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AVD graphs

Definition.
Let G = (V,E) be a graph of order n and let P be a graph
property. A sequence (n1, ..., nk) of non-negative integers is
called admissible for G (with respect to P) if

for each its element ni there exists an induced
subgraph of G of order ni having property P and
∑

i ni = n.



AVD graphs

An admissible sequence (ni) is realizable in G if there
exists a partition of vertex set Vi of the vertex set of G such
that

|Vi| = ni

the induced subgraphs G[Vi] have property P.

A graph G is said to be arbitrarily vertex decomposable (with

respect to P) (AVD for short) if each admissible sequence is
realizable.
If k is fixed we speak about k-AVD graphs.



Other properties

There are results concerning the properties:

to be hamiltonian (Remark. ai ≥ 3)

to be without isolated vertices (Remark. ai ≥ 2)



Property P : to be hamiltonian

Theorem(M.Aigner and S.Brandt, 1993) If δ(G) ≥ 2n−1

3
then

G contains each graph H with ∆(H) ≤ 2.
In particular, for ∆(H) = 2, we have
Theorem
If δ(G) ≥ 2n−1

3
then G is AVD (with respect to P).

Remark. ni ≥ 3.



Property P : to be without isolated vertices; k - fixed

In 1975 A.Frank stated the following conjecture.
Conjecture If G is connected and δ(G) ≥ k, then G is k-AVD

Remark. ai ≥ 2.
Still open. Satisfied for

k = 2 (Maurer, 1979)

k = 3 (Linial, 1984)

ni = 2 for 1 ≤ i ≤ k − 1 (Linial)

2 ≤ ni ≤ 3 dla 1 ≤ i ≤ k (Enomoto, A.Kaneko and
Zs.Tuza, 1987)

(H.Enomoto, S. Matsunaga and K. Ota, 1996)



Property P : to be connected; k - fixed

L.Lovász (1977) and E.Győri (1978) proved that:
Theorem
k-connected =⇒ k-AVD.
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6=2+2+2

Figure 1: K2,4



Examples of AVD trees

Paths

Caterpillars with one leg Cat(a, b), if a and b are coprime

Figure 2: Cat(5, 8)

Some other caterpillars with two or three legs.



Examples of AVD trees

Paths

Caterpillars with one leg Cat(a, b), if a and b are coprime

�

� � � � � � � � 	 
 � �

Figure 3: Cat(5, 8)

Some other caterpillars with two or three legs.



Examples of AVD trees

Paths

Caterpillars with one leg Cat(a, b), if a and b are coprime
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Figure 4: Cat(5, 8)

Some other caterpillars with two or three legs.



Theorem (S.Cichacz, A. Görlich, A.Marczyk, J.Przybyło,
MW )
Let T = (V,E) be a caterpillar of order n with two single legs
attached at x and y. Then T is avd if and only if the
following holds:

10 (lx(T ), rx(T )) = 1;

20 (ly(T ), ry(T )) = 1;

30 (lx(T ), ry(T )) = 1;

40 (ly(T ), rx(T )) < ly − lx or n ≡ 1 (mod (ly(T ), rx(T )));

50 n 6= αlx(T ) + βly(T ) for any α, β ∈ N;

60 n 6= αrx(T ) + βry(T ) for any α, β ∈ N.



A general result on AVD trees

D.BARTH, O.BAUDON AND J.PUECH, Decomposable trees: a
polynomial algorithm for tripodes, Discrete Appl. Math.119

(2002), 205–216.

M. HORŇÁK AND M. WOŹNIAK, Arbitrarily vertex
decomposable trees are of maximum degree at most
six, Opuscula Mathematica 23 (2003), 49-62.

D. BARTH AND H. FOURNIER, A Degree Bound on
Decomposable Trees, Discrete Math.306 (2006), 469–477.
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Main result on trees

Theorem (D. Barth and H. Fournier)
If ∆(T ) ≥ 5 then the tree T is not AVD.



Some questions: tripods = 3-spiders
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Tripod S(a1, a2, a3); a1 ≤ a2 ≤ a3.

In our exemple: a1 = 3, a2 = 5, a3 = 7, n = 13.

Question:. Can a1 be arbitrarily large? (There are AVD
tripods with a1 = 20)
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Some questions: 4-spiders
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Figure 5: §(2, 2, 5, 7)

4-spider S(a1, a2, a3, a4); a1 ≤ a2 ≤ a3 ≤ a4.

In our exemple: a1 = 2, a2 = 2, a3 = 5, a4 = 7.

Theorem (D. Barth and H. Fournier)
If a tree T is AVD, then each vertex of T of degree four
is adjacent to a leaf.

Question:. Can a2 be arbitrarily large? (There are AVD
4-spiders with a2 = 3)
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Figure 6: §(2, 2, 5, 7)

4-spider S(a1, a2, a3, a4); a1 ≤ a2 ≤ a3 ≤ a4.

