph G is said to be arbitrarily vertex decomposable (with respect to \mathcal{P}) (AVD for short) if each admissible sequence is realizable.
If k is fixed we speak about k-AVD graphs.

Other properties

There are results concerning the properties:

- to be hamiltonian (Remark. $a_{i} \geq 3$)
- to be without isolated vertices (Remark. $a_{i} \geq 2$)

Property \mathcal{P} : to be hamiltonian

Theorem(M.Aigner and S.Brandt, 1993) If $\delta(G) \geq \frac{2 n-1}{3}$ then G contains each graph H with $\Delta(H) \leq 2$.
In particular, for $\Delta(H)=2$, we have
Theorem
If $\delta(G) \geq \frac{2 n-1}{3}$ then G is AVD (with respect to \mathcal{P}).
Remark. $n_{i} \geq 3$.

roperty \mathcal{P} : to be without isolated vertices; k - fixe

In 1975 A.Frank stated the following conjecture.
Conjecture If G is connected and $\delta(G) \geq k$, then G is k-AVD

Remark. $a_{i} \geq 2$.
Still open. Satisfied for

- $k=2$ (Maurer, 1979)
- $k=3$ (Linial, 1984)
- $n_{i}=2$ for $1 \leq i \leq k-1$ (Linial)
- $2 \leq n_{i} \leq 3$ dla $1 \leq i \leq k$ (Enomoto, A.Kaneko and Zs.Tuza, 1987)
- (H.Enomoto, S. Matsunaga and K. Ota, 1996)

Property \mathcal{P} : to be connected; k - fixed

L.Lovász (1977) and E.Győri (1978) proved that:

Theorem
k-connected $\Longrightarrow k$-AVD.

$6=2+2+2$

Figure 1: $K_{2,4}$

Examples of AVD trees

- Paths

Examples of AVD trees

- Paths
- Caterpillars with one leg $\operatorname{Cat}(a, b)$, if a and b are coprime

Figure 3: $\operatorname{Cat}(5,8)$

Examples of AVD trees

- Paths
- Caterpillars with one leg $\operatorname{Cat}(a, b)$, if a and b are coprime

Figure 4: Cat $(5,8)$

- Some other caterpillars with two or three legs.

Theorem (S.Cichacz, A. Görlich, A.Marczyk, J.Przybyło, MW)
Let $T=(V, E)$ be a caterpillar of order n with two single legs attached at x and y. Then T is avd if and only if the following holds:

$$
\begin{aligned}
& 1^{0} \quad\left(l_{x}(T), r_{x}(T)\right)=1 ; \\
& 2^{0} \quad\left(l_{y}(T), r_{y}(T)\right)=1 ; \\
& 3^{0} \quad\left(l_{x}(T), r_{y}(T)\right)=1 ; \\
& 4^{0} \quad\left(l_{y}(T), r_{x}(T)\right)<l_{y}-l_{x} \text { or } n \equiv 1\left(\bmod \left(l_{y}(T), r_{x}(T)\right)\right) ; \\
& 5^{0} \quad n \neq \alpha l_{x}(T)+\beta l_{y}(T) \text { for any } \alpha, \beta \in \mathbf{N} ; \\
& 6^{0} \quad n \neq \alpha r_{x}(T)+\beta r_{y}(T) \text { for any } \alpha, \beta \in \mathbf{N} .
\end{aligned}
$$

A general result on AVD trees

- D.barth, O.baudon and J.Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002), 205-216.

A general result on AVD trees

- D.barth, O.baudon and J.Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002), 205-216.
- m. Horñák and m. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Mathematica 23 (2003), 49-62.

A general result on AVD trees

- D.Barth, O.baudon and J.Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002), 205-216.
- m. horñák and m. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Mathematica 23 (2003), 49-62.
- D. Barth and H. Fournier, A Degree Bound on Decomposable Trees, Discrete Math. 306 (2006), 469-477.

Main result on trees

Theorem (D. Barth and H. Fournier) If $\Delta(T) \geq 5$ then the tree T is not AVD.

Some questions: tripods = 3-spiders

- Tripod $S\left(a_{1}, a_{2}, a_{3}\right) ; a_{1} \leq a_{2} \leq a_{3}$.

Some questions: tripods = 3-spiders

- Tripod $S\left(a_{1}, a_{2}, a_{3}\right) ; a_{1} \leq a_{2} \leq a_{3}$.
- In our exemple: $a_{1}=3, a_{2}=5, a_{3}=7, n=13$.

Some questions: tripods = 3-spiders

- Tripod $S\left(a_{1}, a_{2}, a_{3}\right) ; a_{1} \leq a_{2} \leq a_{3}$.
- In our exemple: $a_{1}=3, a_{2}=5, a_{3}=7, n=13$.
- Question:. Can a_{1} be arbitrarily large? (There are AVD tripods with $a_{1}=20$)

Some questions: 4-spiders

Figure 5: $\S(2,2,5,7)$

- 4-spider $S\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$.

Some questions: 4-spiders

Figure 6: $\S(2,2,5,7)$

- 4-spider $S\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$.
- In our exemple: $a_{1}=2, a_{2}=2, a_{3}=5, a_{4}=7$.

Some questions: 4-spiders

Figure 7: $\S(2,2,5,7)$

- 4-spider $S\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$.
- In our exemple: $a_{1}=2, a_{2}=2, a_{3}=5, a_{4}=7$.
- Theorem (D. Barth and H. Fournier)

If a tree T is AVD, then each vertex of T of degree four is adjacent to a leaf.

