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Introduction

Let us consider a scalar ordinary differential equation (ODE to abbreviate)

d y)

d x
= f [ x, y(x)] . (0.0.1)

A large amount of mathematical textbooks starts from the setting under what condition the Cauchy
problem

d y(x)

d x
= f [ x, y(x)] , y(x0) = y0

has a solution, and when does such solution is unique.
The main goal of these lectures is different. We rather assume from the very beginning that the

function f(x, y) is continuous or even more regular, such that solution does exist. Of interest is
thus not the existence of solutions but rather the ways of obtaining them.

Let us accept the following definition.

Definition 0.0.1. We say that Eq. (0.0.1) is integrable if we are able to deliver a procedure enabling
to get the general solution in explicit or implicit form.

Example 0.0.1. It is evident that implicit solution to the equation

d y(x)

d x
=
P (x)

Q(y)
, (0.0.2)

where P (x), Q(y) are continuous functions, is given by the expression
∫

Q(y) d y −
∫

P (x) d x = C.

Remark 0.0.1. Equation (0.0.2) is called a separable differential equation

From the standard course of ODEs you should know that there is a number of equations which
can be made separable by the changes of variables. Let us give examples of such equations.

1. A homogeneous equation

d y

d x
= f

(
y

x

)

. (0.0.3)

Using the change of variables z = y
x and treating z as a new dependent variables, we get the

following separable equation:

d z

d x
=
f(z) − z

x
.

2. Equation

d y

d x
= xk−1 f

(
y

xk

)

. (0.0.4)

is reduced to the separable differential equation by the ansatz z = y x−k. Inserting it to
the source euqation we get, after the differentiation and some algeabraic manipulation the
following equation:

x
d z

d x
= f(z) − k z.
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3. Equation

d y

d x
= f(αx+ β y) (0.0.5)

is reduced to the separable equation by means of the ansatz z(x) = αx + β y(x). Indeed,
differentiating the function z and using the source equation we get:

d z

d x
= F (z) = α+ f(z).

A natural question arises: do these examples have some features distinguishing them from a
generic case? The answer is positive, but to describe the features in question we should introduce
an extra definition.

Let us consider a one-parameter family of diffeomorphisms:

x̄ = ϕ(x, y; a), ȳ = ψ(x, y; a), (x, y) ∈ U ∈ R
2, a ∈ (−ε, ε). (0.0.6)

Definition 0.0.2. We say that the equation (0.0.1) admits the transformations (0.0.6) if it main-
tains its form in new variables, in other words, if relations

d y

d x
= f [x, y] ⇔ d ȳ

d x̄
= f [x̄, ȳ]

take place (we also say in this case that (0.0.1) has the symmetry or is invariant w.r.t the trans-
formations (0.0.6) ).

Lemma 0.0.1. 1. Eq. (0.0.3) admits the change of variables

x̄ = ea x, ȳ = ea y, a ∈ R
1.

2. Eq. (0.0.4) admits the change of variables

x̄ = ea x, ȳ = ek a y, a ∈ R
1.

3. Eq. (0.0.5) admits the change of variables

x̄ = x+ a, ȳ = y − a
α

β
, a ∈ R

1, β 6= 0 .

Now let us consider the second-order equation

y′′ = F (x, y, y′). (0.0.7)

The usual way of integrating this equation is to reduce it to the first order ODE, using some change
of variables. Below we deliver a couple of examples illustrating when it is possible.

1. Equation

d2 y

d x2
= f

(
x, y′) . (0.0.8)

is reduced to the first-order ODE

dw

dx
= f(x, w)

by means of the substitution y′ = w.
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2. Equation

y′′ = F
(
y, y′) (0.0.9)

is reduced to the first order ODE

w
dw

d y
= F (y, w)

by means of the substitution y′ = w [y(x)] .

In all the second order ODEs, for which the lowering of the order is possible, we notice the
existence of some transformations retaining the form of these equations. Below we repeat almost
word for word the definition of symmetry formulated for the first order ODE:

Definition 0.0.3. We say that Eq. (0.0.7) admits the transformations (0.0.6) if, being written in
the new variables, it maintain its form, in other words, if the following relation of equivalence takes
place:

y′′ = F (x, y, y′) ⇔ and ȳ′′ = F (x̄, ȳ, ȳ′)

Now it is easy to show that the following statement holds true.

Lemma 0.0.2. 1. Eq. (0.0.8) admits the change of variables

x̄ = x, ȳ = y + a.

2. Eq. (0.0.9) admits the change of variables

x̄ = x+ a, ȳ = y.

In order to be completely integrable, the equation of the form (0.0.8) should possess an extra
symmetry, which imposes restrictions on the function F (x, y′). For example, if F (x, y′) = f(y′/x),
i.e. the equation takes the form

d2 y

d x2
= f

(
y′

x

)

, (0.0.10)

then the following statement holds

Lemma. Eq. (0.0.10) admits an extra transformation

ȳ = e2 a y, x̄ = ea x. (0.0.11)

We can integrate Eq. (0.0.10) using the following procedure. First we employ the ansatz
z = w/x, and this enables to obtain the separable equation

d z

d x
=
f(z) − z

x
.

Integrating this equation we can get the following result:

x = C1 φ(z),

5



where

φ(z) = exp

[∫
d z

f(z) − z

]

.

Inverting the above formula, we obtain:

z =
w

x
= φ−1

[
x

C1

]

.

Returning to the initial variables, we obtain the separable equation

d y

d x
= xφ−1

[
x

C1

]

.

So the general solution to the equation (0.0.10) can be expressed in the form of quadrature

y =

∫

xφ−1
[
x

C1

]

d x+ C2.

The connections of the integrability (and the possibility of lowering order of higher-order ODE
) with invariant transformation properties of ODEs to be invariant under some transformations
were noticed for the first time by the outstanding Norwegian mathematician Sophus Lie at the
end of XIX-th sentury. He was familiar with the Galois’ theory giving the answer to the milestone
problem on when it is possible to express the roots of the n− th order algebraic equation

zn + an−1 z
n−1 + ...+ a0 = 0,

in terms of its coefficients. Basing on the group of permutaions, Galois explained why it is possible
to express the roots in therms of the polynomial equations of the order 2, 3 an 4 and is impossible
for the polynomial of the higher order. S.Lie wanted to make a classification of all integrable ODEs,
and for this purpose he put forward a concept of continuous groups, called afterward the Lie groups.
To these special groups an application of calculus is possible, which gives a very powerful tools for
investigations of the integrability of ODEs. Maybe the most brilliant idea of S. Lie is a treatment
of ODEs as some "surfaces" in the extended space or sa called jet spaces. As an example consider
the space (x, y, y′) ∈ R

3. In this space the differential equation

x2 + y2 +
[
y′]2 = ρ2, ρ ∈ R

can be treated as a sphere. Standing on this position, S. Lie observed that there is a chances
to integrate and ODE if the "surface" defined by this equation (or system of equations) possesses
sufficiently large symmetry, i.e. admits a family of diffeomorphisms of the form (0.0.6), mapping
this surface into itself.

Examples of the surfaces possessing the symmetry.

1. The spherical surface can be rotated with respect to any axis going through its center

2. The infinite cylindrical surface can be rotated with respect to the axis of symmetry and shift
along this axis

3. The infinite conical surface admits the rotations with respect to to the axis of symmetry.

Sophus Lie not only revealed connections between the methods of solving DE (ones known at
that time) and symmetry properties of the DE, but proposed an algorithmic method of solving
them, basing on the above concept of symmetry.

The plan of the course is following:
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a) We discuss the concept of the continuous (Lie) group of transformations acting on Euclidean
space R

n.

b) We introduce the notion of the Lie group of transformations and the concept of symmetry of
some geometric and analytical objects ( functions and surfaces).

c) Following Lie’s main idea, we apply all the concepts from the previous items to ODEs, pro-
longing the group action defined on the set of dependent and independent variables (x, y)
onto the set of finite order derivatives y′, y′′, ...y(n). After that we are able to define the
symmetry of ODEs in a very natural way, treating them as surfaces defined on the jet space
(

x, y, y′, ....y(n)
)

.

d) Next come the applications. Symmetry of ODEs enable us to obtain the particular solutions to
nonlinear ODEs, to disseminate already known solutions, to distinguish, e.g., all completely
integrable equations of the second order (a lot of another applications are known but we
hardly have time to stop on them).

Exercises.

Exercise 0.0.1. Show that Eq.

u
d2 u

dx2
− λ

[
d u

d x

]2

= 0

admits the transformation

x̄ = ea x, ū = eb u, a, b ∈ R.

Solution.

dū

dx̄
=
d eb u

dx

d x

d x̄
= eb−a

d u

d x
;

d2ū

dx̄2
=
d x

d x̄

d

d x
eb−a

d u

d x̄
= eb−2 ad

2 u

dx2
.

Hence

ū
d2 ū

d x̄2
− λ

[
d ū

d x̄

]2

= e2(b− a)

[

u
d2 u

dx2
− λ

[
d u

d x

]2
]

= 0.

Exercise 0.0.2. Show that Eq.

x2 d
2 u

dx2
− F

(

x
du

d x
− u

)

= 0

admits the transformation

x̄ = λ x, ū = u+ λx, λ ∈ R.

Solution.

dū

dx̄
=

d

d x

(
du

dx
+ λ

)
d x

dx̄
= λ−1

(
du

dx
+ λ

)

;

d2ū

dx̄2
=

d

d x
λ−1

(
du

dx
+ λ

)
d x

dx̄
= λ−2 d

2 u

dx2
.
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Hence

x2 d
2 u

dx2
− F

(

x
du

d x
− u

)

= (λx)2 d
2 u

dx2
λ−2 − F

[

λx

(
du

dx
+ λ

)

λ−1 − u− λx

]

=

= x2 d
2 u

dx2
− F

(

x
du

d x
− u

)

= 0.

Exercise 0.0.3. Show that Eq.

d y

d x
=

y

x(y + log x)

admits transformations

x̄ = x ea y, ȳ = y.

Solution.

d ȳ

d x̄
=

d y

d (x ea y)
=

d y

ea y d x+ a x ea y d yd x d x
=

d y
d x

ea y
(

1 + a x d yd x

) =

y
x (y+log(x))

ea y
[

1 + a x y
x (y+log(x))

] =
y

ea y [x(y + log(x)) + a y]
.