In our exemple: a1 = 2, a2 = 2, a3 = 5, a4 = 7.

Theorem (D. Barth and H. Fournier)
If a tree T is AVD, then each vertex of T of degree four
is adjacent to a leaf.

Question:. Can a2 be arbitrarily large? (There are AVD
4-spiders with a2 = 3)



Some questions: 4-spiders
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Figure 7: §(2, 2, 5, 7)

4-spider S(a1, a2, a3, a4); a1 ≤ a2 ≤ a3 ≤ a4.

In our exemple: a1 = 2, a2 = 2, a3 = 5, a4 = 7.

Theorem (D. Barth and H. Fournier)
If a tree T is AVD, then each vertex of T of degree four
is adjacent to a leaf.

Question:. Can a2 be arbitrarily large? (There are AVD
4-spiders with a2 = 3)



Some questions: 4-spiders
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Figure 8: §(2, 2, 5, 7)

4-spider S(a1, a2, a3, a4); a1 ≤ a2 ≤ a3 ≤ a4.

In our exemple: a1 = 2, a2 = 2, a3 = 5, a4 = 7.

Theorem (D. Barth and H. Fournier)
If a tree T is AVD, then each vertex of T of degree four
is adjacent to a leaf.

Question:. Can a2 be arbitrarily large? (There are AVD
4-spiders with a2 = 3)



AVD trees with two vertices of degree four

We know only one exemple of such a tree.
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Questions:.
Can an AVD tree have three vertices degree four?
Are there other AVD trees with two ertices of degree
four?
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Figure 9: The sun sun(2, 9).



Avd suns with at most two rays

Clearly, every sun with one ray is avd since it is traceable.
Theorem. (R.Kalinowski, M.Pilśniak, MW and I.Zioło)
Sun(a, b) with two rays is arbitrarily vertex decomposable if
and only if at most one of the numbers a and b is odd.
Moreover, Sun(a, b) of order n = a + b + 4 is not avd if and
only if (2)n/2 is the unique admissible and non-realizable
sequence.



Avd suns with at most three rays

Theorem.
Sun(a, b, c) with three rays is not arbitrarily vertex
decomposable if and only if at least one of the following
three conditions is fulfilled:
(1) at least two of the numbers a, b, c are odd,
(2) a ≡ b ≡ c ≡ 0 (mod 3),
(3) a ≡ b ≡ c ≡ 2 (mod 3).



Examples of AVD graphs

Of course, graphs containing hamiltonian path

Theorem (A. Marczyk (2005))
If G is a two-connected graph on n vertices with the
independence number at most dn/2e and such that the
degree sum of any pair of nonadjacent vertices is at
least n − 3, then G is arbitrarily vertex decomposable
with two exceptions.
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Partition “on-line"
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Figure 10: Cat(5, 8)



Partition “on-line"

Theorem. (Mirko Horňák, Zsolt Tuza, MW)
A tree T is AVD “on-line” iff T is either a path, or a
caterpillar with one leg Cat(a, b), where a and b are given
below or T is a tripod S(3, 5, 7).



Table

a b

2 ≡ 1 (mod 2)

3 ≡ 1, 2 (mod 3)

4 ≡ 1 (mod 2)

5 6, 7, 9, 11, 14, 19
6 ≡ 1, 5 (mod 6)

7 8, 9, 11, 13, 15
8 11, 19
9 11
10 11
11 12



Recursively AVD graphs

Definition A graph G is said to be recursively arbitrarily

vertex decomposable (R-AVD for short) if it is AVD and for
each admissible sequence there exists a realization
such that the induced subgraphs G[Vi] are R-AVD.

ObservationAn R-AVD grapf is on-line AVD
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AVD “on-line" but not recursively
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Figure 11: Cat(6, 11)



Strongly-recursively AVD graphs

Definition A graph G is said to be strongly-recursively

arbitrarily vertex decomposable (SR-AVD for short) if it is
AVD and for each realization of an admissible sequence
the induced subgraphs G[Vi] are SR-AVD.

ObservationAn R-AVD grapf is R-AVD
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Two observations on SR-AVD graphs

An SR-AVD graph is claw-free.

n = 4 + 1 + 1 + 1 + · · · + 1

An SR-AVD graph is net-free.

n = 6 + 1 + 1 + 1 + · · · + 1
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On claw-free and net-free graphs

Theorem A connected claw-free and net-free graph is
traceable.
[D.Duffus, M.S.Jacobson and R.J.Gould, Forbidden
subgraphs and the hamiltonian theme (1981)]



On SR-AVD graphs

Theorem(O.Baudon, MW)
A graph G is SR-AVD iff G is connected and claw-free and
net-free.



Two slides on some real life applications



Decomposition of trees



Decomposition of trees. Version on-line



Thank you for your attention
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