Some questions: 4-spiders

Figure 8: $\S(2,2,5,7)$

- 4-spider $S\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$.
- In our exemple: $a_{1}=2, a_{2}=2, a_{3}=5, a_{4}=7$.
- Theorem (D. Barth and H. Fournier) If a tree T is AVD, then each vertex of T of degree four is adjacent to a leaf.
- Question:. Can a_{2} be arbitrarily large? (There are AVD 4 -spiders with $a_{2}=3$)

AVD trees with two vertices of degree four

We know only one exemple of such a tree.

AVD trees with two vertices of degree four

We know only one exemple of such a tree.

- Questions:

Can an AVD tree have three vertices degree four? Are there other AVD trees with two ertices of degree four?

Suns

Figure 9: The sun sun(2,9).

Avd suns with at most two rays

Clearly, every sun with one ray is avd since it is traceable. Theorem. (R.Kalinowski, M.Pilśniak, MW and I.Zioło) Sun (a, b) with two rays is arbitrarily vertex decomposable if and only if at most one of the numbers a and b is odd. Moreover, Sun (a, b) of order $n=a+b+4$ is not avd if and only if $(2)^{n / 2}$ is the unique admissible and non-realizable sequence.

Avd suns with at most three rays

Theorem.
$\operatorname{Sun}(a, b, c)$ with three rays is not arbitrarily vertex decomposable if and only if at least one of the following three conditions is fulfilled:
(1) at least two of the numbers a, b, c are odd,
(2) $a \equiv b \equiv c \equiv 0(\bmod 3)$,
(3) $a \equiv b \equiv c \equiv 2(\bmod 3)$.

Examples of AVD graphs

- Of course, graphs containing hamiltonian path

Examples of AVD graphs

- Of course, graphs containing hamiltonian path
- Theorem (A. Marczyk (2005))

If G is a two-connected graph on n vertices with the independence number at most $\lceil n / 2\rceil$ and such that the degree sum of any pair of nonadjacent vertices is at least $n-3$, then G is arbitrarily vertex decomposable with two exceptions.

Partition "on-line"

Figure 10: $\operatorname{Cat}(5,8)$

Partition "on-line"

Theorem. (Mirko Horňák, Zsolt Tuza, MW) A tree T is AVD "on-line" iff T is either a path, or a caterpillar with one leg $\operatorname{Cat}(a, b)$, where a and b are given below or T is a tripod $S(3,5,7)$.

Table

a	b
2	$\equiv 1 \quad(\bmod 2)$
3	$\equiv 1,2 \quad(\bmod 3)$
4	$\equiv 1 \quad(\bmod 2)$
5	$6,7,9,11,14,19$
6	$\equiv 1,5 \quad(\bmod 6)$
7	$8,9,11,13,15$
8	11,19
9	11
10	11
11	12

Recursively AVD graphs

- Definition A graph G is said to be recursively arbitrarily vertex decomposable (R-AVD for short) if it is AVD and for each admissible sequence there exists a realization such that the induced subgraphs $G\left[V_{i}\right]$ are R-AVD.

Recursively AVD graphs

- Definition A graph G is said to be recursively arbitrarily vertex decomposable (R-AVD for short) if it is AVD and for each admissible sequence there exists a realization such that the induced subgraphs $G\left[V_{i}\right]$ are R-AVD.
- ObservationAn R-AVD grapf is on-line AVD

AVD "on-line" but not recursively

Figure 11: $\operatorname{Cat}(6,11)$

Strongly-recursively AVD graphs

- Definition A graph G is said to be strongly-recursively arbitrarily vertex decomposable (SR-AVD for short) if it is AVD and for each realization of an admissible sequence the induced subgraphs $G\left[V_{i}\right]$ are SR-AVD.

Strongly-recursively AVD graphs

- Definition A graph G is said to be strongly-recursively arbitrarily vertex decomposable (SR-AVD for short) if it is AVD and for each realization of an admissible sequence the induced subgraphs $G\left[V_{i}\right]$ are SR-AVD.
- ObservationAn R-AVD grapf is R-AVD

Two observations on SR-AVD graphs

- An SR-AVD graph is claw-free.

Two observations on SR-AVD graphs

- An SR-AVD graph is claw-free.

Two observations on SR-AVD graphs

- An SR-AVD graph is claw-free.

- $n=4+1+1+1+\cdots+1$

Two observations on SR-AVD graphs

- An SR-AVD graph is claw-free.

- $n=4+1+1+1+\cdots+1$
- An SR-AVD graph is net-free.

Two observations on SR-AVD graphs

- An SR-AVD graph is claw-free.

- $n=4+1+1+1+\cdots+1$
- An SR-AVD graph is net-free.

Two observations on SR-AVD graphs

- An SR-AVD graph is claw-free.

- $n=4+1+1+1+\cdots+1$
- An SR-AVD graph is net-free.

- $n=6+1+1+1+\cdots+1$

On claw-free and net-free graphs

Theorem A connected claw-free and net-free graph is traceable.
[D.Duffus, M.S.Jacobson and R.J.Gould, Forbidden subgraphs and the hamiltonian theme (1981)]

On SR-AVD graphs

Theorem(O.Baudon, MW)
A graph G is SR-AVD iff G is connected and claw-free and net-free.

Two slides on some real life applications

Decomposition of trees

Decomposition of trees. Version on-line

Thank you for your attention