On the other hand,

ȳ

x̄ [ȳ + log(x̄)]
=

y

xea y [y + a y + log(x)]
=

y

ea y [x(y + log(x)) + a y]
,

which proves the statement.
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Chapter 1

Lie groups and Lie Algebras

1.1 A concept of a group

Definition 1.1.1. A group is a set G, together with a group operation ◦, such that:

a)

∀a, b ∈ G a ◦ b ∈ G (1.1.1)

b) (associativity)

∀a, b, c ∈ G (a ◦ b) ◦ c = a ◦ (b ◦ c) (1.1.2)

c) There is a distinguished element e ∈ G, called the unit element, which has the property that:

∀a ∈ G a ◦ e = e ◦ a = a (1.1.3)

d) (inverse element)

∀a ∈ G ∃a−1 ∈ G, such that a ◦ a−1 = a−1 ◦ a = e (1.1.4)

Example 1.1.1. The following structures are groups:

1. G = R\{0}, ◦ is multiplication

2. GL(n,R), a set of invertible n× n matrices with Gij ∈ R together with the matrice’s multi-
plication ◦

3. O(n,R) = {X ∈ GL(n,R) : XT ◦X = I}, a subset of orthogonal matrices

Exercise 1.1.1. Show that O(n,R) is closed with respect to ◦.

Proof.

(X ◦ Y )T (X ◦ Y ) = Y T ◦XT ◦X ◦ Y = Y T ◦ (XT ◦X) ◦ Y = Y T ◦ I ◦ Y = Y T ◦ Y = I
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1.2 A concept of a local one-parameter group of transformations

Let U ⊂ R
n be an open set and {Ta}a∈∆⊂R1 be a one-parameter family of transformations Ta :

U 7−→ R
n, given by the formula

(Tax)i = f i(x1, ..., xn; a), x = (x1, ..., xn), i = 1, ..., n,

such that f i is three times differentiable w.r.t xk variables and f ∈ C∞ w.r.t. the parameter a.
We assume in addition that {Ta} is locally closed in the following sense:

• There exists an open, non-empty set ∆′ ⊂ ∆, such that ∀x ∈ U,∀a, b ∈ ∆′, there exists a
number c ∈ ∆, such that

Tb ◦ Ta(x) ≡ Tb(Ta(x)) = Tc(x) (1.2.1)

• and there exists a function φ : ∆′ × ∆′ 7−→ ∆, such that φ(a, b) = c or

Tb(Ta(x)) = Tφ(a, b)(x). (1.2.2)

Definition 1.2.1. {Ta}a∈∆ is called a local 1-parameter group of transformations if

1. there exists a unit element e ∈ ∆′, such that Te is an identity transformation (∀x ∈ U Te(x) =
x), that is

∀a ∈ ∆′ φ(a, e) = φ(e, a) = a (1.2.3)

or, equivalently,

Ta ◦ Te(x) = Te ◦ Ta(x) = Ta(x). (1.2.4)

2. φ(·, ·) ∈ C3(∆′ × ∆′)

3. ∀a ∈ ∆′ the equation φ(a, b) = e has the unique solution b ∈ ∆′ and so is for φ(b, a) = e

Remark 1.2.1. If φ(a, b) = φ(b, a) we say that {Ta}a∈∆ is commutative (or Abelian) local group
of transformations. For some reasons (which will be explained later on) one can assume in this
case, that φ(a, b) = a+ b and e = 0. We say then, that a is a canonical parameter.

Theorem 1.2.1. There always exists a change of variable ā = f(a), such that ā is a canonical
parameter

Proof. Let the superposition Tc = Tb ◦ Ta be defined by the function c = φ(a, b).
If we take the second argument with the increment ∆b, such that |∆b| ≪ 1, then on virtue of
smoothness of φ, the parameter c will increase by a small increment ∆c.

c+ ∆c = φ(a, b+ ∆b) (1.2.5)

In terms of transformations we’ll have what follows:

Tc+∆c = Tb+∆b ◦ Ta. (1.2.6)

Multiplying by T−1
a ◦ T−1

b = T−1
c ≡ Tc−1 from the right, we get:

Tb+∆b ◦ (Ta ◦ T−1
a ) ◦ T−1

b = Tb+∆b ◦ T−1
b = Tc+∆c ◦ Tc−1 .
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In terms of function φ we’ll have what follows:

φ(c−1, c+ ∆c) = φ(b−1, b+ ∆b) (1.2.7)

Let us introduce a function

V (b) =
∂φ(a, b)

∂b
|a=b−1 (1.2.8)

From the Taylor’s series decomposition, we have:

φ(b−1, b+ ∆b) = φ(b−1, b) +
∂φ(a, b)

∂b
|a=b−1 ∆b+O(∆b2) (1.2.9)

Smoothness of φ implies that |∆c| and |∆b| are of the same order. Hence:

φ(c−1, c+ ∆c) = φ(c−1, c) +
∂φ(a, c)

∂c
|a=c−1 ∆c+O(∆c2) (1.2.10)

From (1.2.7),(1.2.9) and (1.2.10) we have:

V (c)∆c = V (b)∆b+O(|∆b|2)

Dividing this expression by ∆b and taking the limit ∆b → 0, we obtain:

V (c)
dc

db
= V (b) c = φ(a, b); φ(a, b)|b=e = a (1.2.11)

Now we introduce a function:

ā =

∫ a

e
V (s)ds (1.2.12)

Integrating (1.2.11) within the interval (e, b) we get for the l.h.s.:

∫ b

e
V (φ(a, s))

∂φ(a, s)

∂s
ds =

∫ b

e
V (φ(a, s))dφ(a, s) =

∫ c

a
V (σ)dσ

while for the r.h.s we have the integral
∫ b
e V (s)ds. Equating these integrals and taking into account

the identity
∫ c

e
() =

∫ a

e
() +

∫ c

a
(),

we get:

c̄ =

∫ c

e
V (s)ds =

∫ a

e
V (s)ds+

∫ c

a
V (s)ds =

∫ a

e
V (s)ds+

∫ b

e
V (s)ds ≡ ā+ b̄.

Example 1.2.1. Scaling group

x̄ = ax = Tax ⇒ ¯̄x = Tb(Tax) = bx̄ = bax, φ(a, b) = ab and e = 1.
A passage to canonical parameter:

V (b) =
∂

∂b
φ(a, b)|a=b−1= 1

b
=

∂

∂b
ab|a= 1

b
=

1

b

ā =

∫ a

1

ds

s
= ln a− ln 1 = ln a ⇒ a = eā

x̄ = Tāx = eāx ¯̄x = Tb̄x̄ = eā+b̄ = Tc̄x ⇒ c̄ = ā+ b̄

11



Exercise 1.2.1. Rotation group

(

x̄
ȳ

)

=

(

x cos a− y sin a
x sin a+ y cos a

)

Find out c = φ(a, b) and show that these transformations form a group.

Example 1.2.2. The group {Ta} : (0, ρ) × R
1 → R

2, ρ > 0, is given by the formula

Ta(x, y) = (x̄, ȳ) = (
x

1 − ax
,

y

1 − ax
).

Correspondingly, the composition Tb ◦ Ta acts as follows:

¯̄x =
x̄

1 − bx̄
=

x
1−ax

1 − b x
1−ax

=
x

1 − (a+ b)x

¯̄y =
ȳ

1 − bx̄
=

y
1−ax

1 − b x
1−ax

=
y

1 − (a+ b)x
.

Note that a natural set for the parameters’ values is ∆ = (−∞, 1/ρ) and, of course, a, b > 0 should
be taken from such set ∆′ ⊂ ∆ that a + b does not exceed 1/ρ. So this local group cannot be
extended to a global one.

1.3 Infinitesimal generator of a local Lie group. The first funda-

mental Lie’s theorem

Let

x̄k = fk(x; a) (1.3.1)

be a local Lie group and let a be the canonical parameter.

Definition 1.3.1. A. The function:

ξk(x) =
∂fk(x; a)

∂a
|a=0 k = 1, ...n (1.3.2)

is called the k-th coordinate of the infinitesimal generator (the IFG to abbreviate) of the group
(1.3.1).

B. The first order operator

X̂ =
n∑

k=1

ξk(x)
∂

∂xk
(1.3.3)

is called the Lie group infinitesimal generator (IFG).

We postpone with the explanation on why the operator X̂ is called so. Yet the notion "infinitesimal"
will be explained at once. In fact, for |a| << 1 the equation (1.3.1) can be written down in the
following form:

x̄k = xk + ξk(x)a+O(a2).

So the vector ξ(x) = (ξ1(x), ..., ξn(x)) does generate infinitesimal ( very small) Lie group transfor-
mations.

Examples of the IFG.
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Example 1.3.1. A. If x̄ = x+ a, ȳ = x y
x+a , then, using the definition, we easily get

X̂ =
∂

∂ x
− y

x

∂

∂ y

B. For the rotation group
x̄ = cos a x− sin a y, ȳ = sin a x+ cos a y we get

X̂ = −y ∂

∂ x
+ x

∂

∂ y
.

C. For the projective group x̄ = x
1−a x , ȳ = y

1−a x we obtain

X̂ = x2 ∂

∂ x
+ yx

∂

∂ y
.

Theorem 1.3.1. (the first fundamental Lie’s theorem)
The functions {f i(x; a)}ni=1 satisfy the initial value problem

∂f i(x; a)

∂a
= ξi(f(x; a)) f i(x; 0) = xi, i = 1, ...n. (1.3.4)

Conversely, for any smooth vector field {ξi(x)}nk=1 the initial value problem (1.3.4) defines a local
one-parameter group for which {ξi(x)}ni=1} is a set of coordinates of infinitesimal generator.

Proof. (⇒)
Using the fact, that Ta+∆a = Ta ◦ T∆a we have:

f i(x; a+ ∆a) = f i(f(x; a); ∆a) (1.3.5)

Now for a small ∆a we have two Taylor decompositions:

f i(x; a+ ∆a) = f i(x; a) +
∂f i(x; a)

∂a
∆a+O(∆a2) (1.3.6)

f i(f(x; a); ∆a) = f i(f(x; a); 0) +
∂f i(f(x; a); ∆a)

∂∆a
|∆a=0∆a+O(∆a2) =

= f i(f(x; a)) + ξi (f(x; a)) ∆a+O(∆a2). (1.3.7)

We equalize (1.3.6) and (1.3.7), divide both sides of the equation obtained this way by ∆a and
then take the limit directing ∆ toward zero. Finally, we get:

∂f i(x; a)

∂a
= ξi(f(x; a))

with the additional condition f i(x; a)|a=0 = xi

Proof. (⇐)
We know1, that for any set of smooth functions ξk(x) the system

dx̄k

da
= ξk(x̄) x̄k(0) = xk k = 1, ...n (1.3.8)

1see, e.g., Ph. Hartman, Ordinary Differential Equations, Ch. II, John Wiley and Sons, New York, 1964
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has a local solution which can be designated as x̄(a) = f(x; a) = Ta x. So the statement will be
proved if we show that Tb(Tax) = Ta+bx. Let us introduce the following functions:

yi(b) := f i(f(x; a); b), zi(b) := f i(x; a+ b)

Differentiating these functions and using the initial conditions we will have:

∂yi

∂b
=
∂f i(f ; b)

∂b
= ξi(y) yi(0) = f i(f ; 0) = f i(x; a)

and
∂zi

∂b
=
∂f i(x; a+ b)

∂b
=
∂f i(x; τ)

∂τ
|τ=a+b = ξi(f i(x; τ))|τ=a+b = ξi(z)

zi(0) = f i(f ; a+ 0) = f i(x; a)

So, up to the notation, both of the functions satisfy the same initial value problem and, therefore,
on virtue of the uniqueness of the solution to the i.v.p., Tb ◦ Ta = Ta+b. The statement about the
coordinates of the IFG appears from the fact that the functions f i(x; a) satisfy (1.3.8).

Example 1.3.2. (reconstructing the transformations x̄,ȳ from the coordinates of infinitesimal gen-
erator)

Let the coordinates of the IFG for the family of transformations Ta : R2 −→ R
2 are as follows:

ξ1 = 1 ξ2 = −y

x
.

Then solving the equation
dx̄

da
= 1 x̄(0) = x

we obtain that x̄ = C + a with C = x. so that x̄ = x+ a. Next we solve the equation

dȳ

da
= − ȳ

x̄
= − ȳ

x+ a
ȳ(0) = y.

Separating variables, next integrating and taking into account the initial conditions, we finally get
ȳ = xy

x+a .

In order to show that this is a group, we consider the superposition of transformations:

¯̄x = x̄+ b = x+ (a+ b) = x+ φ(a, b)

¯̄x = x̄ȳ
x̄+b =

(x+a) xy

x+a

x+a+b = xy
x+φ(a,b) .

Exercise 1.3.1. Find the one-parameter groups of transformations and canonical coordinates cor-
responding to the IFG

X̂1 = x
∂

∂ x
+ y

∂

∂ y
,

X̂2 = x
∂

∂ x
− y

∂

∂ y
,

X̂3 = x2 ∂

∂ x
+ y2 ∂

∂ y
.

14



1.4 Canonical coordinates

Suppose that a one parameter group Ta

x̄k = fk(x; a) = (Tax)k

with IFG

X̂ =
n∑

i=1

ξi(x)
∂

∂xi

acts on R
n. Let us consider a one-to-one and continuously differentiable change of coordinates

(diffeomorphism) F : Rn −→ R
n:

y(x) = (y1(x), ..., yn(x)) = F (x)

yi(x) = F i(x1, ..., xn) i = 1, ..., n
(1.4.1)

First of all, let us note, that Ta defines in the coordinates (y1(x), ..., yn(x)) a one-parameter set of
transformations

ȳi = Φi(y; a) := F i(f(x; a)) = F i(f(F−1(y); a)) (1.4.2)

Let us show, that (1.4.2) defines a Lie group. Acting on x ∈ R
n by two consecutive transformations

belonging to this family, we have:

¯̄yi = Φi(ȳ; b) = F i[f(x̄; b)] = F i[f(x; b+ a)] =

= F i[f(F−1(y); b+ a)] = Φi[y; a+ b].

Since (1.4.2) is a local Lie group, then it has an infinitesimal generator, which by definition is as
follows:

ηi(y) =
∂ȳi

∂a
|a=0 =

∂

∂a
F i(f(x; a))|a=0 =

n∑

k=1

∂F i

∂fk
∂fk(x; a)

∂a
|a=0 =

=
n∑

k=1

ξk(x)
∂F i

∂xk
= X̂F i(x) = X̂F i(F−1(y))

(1.4.3)

The above formula is very important, since it tells us how the coordinates of the IFG trans-
form under the nonsingular change of variables. One of the effective technical tools purposed
at solving ODEs admitting a Lie group is based on the search of so called canonical coordinates, in
which the IFG coordinates are as simple as possible.

Definition 1.4.1. A change of coordinates (1.4.1) defines a set of canonical variables for the one-
parameter Lie group {Ta} (with the generator X̂ =

∑n
k=1 ξ

k(x) ∂
∂xk ) if in terms of such coordinates

the group acts as follows:

ȳi = yi i = 1, ..., n− 1

ȳn = yn + a
(1.4.4)

Remark 1.4.1. If (y1, ..., yn) are canonical, then ηi(y) = δin.
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Example 1.4.1. Let us consider the scaling group

x̄1 = ea x, x̄2 = e2 a x2

with the generator

X̂ = x1
∂

∂ x1
+ 2x2

∂

∂ x2
.

To obtain the canonical coordinates, we should solve the system

X̂ y1 = 0, X̂ y2 = 1.

The characteristic form, of the first equation is as follows:

d x1

x1
=
d x2

2x2
=
d y1

0
.

Solving this system we conclude that y1 = ϕ(x2
1/x2). Solving then the characteristic system

d x1

x1
=
d x2

2x2
=
d y2

1

corresponding to the second equation, we get y2 = log x1 + ψ(x2
1/x2). Thus, the simplest form of

transformation we need is as follows:

y1 = x2
1/x2, y2 = log x1.

To make sure that we really obtained the canonical coordinates, it is sufficient to express the
operatot X̂ in new variables. Let us do this. Thus, we have:

∂

∂ x1
=
∂y1

∂ x1

∂

∂ y1
+
∂y2

∂ x1

∂

∂ y2
=

2x1

x2

∂

∂ y1
+

1

x1

∂

∂ y2
;

∂

∂ x2
=
∂y1

∂ x2

∂

∂ y1
+
∂y2

∂ x2

∂

∂ y2
= −x2

1

x2
2

∂

∂ y1
.

From this we obtain:

X̂ = x1

[
2x1

x2

∂

∂ y1
+

1

x1

∂

∂ y2

]

+ 2x2

(

−x2
1

x2
2

)

∂

∂ y1
=

∂

∂ y2
.

Exercise 1.4.1. Consider the following groups of transformations:

1. x̄1 = ea x1, x̄2 = e−a x2,

2. x̄1 = x1 + a, x̄2 = ea x2,

3. x̄1 = x1 + a, x̄2 = x1 x2
x1+a ,

4. x̄1 = x1
1−a x1

, x̄2 = x2
1−a x1

.

• Find the IFG in each case.

• Find the canonical coordinates.

Exercise 1.4.2. Consider the rotation group

x̄1 = x1 cos a− x2 sin a, x̄2 = x1 sin a+ x2 cos a.

Show that the change of coordinates

r =
√

x2
1 + x2

2, θ = arctan
x2

x1

defines a set of canonical variables.
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1.5 Invariants of the Lie group

1.5.1 Invariant functions

Suppose that {Ta}|a∈∆ is a Lie group acting on R
n.

Definition 1.5.1. A function F, mapping R
n into R

1 is called an invariant function for {Ta} if

F [Tax] = F [x] ∀a ∈ ∆ ∀x ∈ R
n.

Remark 1.5.1. In what follows, we use the notation:

TaF [x] := F [x̄] = F [Tax].

Theorem 1.5.1. A smooth function F : Rn −→ R
1 is an invariant function for Ta if and only if

X̂F [x] = 0 ∀x ∈ R
n, (1.5.1)

where X̂ = ξk(x) ∂
∂xk is the IFG of the group Ta.

Proof. (⇒)
Since TaF = F , then F [Tax] does not depend on a. Thus, we have:

∂

∂a
TaF [x]|a=0 =

∂

∂a
F [f(x; a)] =

n∑

j=1

∂F

∂fj

∂fj
∂a

|a=0 = X̂F [x] = 0

(⇐)
Assume that X̂F [x] = 0. This is true for any point x ∈ R

n, in particular this is true for x̄ = f(x; a)
that:

0 = X̂[x̄]F [x̄] =
n∑

i=1

ξi(x̄)
∂F

∂x̄i
=

n∑

i=1

∂F

∂x̄i
∂x̄i

∂a
=

∂

∂a
F [x̄]

But this mean that F [x̄] does not depend on a, so in particular:

F [x̄] = F [f(x; a)] = F [f(x; 0)] = F [x]

Example 1.5.1. Let us find out the function F [x, y], which is invariant w.r.t. the rotation group Ta:

x̄ = x cos a− y sin a ȳ = x sin a+ y cos a

We know that X̂ = −y ∂
∂x + x ∂

∂y . Applying the criterium (1.5.1), we have:

−yFx + xFy = 0

or in the form of the equivalent characteristic system:

dx

−y =
︸︷︷︸

1

dy

x
=
︸︷︷︸

2

dF

0

Solving the first two equations, we get the invariant x2 + y2 = Ω and hence F = ϕ
(
x2 + y2

)
.

Remark 1.5.2. Note, that any function ϕ(x, y) = Ω, such that X̂ϕ(x, y) = 0 is called the invariant
of the Lie group Ta characterized by the IFG X̂. So any smooth function F (ρ), where ρ =

√

x2 + y2

is the distance from the origin, is invariant with respect to the rotation group.
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Example 1.5.2. Let’s consider Ta : R
3 → R

3:

x̄ = eax ȳ = e2ay z̄ = e−az.

The IFG of this group is as follows:

X̂ = x
∂

∂x
+ 2y

∂

∂y
− z

∂

∂z
. (1.5.2)

The above remark tells us that a function F(x,y,z) is an invariant of the group Ta if F can be
presented as a smooth function of the independent invariants of the operator (1.5.2). We can find
out the independent invariants of X̂ by solving the characteristic system:

dx

x
=
︸︷︷︸

1

dy

2y
=
︸︷︷︸

2

dz

−z

It has two independent invariants:

1 ⇒ Ω1 =
y

x2

2 ⇒ Ω2 = yz2

So any function invariant w.r.t. (1.5.2) possesses the representation F (x, y, z) = Φ( y
x2 , yz

2)

Remark 1.5.3. The set of the functions{Ω1,Ω2} form a complete set of invariants of (1.5.2) in an
open set U ⊂ R

3 if

rank
∂(Ω1, Ω2)

∂(x, y, z)
|U = 2 = const.

Let’s calculate the Jacobi matrix for our case:

J =
∂(Ω1,Ω2)

∂(x, y, z)
=

(

− y
2x3

1
x2 0

0 z2 2yz

)

The rank of J is 2 in R
3\{0, 0, 0}.

Exercise 1.5.1. For the IFG

X̂ = x2 ∂

∂ x
+ x y

∂

∂ y
−
(

y2

4
+
x

2

)

z
∂

∂ z

find the set of independent first integrals (invariants). Show the general outlook of a function
admitting X̂4.

1.5.2 Invariance of an algebraic manifold

Definition 1.5.2. We say, that a set

M = {x ∈ R
n|ψν(x) = 0 ν = 1, ..., s < n} (1.5.3)

is a regular surface (or an algebraic manifold), if:

(a) ψν are smooth functions

(b) rank ∂(ψ1,...ψs)
∂(x1,...,xn) |M = s = const
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Definition 1.5.3. A regular surface (algebraic manifold) M, is an invariant surface for a one-
parameter Lie group of transformations x̄k = fk(x; a), a ∈ ∆ ⊂ R if:

∀a ∈ ∆ ∀x ∈ M f(x; a) ∈ M

Lemma 1.5.1. There exists a non-singular change of variables (diffeomorphism) yi = φi(x), such
that in new variables the algebraic manifold M is defined by the system of equations:

M |y = {(y1, ..., yn)|y1 = y2 = ... = ys = 0} (1.5.4)

Proof. (by construction)

Since rank ∂(ψ1,...ψs)
∂(x1,...,xn) |M = s, then it is possible to choose a sequence of indices 1 ≤ j1 ≤ j2 ≤ ... ≤

js ≤ n and the corresponding set of variables (xj1 , xj2 , ...xjs), such that the vectors:








∂ψ1

∂xj1
...

∂ψs

∂xj1







, ...,








∂ψ1

∂xjs

...
∂ψs

∂xjs








are linearly independent on M.

Let us perform the following change of variables:

x′
1 = xj1 , x

′
2 = xj2 ..., x

′
s = xjs , x

′
s+1 = xk1 , ..., x

′
n = xkn−s

,

where 1 ≤ k1 ≤ k2 ≤ ... ≤ kn−s ≤ n and (xk1 , xk2 , ....xkn−s
) is a set of variables complimentary for

{xji}si=1, i.e. a set (x1, ..., xn)\(xj1 , ..., xjs).

Now let us introduce the change of variables:






y1 = ψ̃1(x′
1, ..., x

′
s, x

′
s+1, ..., x

′
n) = ψ1(x1, ..., xn)

...

ys = ψ̃s(x′
1, ..., x

′
s, x

′
s+1, ..., x

′
n) = ψs(x1, ..., xn)

ys+r = x′
s+r 1 ≤ r ≤ n− s

In new variables M = {y ∈ R
n | y1 = ... = ys = 0}.

Let us show that the map x −→ x′ −→ y is a diffeomorphism. It is evident that

det
∂(y1, ....yn)

∂(x1, ...xn)
= det

∂(y1, ....yn)

∂(x′
1, ...x

′
n)

· det
∂(x′

1, ....x
′
n)

∂(x1, ...xn)
.

But det
∂(x′

1,....x
′
n)

∂(x1,...xn) is the determinant of the matrix of permutation

π

(

1, 2, ..., s, s+ 1, ..., n
j1, j2, ..., js, k1, ..., kn−s

)

,

which is equivalent to either +1 ora −1. Concerning the Jacobi matrix of the map x′ −→ y, we

have: det

(

∂(y1, ..., yn)

∂(x′
1, ..., x

′
n)

)

|M =
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= det



















∂ψ̃1

∂x′
1

. . . ∂ψ̃1

∂x′
s

∂ψ̃1

∂x′
s+1

... ∂ψ̃1

∂x′
n

...
. . .

...
...

. . .
...

∂ψ̃s

∂x′
1

. . . ∂ψ̃s

∂x′
s

∂ψ̃s

∂x′
s+1

... ∂ψ̃s

∂x′
n

0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0 1



















M =

= det

(

∂(ψ̃1, ..., ψ̃s)

∂(x′
1, ..., x

′
s)

)

|M 6= 0

Theorem 1.5.2. An algebraic manifold M, defined by (1.5.3), is invariant w.r.t. {Ta}a∈∆ with

IFG X̂ = ξi ∂
∂xj

, if and only if

X̂ψν |M = 0 ν = 1, ..., s (1.5.5)

Proof. (⇒)
If ∀a ∈ ∆ ψν [Tax] = 0, then

0 =
∂

∂a
ψν [Tax]|a=0 =

∂ψν

∂zj
|z=f(x;0)=x

∂zj
∂a

|a=0 =
∂ψν

∂xj
ξj(x) = X̂ψν |M .

(⇐)
On virtue of the lemma 1.5.1, we can assume that M is given by the set of equations

xν = 0, ν = 1, ..., s.

If X̂ = ξk(x) ∂
∂xk , then the equality 0 = X̂ψν |xµ=0,µ=1,...,s, takes the form:

n∑

j=1

ξj(x)
∂xν

∂xj
|M = ξj(x)δνj |M = ξν(0, ..., 0

︸ ︷︷ ︸

s

, xs+1, ..., xn) = 0. (1.5.6)

Now let us consider the Lie’s equations:







∂x̄ν

∂a = ξν(x̄1, ..., x̄n) x̄ν(0) = 0 ν = 1, ..., s

∂x̄s+µ

∂a = ξs+µ(x̄1, ..., x̄n) x̄s+µ(0) = xs+µ µ = 1, ..., n− s

(1.5.7)

The first s equations satisfy zero initial conditions and, besides,

ξν |a=0 = ξν(0, 0, ..., xs+1, ...xn) = 0, ν = 1, ...s. (1.5.8)

It is shown in any standard course of lectures on ordinary differential equations 2 that the solution
to the initial value problem (1.5.7) can be obtained as a limit xj(a) = limk→∞ xjk+1(a), where

xjk+1(a) = xj0 +

∫ a

0
ξj (xk(τ)) d τ, xj0 = x̄j(0) = xj .

2see e. g. K. Maurin, Analysis, Vol. 1, Ch. IX, Reidel, Boston 1976 (translation from Polish).

20



For j = 1, ...s we have on virtue of (1.5.8):

xj1(a) = xj0 +

∫ a

0
ξj (x0) d τ =

∫ a

0
ξj(0, 0..., 0
︸ ︷︷ ︸

s

, xs+1, ...xn) d τ = 0;

xj2(a) = xj0 +

∫ a

0
ξj (x1) d τ =

∫ a

0
ξj(0, 0..., 0
︸ ︷︷ ︸

s

, xs+1
1 , ...xn1 ) d τ = 0;

...................................................................................................

xjk(a) = xj0 +

∫ a

0
ξj (xk−1) d τ =

∫ a

0
ξj(0, 0..., 0
︸ ︷︷ ︸

s

, xs+1
k−1, ...x

n
k−1) d τ = 0.

Therefore the solutions of the first s equations will nullify:

x̄ν = fν(x, a) = 0, ∀x ∈ M, ∀a ∈ ∆, ν ∈ [1, ...., s],

which means that x̄ = (0, 0, ..., 0, x̄s+1, ...x̄n) ∈ M .

The geometric interpretation of the invariance of the function F (x1, ..., xn) and the surface
F (x1, ..., xn) = 0:
Let us consider the level surfaces F (x1, ..., xn) = C, C ∈ (a, b), corresponding to the function
F (·) invariant w.r.t. Ta with X̂ = ξj ∂

∂xj . The invariance condition

X̂F = ξj
∂F

∂xj
= 0

means that the vector field {ξ1(x), ..., ξn(x)} is perpendicular to the gradient ~gradF , which means,
that it is tangent to any level surface.
In the case of the algebraic manifold defined by the equation F (x1, ..., xn) = 0, the condition
X̂F |F=0 = 0 means that ~ξ is tangent to the only level surface F = 0.

Example 1.5.3. We know that any smooth function F (
√

x2 + y2) is invariant under X̂1 = −y ∂
∂x +

x ∂
∂y .

M : x2 + y2 = 1 is invariant w.r.t. X̂1 and, more generally, w.r.t:

X̂∞ = −y ∂
∂x

+ xf

(√

x2 + y2

)
∂

∂y

where f is any smooth function such that f(1)=1.

1.6 Exponential Map

Formal definition of the operator-valued function etX̂ , where X̂ =
∑n
k=1 ξ

k(x) ∂
∂ xk

is an IFG of a
one-parameter Lie group {Ta} acting in Rn is as follows:

Definition 1.6.1. By eaX̂ we mean the operator-valued function Rn 7→ Rn

exp [a X̂]x = f(x; a) = {fk(x; a)}nk=1

∀x ∈ Rn, ∀a ∈ ∆.

Properties of eaX̂ :

1. exp [a X̂] exp [b X̂]x = exp [(a+ b) X̂]]x = exp [b X̂] exp [a X̂]x.
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Proof. exp [a X̂] ◦ exp [b X̂]x = exp(aX̂)f(x; b) = f(f(x; b); a) =
= f(x; a+ b) = exp [(a+ b)X̂]x = f(f(x; a); b) = exp [bX̂] ◦ exp [aX̂]x.

2. exp [0 X̂]x = x (evident).

3. d
d a(exp [a X̂]x) = X̂

[

exp(a X̂)x
]

.

Proof.

d

d a
(exp [a X̂]x)k =

d x̄k

d a
= ξk(x̄) = ξj(x̄)

∂

∂ x̄j
x̄k = X̂

[

exp
(

a X̂
)

x
]k

for k = 1, 2, ...n.

4. exp (−aX̂)x = (exp aX̂)−1x.

Proof.

e−aX̂
[

e−aX̂x
]k

= e−aX̂fk (x, a) = fk (f(x, a); −a) = fk (x, a− a) = xk.

So e−aX̂ ◦ eaX̂ = I and hence e−aX̂ =
[

eaX̂
]−1

.

Definition 1.6.2. (formal definition) An operator-valued function exp aX̂ is the only solution
of the equation

d

d a
x = X̂ · x, x(0) = I,

where x = exp aX̂ is an element of a Banach space of linear operators L(Rn,Rn) which can be
formally defined as:

exp a X̂ = lim
n→∞

(
n∑

k=1

ak

k!
X̂k

)

(1.6.1)

where X̂kx = ˆXk−1(X̂x)

Example.
X̂ = ∂

∂ x .

ea ∂x x = x+ a,

where ∂x = ∂
∂ x .

Exercise 1.6.1. Calculate

exp[a X̂]

(

x
y

)

,

where X̂ = x2 ∂
∂ x + y2 ∂

∂ y .
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Exercise 1.6.2. Calculate

exp[a X̂]

(

x
y

)

,

where X̂ = x2 ∂
∂ x + x y ∂

∂ y .

Let’s consider the operator

X =





n∑

j=1

Ai j x
j




∂

∂ xi
, (1.6.2)

acting on Rn, where A = (Ai, j) is a matrix with constant coefficients.

Statement 1.6.1. The following formula holds true:

exp
(

a X̂
)

x = eaAx,

where

eaA = I + aA+
a2

2!
A2 + ....

Proof.

X̂ xk = Ai j x
j ∂x

k

∂ xi
= Ai j x

j δki = Ak j x
j = [Ax]k , k = 1, 2, ...n;

X̂2 xk = Amnx
n∂xmAk j x

j = Amnx
nAk jδ

j
m = AkmAmnx

n =
(

A2x
)k
.

Further, we use the method of induction. Assuming that X̂r xk = (Arx)k for k = 1, 2, ..., n, let us
calculate the action of X̂r+1 :

[

X̂r+1x
]k

= Ai jx
j∂xi [Ar]k s x

s = Ai jx
j δji [Ar]k s =

= [Ar]k sAs jx
j =

[

Ar+1
]

k j
xj =

[

Ar+1 x
]k
.

Hence

exp
(

a X̂
)

xk =

[(

I + aA+
a2

2!
A2 + ....

)

x

]k

=
[

eaA x
]k
.

Example 1.6.1. Let us calculate

eaX̂
(

x1

x2

)

,

where

X̂ = −x2
∂

∂ x1
+ x1

∂

∂ x2
.

The operator X̂ can be written down in the form (1.6.2) with

A =

(

0 −1
1 0

)

.
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It is easy to get convinced that

A2n+1 = (−1)nA, A2n = (−1)nI.

Hence

eaA =

(

0 −1
1 0

)(

a− a3

3!
+ ...+ (−1)n

a2n+1

(2n+ 1)!
+ ....

)

+

+

(

1 0
0 1

)(

a0 − a2

2!
+ ...+ (−1)n

a2n

(2n)!
+ ....

)

=

=

(

0 −1
1 0

)

sin a+

(

1 0
0 1

)

cos a =

(

cos a − sin a
sin a cos a

)

.

So we have reconstructed the action of the rotation group in R2.

Exercise 1.6.3. Calculate the one-parameter Lie group generated by the operator

X̂ = Ai jx
j ∂

∂ xi
, i, j = 1, 2, A1 2 = A2 1 = 1, Aii = 0.

1.7 Lie algebra of the infinitesimal generators

Suppose that some object (a function or an algebraic manifold) is invariant w.r.t. more than one
Lie group. Then we have two or more IFGs:

{X̂1, ...X̂k}

each corresponding to a local group T ia, i = 1, ..., k. A superposition of the one-parameter transfor-
mations Ta1 ◦ ...Tak

is a Lie group called the multi-parameter Lie group of transformations.
The set {X̂1, ...X̂k} occurs to be closed w.r.t. some algebraic operation called the Lie bracket (or
commutator).

Let

X̂ =
n∑

k=1

ξk(x)
∂

∂ xk

and

Ŷ =
n∑

k=1

ηk(x)
∂

∂ xk

be two different generators of one-parameter Lie groups {T ′
a}a∈∆′ , {T ′′

b }b∈∆′′ , acting on Rn.

Definition 1.7.1. The commutator (or the Lie bracket) of X̂ and Ŷ is the operator
[

X̂, Ŷ
]

acting

on any smooth function f : Rn 7→ R as follows:

[X̂, Ŷ ]f(x) = X̂
[

Ŷ f(x)
]

− Ŷ
[

X̂f(x)
]

.

Lemma 1.7.1. The commutator
[

X̂, Ŷ
]

is the first-order differential operator defined by the fol-

lowing formula:

[X̂, Ŷ ] =
n∑

j=1

[X̂(ηj) − Ŷ (ξj)]
∂

∂xj
(1.7.1)
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Proof

•

X̂[Ŷ (f)] =
n∑

i=1

ξi(x)
∂

∂ xi

n∑

j=1

ηj(x)
∂ f

∂ xj
=

=
n∑

i=1

ξi(x)
n∑

j=1

[

∂ ηj(x)

∂ xi

]

∂ f

∂ xj
+

n∑

i=1

n∑

j=1

ξi(x) ηj(x)
∂2 f

∂ xi ∂ xj
.

•

Ŷ [X̂(f)] =
n∑

i=1

ηi(x)
∂

∂ xi

n∑

j=1

ξj(x)
∂ f

∂ xj
=

=
n∑

i=1

ηi(x)
n∑

j=1

[

∂ ξj(x)

∂ xi

]

∂ f

∂ xj
+

n∑

i=1

n∑

j=1

ξj(x) ηi(x)
∂2 f

∂ xj ∂ xi
.

Substracting the left and right sides of the second equation from the first one, making the replace-
ment of the summation indices and taking into account the equality of the mixed derivatives, we
obtain as a result that

[X̂, Ŷ ]f =
∑

j

[X̂(ηj) − Ŷ (ξj)]
∂ f

∂xj
.

Defined above operation has the following properties, mostly arising directly from the definition.

1. Skew symmetry:

[X̂, Ŷ ] = −[Ŷ , X̂].

2. Bilinearity:

[α1X̂1 + α2X̂2, Ŷ ] = α1 [X̂1, Ŷ ] + α2 [X̂2, Ŷ ].

3. Jacobi identity:

[Ẑ, [X̂, Ŷ ]] + [X̂, [Ŷ , Ẑ]] + [Ŷ , [Ẑ, X̂]] = 0.

If the set of linearly independent first-order IFGs ℵ = {X̂1, X̂2, ....X̂m, } is closed with respect to
the operation [· , · ], i.e. for each pair X̂i, X̂j the following decomposition holds

[X̂i, X̂j ] =
n∑

k=1

cki j X̂k

for some numbers {cki j}i, j, k=1,....n, then the set ℵ is called an n-dimensional Lie algebra with the

basis (or basic elements) ℵ, while the constants cki j are called the structure constants.

Exercise 1.7.1. Show that the following properties of the structure constants are true:

cki j = −ckj i; (1.7.2)

cki i = 0. (1.7.3)
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The following statement holds true:

Theorem 1.7.1. Let the operators X̂ and Ŷ be the generators of one-parameter groups admitted
by the algebraic manifold M (or function f : Rn 7→ R). Then the first order operator [X̂, Ŷ ] is the
generator of a one-parameter group admitted by this manifold (or function).

Proof Without the loss of generality, we perform the proof assuming that X̂, Ŷ are symmetry
generators for manifold. We define a one parameter family of transformations mapping M into
itself by means of the formula

Ψ(x; a) = e
√
a X̂ e

√
a Ŷ e−√

a X̂ e−√
a Ŷ [x]. (1.7.4)

We are going to show that for small a this transformation can be presented in the form

Ψ(x; a)k = xk + a ηk(x) +O(|a|3/2), k = 1, ...n,

where the vector field {ηk(x)}nk=1 is tangent to the manifold M. Basing on the first fundamental
Lie theorem, we can, thus, conclude that the operator

n∑

k=1

ηk(x)
∂

∂ xk

is the generator of a one-parameter Lie group admitted by M.
We get the operator

∑n
k=1 η

k(x) ∂
∂ xk by decomposing the operators appearing in the right-hand

side of (1.7.4) in the Taylor series and grouping relevant terms:

(

e
√
a X̂ e

√
a Ŷ e−√

a X̂ e−√
a Ŷ
)

[x] =

=
[(

1 +
√
a X̂ + a

2X̂
2
) (

1 +
√
a Ŷ + a

2 Ŷ
2
)]

·
[(

1 − √
a X̂ + a

2X̂
2
) (

1 − √
a Ŷ + a

2 Ŷ
2
)]

[x]

=
(

1 +
√
a X̂ + a

2X̂
2 +

√
a Ŷ + a X̂ Ŷ + a

2 Ŷ
2 +O(|a|3/2)

)

·
(

1 − √
a X̂ + a

2X̂
2 − √

a Ŷ + a X̂ Ŷ + a
2 Ŷ

2 +O(|a|3/2)
)

[x] =
[

1 +
√
a
(

X̂ + Ŷ
)

+ a
2

(

X̂2 + 2 X̂ Ŷ + Ŷ 2
)]

·
[

1 − √
a
(

X̂ + Ŷ
)

+ a
2

(

X̂2 + 2 X̂ Ŷ + Ŷ 2
)]

[x] +O
(

|a|3/2
)

=
[

1 − a
(

X̂ + Ŷ
) (

X̂ + Ŷ
)

+ a
(

X̂2 + 2 X̂ Ŷ + Ŷ 2
)]

[x] +O
(

|a|3/2
)

=
[

1 − a
(

X̂2 + Ŷ 2 + X̂ Ŷ + Ŷ X̂
)

+ a
(

X̂2 + 2 X̂ Ŷ + Ŷ 2
)]

[x] +O
(

|a|3/2
)

=
{

1 + a
(

X̂ Ŷ − Ŷ X̂
)}

[x] +O
(

|a|3/2
)

= x+ a η(x) +O
(

|a|3/2
)

.

Tangency of the vector field {ηk(x)}nk=1 appear from the fact that the r.h.s of the formula (1.7.4)
defines the superposition of transformations mapping the manifold M into itself.

1.8 Examples of Lie algebras

It is convenient to present a finite-dimensional Lie algebra
{

X̂j

}n

j=1
in the form of commutator

table, whose (i, j)−th entry expresses the comutator [X̂i, X̂j ].

Remark 1.8.1. It is evident that the commutator table is skew-symmetric, since [X̂i, X̂j ] =
−[X̂j , X̂i].
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Example 1.8.1. For the set of operators {Xj}3
j=1

X1 = −y∂x + x∂y,
X2 = ∂x,
X3 = ∂y

the commutator table is as follows:

X1 X2 X3

X1 −X3 X2

X2 0

X3

Example 1.8.2. For the set of operators {Xj}4
j=1

X1 = −y∂x + x∂y,
X2 = ∂x,
X3 = ∂y,
X4 = x∂x + y∂y

the commutator table is as follows:

X1 X2 X3 X4

X1 −X3 X2 0

X2 0 X2

X3 X3

X4

Example 1.8.3. For the set of operators {Xj}3
j=1

X1 = ∂x,
X2 = x ∂x,
X3 = x2 ∂x

the commutator table is as follows:

X1 X2 X3

X1 X1 2X2

X2 X3

X3

Example 1.8.4. Let us verify if the following set of operators

X1 = x ∂x,
X2 = y ∂x,
X3 = ∂y,

is closed w.r.t. the Lie brackets and fill in this set if necessary. The commutators are as follows:

1.

[X1, X2] = [x ∂x, y ∂x] = −y(∂x x)∂x = −X2
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2.

[X1, X3] = [x ∂x, ∂y] = 0,

3.

[X2, X3] = [y ∂x, ∂y] = −(∂y y)∂x = −∂x := −X4.

So in order that the above set be closed, it should contain an extra operator X4 = ∂x. The set of
operators X1, ...X4 proves to be closed as it is is shown below:

[X1, X4] = [x ∂x, ∂x] = −(∂x x)∂x = −X4,

[X2, X4] = [y ∂x, ∂x] = 0,

[X3, X4] = [∂y, ∂x] = 0.

The commutator table for the operators X1, ...X4 is the following:

X1 X2 X3 X4

X1 −X2 0 −X4

X2 −X4 0

X3 0

X4

Exercise 1.8.1. Make the commutator table for the following set of operators:

X1 = x2 ∂x3 − x3 ∂x2 ,
X2 = x3 ∂x1 − x1 ∂x3 ,
X3 = x1 ∂x2 − x2 ∂x1 .

Exercise 1.8.2. [(a.)] Verify if the following operators

X1 = x ∂y + y ∂x,
X2 = −y ∂x + x ∂y

form a closed set with respect to the Lie bracket.
[(b.)] If the answer to [(a)] is negative, supplement the set X1, X2 with the missing operator(s)

and make the commutator table for the whole set of operators.
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Chapter 2

Groups admitted by the differential

equations

2.1 Introductory remarks

We’ll discuss here definition of symmetry which is applied to both PDEs and ODEs, because the
the formalism is identical in both of these cases (yet the applications are essentially different).

Let the group Ga acts on the space
(
x1, x2, ....xn; u1, ...um

)
∈ Rn+m, where xi are independent

variable, while uα are functions of xi. The group Ga action is defined as follows:

x̄k = fk(x, u; a) = xk + a ξk(x, u) +O(a2), k = 1, ....n, (2.1.1)

ūα = gα(x, u; a) = uα + a ηα(x, u) +O(a2), α = 1, ....m, (2.1.2)

where fk, gα are three times differentiable with respect to x and u and analytic functions with
respect to the group parameter a ∈ ∆ ⊂ R1,

ξk(x, u) =
(

∂fk/∂ a
)

|a=0, ηα(x, u) = (∂gα/∂ a) |a=0.

Remark 2.1.1. Note that temporarily we do not distinguish between the independent and depen-
dent variables, which enter the formulae (2.1.1), (2.1.2) on an equal footing.

Let us consider the manifold M defined in the extended space (the space of jets of r−th order)

(x, ; u, ∂ u, ∂2 u, ...∂r u)

by the system of equations

Rσ(x, u, ∂ u, ...∂r u) = 0, σ = 1, 2, ...s, (2.1.3)

where ∂k u denotes the set of all k-th order partial derivatives of the functions uα (we identify ∂ u
with ∂1 u in this context).

Definition 2.1.1. We say that a one-parameter group {Ga}a∈∆ , defined on the set of dependent
and independent variables by means of formulae (2.1.1)–(2.1.2), is admitted by (2.1.3) if it maps
each solution of (2.1.3) into some other solution of this system.

Let us try to understand what the definition 2.1.1 does mean. We can identify any given solution
u = ϕ(x) with its graph

Γϕ = {(x, ϕ(x)), x ∈ Ω ∈ Rn} ,
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Figure 2.1: Action of the operator Ta on the graph Γϕ

where Rn ⊃ Ω is an open set contained in the natural domain of the function ϕ. Acting with
Ta ∈ G{a} we get the graph

Ta ◦ Γϕ = (x̄, ū) = [f(x, u; a), g(x, u; a)]|(x, u=ϕ(x)) ∈ Γϕ
.

Remark 2.1.2. Since T0 = Id, then Ta ◦ Γϕ is also the graph of a function at least for sufficiently
small a.

Attempting to understand the above definition, let us address the example formulated as the
following statement:

Statement 2.1.1. Transformation
(

x̄
ū

)

=

(

x cos a −u sin a
x sin a u cos a

)

(2.1.4)

maps the solutions of the equation

uxx = 0. (2.1.5)

into itself.

Proof The general solution to the equation (2.1.5) takes the form

u(x) = Ax+B,

where A, B are the arbitrary constants. From the geometric viewpoint invariance means that the
rotation group maps the graph (x, Ax+B) into some other graph of this sort:

(x, Ax+B) → (x̄, Ā x̄+ B̄).

Let us show this analytically.
Applying the rotation group (2.1.4) to the pair (x, u) ∈ R2, where u(x) = ϕ(x) = Ax+ B, we

get:

(x̄, ū) = (x cos a− (Ax+B) sin a, x sin a+ (Ax+B) cos a)

Using the equality x̄ = x cos a− (Ax+B) sin a we can express the old variable in terms of the new
one:

x =
x̄+B sin a

cos a−A sin a
.
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Hence

ū = ϕ̃(x̄) =
x̄+B sin a

cos a−A sin a
(sin a+A cos a) +B cos a,

or

ϕ̃(x̄) = x̄
sin a+A cos a

cos a−A sin a
+B

(

sin a
sin a+A cos a

cos a−A sin a
+ cos a

)

= Ā x̄+ B̄ .

So the transformed function is linear in new variables and hence satisfies the equation

ūx̄ x̄ = 0.

Another definition of the invariance of DE is following. Let’s have the transformation group
(2.1.1), (2.1.2). We show in the following section that this transformation group defines automati-
cally the corresponding transformations

∂rūα

∂ x̄r1
1 ...∂ x̄

rn
n

= θαr1,...rn
(x, u, ∂u, ..∂ru; a), 1 ≤ r1 + ...+ rn ≤ r, (2.1.6)

rk ≥ 0, which, together with (2.1.1), (2.1.2) form the r − th extension G
(r)
a of the Lie group Ga,

acting on the space of jets of r − th order.

Definition 2.1.2. We say that the set of transformations G
(r)
a is admitted by the system

Rσ(x, u, ...∂ru) = 0, σ = 1, ...s. (2.1.7)

if for sufficiently small a (2.1.7) implies

Rσ(x̄, ū, ...∂rū) = 0, σ = 1, ...s.

Statement 2.1.2. The Galilei group

x̄ = x+ 2at, t̄ = t, ū = e−ax−a2t u (2.1.8)

is admitted by the transport equation

ut = uxx. (2.1.9)

Remark 2.1.3. The symbol uν here and henceforth stands for the partial derivative w.r.t. the
corresponding variable

Proof Assume that the function u = ϕ(t, x) satisfies (2.1.9). Let us express ū in new variables.
From (2.1.8) we can express the old independent variables by the new ones as follows:

x = x̄− 2 a t̄, t = t̄.

Thus, we have

ū = e−a(x̄−2 a t̄)−a2 t̄ ϕ(t̄, x̄− 2 a t̄).

Calculating the corresponding partial derivatives, we get

∂ū

∂t̄
= e−a(x̄−2 a t̄)−a2 t̄

{

a2ϕ+ ϕ1 − 2 aϕ2

}

,

∂ū

∂x̄
= e−a(x̄−2 a t̄)−a2 t̄ {−aϕ+ ϕ2} ,

∂2ū

∂x̄2
= e−a(x̄−2 a t̄)−a2 t̄ {−a (ϕ2 − aϕ) + ϕ2 2 − aϕ2} =

= e−a(x̄−2 a t̄)−a2 t̄
{

ϕ2 2 − 2 aϕ2 + a2ϕ
}

,
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where

ϕ1 =
∂

∂z1
ϕ(z1, z2)|z1=t̄, z2=x̄−2 a t̄, ϕ2 =

∂

∂z2
ϕ(z1, z2)|z1=t̄, z2=x̄−2 a t̄,

ϕ2 2 =
∂2

∂z2
2

ϕ(z1, z2)|z1=t̄, z2=x̄−2 a t̄.

So

∂ū

∂t̄
− ∂2ū

∂x̄2
= e−a(x̄−2 a t̄)−a2 t̄

{

a2ϕ+ ϕ1 − 2 aϕ2 − ϕ2 2 + 2 aϕ2 − a2 ϕ)
}

=

= e−a(x̄−2 a t̄)−a2 t̄ {ϕ1 − ϕ2 2} |z1=t̄, z2=x̄−2 a t̄ =

= e−a(x̄−2 a t̄)−a2 t̄ {ϕt − ϕxx} = 0.

2.2 Theory of prolongations

Let us remind that S.Lie proposed to consider DEs as manifolds in a jet space. But the local Lie
group acts on the n+m− dimensional space

(
x1, ...xn; u1...um

)
∈ Rn+m consisting of dependent

and independent variables. However, if a local 1-parameter Lie group is defined by the formulae

xk = fk(x, u; a) = xk + a ξk(x, u) + ..., k = 1, 2, ...n, (2.2.1)

uα = gα(x, u; a) = uα + a ηα(x, u) + ..., α = 1, 2, ....m (2.2.2)

then the equations (2.2.1)–(2.2.2) induce the transformations of the partial derivatives:

∂ūα

∂ x̄k
= θαk (x, u, ∂ u ; a) =

∂uα

∂ xk
+ a ζαk (x, u, ∂ u) + ..., (2.2.3)

∂2ūα

∂ x̄k∂ x̄j
= θαk,j(x, u, ∂ u, ∂

2 u; a) =
∂2uα

∂ xk ∂ xj
+ a ζαk,j(x, u, ∂ u, ∂

2 u) + ... (2.2.4)

.............................................................................................

Definition 2.2.1. The operator

X̂(r) =
n∑

k=1

ξk(x, u)
∂

∂ xk
+

m∑

α=1

ηα(x, u)
∂

∂ uα
+

∑

1≤ |J |≤ r

ζαJ (x, u, ∂ u, ...∂|J | u)
∂

∂ uαJ
,

J = (j1, j2, ...jn), j1 ≤ j2 ... ≤ jn, |J | = j1 + ... + jn , uαJ = ∂|J |
∂ xj1 ∂ xj2 ...∂ xjn

uα is called the r−th
prolongation of the generator

X̂ =
n∑

k=1

ξk(x, u)
∂

∂ xk
+

m∑

α=1

ηα(x, u)
∂

∂ uα
.

We are interested on how it is possible to find out ζαi1, i2, ,,,ik . The answer to this question gives
the statement formulated below.

Theorem 2.2.1. The following formula takes place

ζαj, i1,...ir = Dj ζ
α
i1,...ir − uαk, i1,...irDj ξ

k, (2.2.5)

where

Dj =
∂

∂ xj
+ uαj

∂

∂ uα
+ uαj,i1

∂

∂ uαi1
+ ....+ uαj,i1,...ik

∂

∂ uαi1, i2,...ik
+ ....
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Proof. Let’s begin with ζαk :

∂ūα

∂ x̄k
=

∂

∂ x̄k
[uα + a ηα(x, u)] +O(a2) =

∂

∂ xm
[uα + a ηα(x, u)]

∂ xm

∂ x̄k
+O(a2).

In order to calculate ∂ xm

∂ x̄k , we take advantage of the identity

x → x̄ → x,

giving rise to the equation

∂ xm

∂ x̄r
∂ x̄r

∂ xs
= δms ,

and the formula for the infinitesimal inverse transformation

xm = x̄m − a ξm(x̄, ū) +O(a2).

But

∂ x̄r

∂ xs
=

∂

∂ xs
[xr + a ξr(x, u)] +O(a2) = δrs + aDxs ξr(x, u) +O(a2),

while

∂ xm

∂ x̄r
=

∂

∂ x̄r
[x̄m − a ξm(x̄, ū)] +O(a2) = δmr − aDx̄r ξm(x̄, ū) +O(a2).

We claim that the last formula up to O(a2) is equivalent to

δmr − aDxr ξm(x, u).

Indeed, multiplying ∂ xm

∂ x̄r by ∂ x̄r

∂ xs and summing up over r, we get:

∂ xm

∂ x̄r
∂ x̄r

∂ xs
= [δmr − aDxr ξm(x, u)] · [δrs + aDxs ξr(x, u)] +O(a2) =

= δms +O(a2),

which proves our statement. Hence

∂ūα

∂ x̄k
=

∂

∂ xm
[uα + a ηα(x, u)] [δmk − aDxk ξm(x, u)] +O(a2) =

=
∂uα

∂ xk
+ a [Dk η

α − uαmDk ξ
m] +O(a2)

and the formulae of the first prolongation of IGF hold true.
Now we use the induction. Assume that (2.2.5) holds for all partial derivatives of the order

p ≥ 2. Then we have the following chain of equalities

∂

∂ x̄j
∂pūα

∂ x̄i1 ∂ x̄i2 ...∂ x̄ip
=

∂

∂ x̄j

[
∂puα

∂ xi1 , ∂ xi2 ...∂ xip
+ a ζαi1, i2,...ip

]

+O(a2) =

=
∂

∂ xk

[
∂puα

∂ xi1 ∂ xi2 ...∂ x
ip

+ a ζαi1, i2,...ip

]
∂ xk

∂ x̄j
+O(a2) =

=

[

∂p+1uα

∂ xk, ∂ xi1 , ∂ xi2 ...∂ xip
+ aDk ζ

α
i1, i2,...ip

]
[

δkj − aDxj ξk(x, u)
]

+O(a2) =
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=
∂p+1uα

∂ xj , ∂ xi1 ∂ xi2 ...∂ xin
+ a

[

Dj ζ
α
i1, i2,...in − uαk, i1, ...in Dj ξ

k
]

+O(a2) =

=
∂p+1uα

∂ xj ∂ xi1 ∂ xi2 ...∂ xip
+ aζαj, i1, i2,...ip +O(a2).

Hence

ζαj, i1, i2,...ip = Dj ζ
α
i1, i2,...ip − uαk, i1, ...ip Dj ξ

k.

Exercise 2.2.1. Show that the equation

∂ u

∂ x1
+ u

(
∂ u

∂ x2

)3

= 0,

u = u(x1, x2), admits the operators

X1 = u ∂
∂ u − 3x1

∂
∂ x1

,

X2 = 1√
u

∂
∂ u ,

X3 = 3x1
∂
∂ x1

+ x2
∂
∂ x2

.

2.3 Criterium of invariance. Splitting of defining equations

Let

F σ(x, u, ∂ u, ...∂ru) = 0, σ = 1, 2, ...s. (2.3.1)

be a system of PDEs (or ODEs), such that:

rank
∂
(
F 1, F 2, ...F s

)

∂ (x, u, ∂ u, ...∂ r u)

∣
∣
∣
∣
∣
Fσ=0

= s = const,

and let
x̄k = fk(x, u; a) = xk + a ξk(x, u) +O(a2), k = 1, ....n,
ūα = gα(x, u; a) = uα + a ηα(x, u) +O(a2), α = 1, ....m,
...

∂rūα

∂x̄1
r1∂x̄n

rn = uαr1...rn
+ aζαr1...rn

+O(a2), r = f1 + ...+ rn,

be r times prolonged 1-parameter group with the following IFG:

X̂ = ξk(x, u)
∂

∂ xk
+ ηα(x, u)

∂

∂ uα
+
∑

α

∑

1≤|J |≤r
ζαJ

∂

∂uαJ

where J = (j1, ..., jn), |J | = j1 + ...jn.

Definition 2.3.1. We say, that 2.3.1 admits this group if

X̂(r)F σ|Fσ=0.

According to the theorem, which gives us criterium of invariance of manifold, this condition is
necessary and sufficient.
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Example 2.3.1. Find out symmetry of the following equation:

u1 + uu3
2 = 0, (2.3.2)

where u = u(x1, x2), uk = ∂ u/∂ xk, k = 1, 2.

a) We are looking for the IFG generator

X̂ = ξ1(x1, x2, u)
∂

∂x1
+ ξ2(x1, x2, u)

∂

∂x2
+ η(x1, x2, u)

∂

∂u
.

The first prolongation of the generator is as follows:

X̂(1) = X̂ + ζ1
∂

∂ u1
+ ζ2

∂

∂ u2
,

where

ζ1 = η1 + ηu u1 − u1

(

ξ1
1 + ξ1

u u1

)

− u2

(

ξ2
1 + ξ2

u u1

)

,

ζ2 = η2 + ηu u2 − u1

(

ξ1
2 + ξ1

u u2

)

− u2

(

ξ2
2 + ξ2

u u2

)

.

b) Applying the criterium of invariance, we obtain:

X̂(1)
{

u1 + uu3
2

}

= ζ1 + η u3
2 + 3 ζ2 uu

2
2 = η1 + ηu u1 − u1

(

ξ1
1 + ξ1

u u1

)

− u2

(

ξ2
1 + ξ2

u u1

)

+ η u3
2 +

+3uu2
2

[

η2 + ηu u2 − u1

(

ξ1
2 + ξ1

u u2

)

− u2

(

ξ2
2 + ξ2

u u2

)]

.

c) Changing u1 with −uu3
2, we project the above expression on the manifold M : {u1 = −uu3

2},
after which the expression can be equated to zero:

η1 − uu3
2 ηu + uu3

2

(

ξ1
1 − ξ1

u uu
3
2

)

− u2

(

ξ2
1 − uu3

2 ξ
2
u

)

+ η u3
2 +

+3uu2
2

[

η2 + ηu u2 + uu3
2

(

ξ1
2 + ξ1

u u2

)

− u2

(

ξ2
2 + ξ2

u u2

)]

. (2.3.3)

Now, let us note that Eq. (2.3.3) contains the terms uk2, while the unknown functions ξ1, ξ2, η
depend only on the variables x1, x2, u. So the equation (2.3.3) can be treated as the polynimial
in the variable u2. But, like any other polynomial equation, (2.3.3) is equal to zero, if all the
coefficients of different powers of u2 are zero. Equating the coefficients of the corresponding powers
uk2, k = 0, 1, ...6 we get the following system of linear PDEs:

u6
2 :

−u2ξ1
u + 3u(uξ1

u) = 0 (2.3.4)

u5
2 :

3u(uξ1
2) = 0 (2.3.5)

u4
2 :

uξ2
u + 3u(−ξ2

u) = 0 (2.3.6)
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u3
2 :

−uηu + uξ1
1 + η + 3u(ηu − ξ2

2) = 0 (2.3.7)

u2
2 :

3u(η2) = 0 (2.3.8)

u1
2 :

−ξ2
1 = 0 (2.3.9)

u0
2 :

η1 = 0 (2.3.10)

Thus we’ve performed the procedure of splitting of the defining equation which, as a role, leads to
the overdetermined system of PDEs. Now, employing all of the above equation but (2.3.7), we
easily conclude that

ξ1 = ξ1(x1), ξ2 = ξ2(x2), η = η(u).

Inserting this into the equation (2.3.7) we obtain:

η(u) + 2uη̇(u) = 3uξ̇2(x2) − uξ̇1(x1)

This implies:
η(u) + 2uη̇(u)

u
= C1 = 3 ξ̇2(x2) − ξ̇1(x1)

Solving the homogenous equation

d η̃(u) d u

η̃(u)
= − 1

2u

we obtain that η̃(u) = C/
√
u. Then inserting the ansatz η = C(u)/

√
u in accordance with the

method of variation of constance into the inhomogeneous equation

η(u) + 2uη̇(u)

u
= C1

we obtain the following solution:

η =
C2√
u

+
1

3
C1u (2.3.11)

Sepatating variables in the equation C1 = 3 ξ̇2(x2) − ξ̇1(x1), we get:

C1 + ξ̇1(x1) = 3ξ̇2(x2) = 3C3

Equating the second term to the third one we obtain, after one integration:

ξ2(x2) = C4 + C3x2. (2.3.12)

Equating the first term to the third one, and integrating w.r.t x1, we get:

ξ1(x1) = (3C3 − C1)x1 + C5. (2.3.13)

Using the independence of the constants, and putting in (2.3.11)–(2.3.13) each time only one of
them not equal to zero, we obtain the coordinates of five IFG admitted by (2.3.2). This way we
get the following independent generators:
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• X̂1 = u ∂
∂u − 3x1

∂
∂x1

,

• X̂2 = 1√
u
∂
∂u ,

• X̂3 = 3x1
∂
∂x1

+ x2
∂
∂x2

,

• X̂4 = ∂
∂x2

,

• X̂5 = ∂
∂x1

.

Remark 2.3.1. The operators X̂1, .... , X̂5 form a closed Lie algebra with the following commutator
table:

X1 X2 X3 X4 X5

X1 −3X2/2 0 0 0

X2 0 0 0

X3 −X4 −3X5

X4 0

X5

Exercise 2.3.1. 1. Show that the operators X̂4 = ∂
∂ x1

, X̂5 = ∂
∂ x2

are non-prolongable in the

sense that X̂
(1)
k = X̂

(2)
k = ... = X̂

(s)
k = .. = X̂k, k = 4, 5.

2. Find the first prolongation of the operators X̂1, ...X̂3 and show that Eq. (2.3.2) admits the
corresponding transformation groups in the sense of definition 2.3.1.

Example 2.3.2. Let us find the symmetry of the second order ODE

uxx = u2, (2.3.14)

where u = u(x), x ∈ R. We are looking for the IFG generator

X̂ = ξ(x1, u)
∂

∂x
+ η(x, u)

∂

∂u
.

Since (2.3.14) is the second-order ODE, we should make the second prolongation of the generator
X̂, which is as follows:

X̂(1) = X̂ + ζx
∂

∂ ux
+ ζxx

∂

∂ uxx
,

where

ζx = ηx + ηu ux − ux (ξx + ξu ux) ,

ζxx = Dx (ζx) − uxxDx (ξx) = ηxx + ηxu ux + uxx ηu + ux (ηxu + ηuu ux) −
−uxx (ξx + ξu ux) − ux [ξxx + ξxuux + uxxξu + ux (ξxu + ξuu ux)] − uxx (ξx + ξu ux) .

The defining equation is then as follows:

ζxx − 2uη|(2.3.14) =

= ηxx + ηxu ux + u2 ηu + ux (ηxu + ηuu ux) −
−u2 (ξx + ξu ux) − ux

[
ξxx + ξxuux + u2ξu + ux (ξxu + ξuu ux)

]
− u2 (ξx + ξu ux) − 2u η = 0.

The above equation contains the terms ukx, k = 0, 1, 2, 3 while the unknown functions ξ, η depend
only on the variables x, u. So, in order to satisfy the equation, we should equalize to zero the
coefficients of the powers of ux. as a result of applying the ”splitting” procedure, we get the
following system of defining equations:
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u3
x :

−ξuu = 0, (2.3.15)

u2
x :

ηuu − 2 ξxu = 0, (2.3.16)

u1
x :

2 ηxu −
[

ξxx + 3 u2 ξu
]

= 0, (2.3.17)

u0
x :

ηxx + u2 ηu − 2u2 ξx − 2u η = 0. (2.3.18)

Solving equation (2.3.15), we get

ξ = A(x) + uB(x).

Inserting ξ into the equation (2.3.16) and then integrating twice, we get

η = u2 Ḃ(x) + u f(x) + g(x).

Inserting expression for η and ξ into (2.3.17) we obtain the equation polynomial in u:

2
{

2u B̈ + ḟ
}

= 3u2B + Ä+ u B̈.

Equating to zero the coefficients of the different powers of u and solving differential equations
appeared this way, we conclude that B = 0, while f = Ȧ/2 + C1, Thus, we obtain the formulae

ξ = A(x), η = u

[

C1 +
1

2
Ȧ

]

+ g(x).

Inserting them into (2.3.18), we obtain the second order polynomial in u variable. Equating to zero
the coefficients of different powers of u and solving the system obtained this way, we finally get the
following expression for the IFG coordinates:

ξ = C2 − 2
5 C1 x, η = 4

5 C1 u. (2.3.19)

The independent generators corresponding to this solution are as follows:

X̂1 = 2u ∂
∂ u − x ∂

∂ x ,

X̂2 = ∂
∂ x .

Since the operator X̂2 is non-prolongable, it is evident that the equation (2.3.14) which is indepen-
dent on x admits this generator. Now let us show that X̂1 is admitted by (2.3.14) as well. Acting

on this equation with two times prolonged operator X̂
(2)
1 , we get:

{

4uxx
∂

∂ uxx
+ 3ux

∂
∂ ux

+ 2u ∂
∂ u − x ∂

∂ x

} (
uxx − u2

)
|(2.3.14) =

4
(
uxx − u2

)
|(2.3.14) = 0.

38



Chapter 3

Applications to Ordinary Differential

Equations

3.1 Symmetries and integrability of the first order ODEs

As it was mentioned in the introduction, ordinary differential equations and the problem of their
integrability in quadratures served as a source of inspirations for the creator of the Lie groups
theory. The use of the theory of the Lie groups of transformations in the case of ordinary differential
equations is the most fruitful. For example, existence of a one-parameter symmetry group admitted
by the n− th order scalar ODEs implies the possibility of lowering the order of the equation by one.
If the scalar equation of the n-th order admits an n-parameter symmetry group, then under certain
algebraic conditions posed on the generators of that group, this equation is completely integrable
in quadratures.

3.1.1 Application of the Lie groups in integrating scalar first-order ODEs

We begin the discussion on the relation between the symmetry and integrability, starting with the
scalar first order ODEs. The algorithm of finding the generators of one-parameter groups admitted
by the scalar first-order ODE does not differ from the general situation. Yet the family scalar first-
order equations is atypical, since the use of the standard Lie algorithm described in the previous
section is not effective in this case.

Let us demonstrate this. We’ll consider the general first-order ODE in the form

ux − F (x, u) = 0. (3.1.1)

The symmetry group’s generator will be sought in the following form:

X̂ = ξ(x, u)
∂

∂ x
+ η(x, u)

∂

∂ u
.

Extending it one time, we obtain the operator

X̂(1) = X̂ + ζx
∂

∂ ux
ζx = ηx + ux (ηu − ξx) − (ux)2 ξu.

Acting then with this operator on the equation (3.1.1) and using the criterium of invariance, we
get:

X̂(1) [ux − F (x, u)] |(3.1.1) = ηx + ux [ηu − ξx − ξu ux] − ξ Fx − η Fu |(3.1.1) =

= ηx + F (x, u) [ηu − ξx − ξu F ] − ξ Fx − η Fu = 0. (3.1.2)
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We see that the above equation does not include the powers of derivative ux, since they have been
removed during the procedure of projecting onto the manifold (3.1.1). So we face the situation when
the integration of the ”unsplitted” defining equation (3.1.2) is not easier than solving the source
equation (3.1.1) Therefore, in the case of first order ODEs the Lie theory is used in somewhat
reversing order, namely, starting from the knowledge of symmetry rather than of its search.

Putting aside the question of finding symmetry, let’s concentrate on how can we use a known
symmetry group for the purpose of obtaining solution. Two methods of integrating scalar first-order
ODEs using symmetries are most often used.

The first method. Straightening the vector field. If the map (x, u) → (t, s) is a diffeo-
morphism, then the operator X̂ = ξ(x, u) ∂

∂ x + η(x, u) ∂
∂ u in new variables will have the form

X̂|(t,s) = X̂[t]
∂

∂ t
+ X̂[s]

∂

∂ s
.

Straightening of the vector field consists in posing the conditions

X[t] = 0, X[s] = 1. (3.1.3)

If these conditions are fulfilled, then X̂|(t,s) = ∂
∂ s . Since the translation operator is non-prolongable,

this means that a passage to new variables leads to the equation whose r.h.s is independent of s:

d s

d t
= F̃ (t). (3.1.4)

Indeed, if the general scalar first-order ODE

st − F (t, s) = 0

admits X = ∂
∂ s = X(1), then

∂s {st − F (t, s)} = −Fs(t, s) = 0

hence F = F (t).
The general solution to the equation (3.1.4) is obtained by one integration:

s =

∫

F̃ (t) d t+ C.

Example 3.1.1. Equation of the form

d u

d x
= F

(
u

x

)

admits the scaling group x̄ = ea x, ū = ea u with the IFG

X̂ = x
∂

∂ x
+ u

∂

∂ u
.

Solving the equation (3.1.3) we get:

t =
u

x
, s = log x.

Under such a change of variables the equation transforms into

d s

d t
=

1

F (t) − t
.
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Integrating this equation, we obtain the solution in the form of quadrature

s = C +

∫
d t

F (t) − t
.

Let us assume that F [z] = z + z2. Then the solution can be expressed explicitely as

s = C − 1

t

In the initial variables it takes the form

u =
x

C − log x
. (3.1.5)

Method of integrating factor. The equation (3.1.1) can be presented (in many ways) in the
form of total differential equation

P (x, u) d x+Q(x, u) d u = 0 (3.1.6)

(called also the Pfaffian form) so that F (x, y) = −P/Q. The equation is called exact if

∂ P

∂ u
=
∂ Q

∂ x
. (3.1.7)

Fulfillment of this condition in some simply connected domain Ω implies that the equation (3.1.6)
is a differential of some function R(x, y). In this case the solution can be obtained in implicit form
R(x, y) = C by solving the equation

∂ R

∂ x
= P,

∂ R

∂ u
= Q.

or taking of the both sides of the equation (3.1.6) the line integral which is independent of the path
of integration.

If (3.1.6) is not exact, we can try to find out an integrating factor µ(x, u) such that when
multiplied by µ the equation becomes exact.

Theorem 3.1.1. Suppose that the equation

d u

d x
+
P (x, u)

Q(x, u)
= 0 (3.1.8)

admits a one-parameter symmetry group with IFG X̂ = ξ ∂
∂ x + η ∂

∂ u . Then the function

µ =
1

ξ P + η Q

is an integrating factor for the (equivalent) Pfaffian form (3.1.6).

The proof of the theorem is left to the reader as an exercise. Hint: Apply the criterium of
invariance to the equation (3.1.8) and then compare equation obtained to the equality

∂

∂ u

[
P

ξ P + η Q

]

=
∂

∂ x

[
Q

ξ P + η Q

]

.
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Example 3.1.2. The equation

d u

d x
=

(
u

x

)2

+

(
u

x

)

from the previous example can be presented in equivalent Pfaffian form

u(x+ u) d x− x2 d u = 0.

In accordance with the theorem 3.1.1, the function

µ =
1

ξP + η Q
=

1

xu2

is the integrating factor. Therefore the equation

1

xu2

[

u(x+ u) d x− x2 d u
]

=
x+ u

xu
dx− x

u2
d u = 0

is the total differential equation and therefore the line integral of the l.h.s does not depend on
the path of integration. We shall reconstruct the function R(x, u) by integration the l.h.s along
the segment connecting the point (1, 1) with (x, 1) and next along the segment connecting the
point (x, 1) with the point (x, y). Thus, we obtain:

R(x, u) =

∫ x

1

s+ 1

s
d s−

∫ y

1

x

τ2
d τ =

x

u
+ log x = C.

The result obtained coincides with the previous one (cf. with the formula (3.1.5)).

3.1.2 Inverse problem of the group analysis applied to scalar first order differ-

ential equations

In view of the fact that determining symmetry of a scalar first order ODE, generally speaking, is
impossible, we turn around the problem and ask the complementary question: What is the most
general type of scalar first order ODE which admits a given group as a group of symmetry?

Let us remind that a general scalar first order ODE admits a symmetry group Ga if and only if
this equation treated as an expression defining the algebraic manifold in the jet space (x, u, ux) ∈
R3, is invariant under the first prolongation G

(1)
a of this group. We reformulate the definition of

invariance into more appropriate terms

Definition 3.1.1. Let ϕ1(x), ϕ2(x), .... , ϕk(x) be a smooth functions defined on a manifold M .
Then

(a) ϕ1(x), ϕ2(x), .... , ϕk(x) are called functionally dependent if for eqach x ∈ M there is a
neighborhood U of x and a smooth real-valued function F (z1, z2, ... , zk) not identically zero

on an open subset of Rk such that F
(

ϕ1(x), ϕ2(x), .... , ϕk(x)
)

= 0 for all x ∈ U.

(b) ϕ1(x), ϕ2(x), .... , ϕk(x) are called functionally independent if they are not functionally de-
pendent.

Example 3.1.3. ϕ1(x, y) = x
y and ϕ2(x, y) = x y

x2+y2 are functionally dependent on
{
(x, y) ∈ R2 |y 6=0

}

since

x y

x2 + y2
=

x
y

1 +
(
x
y

)2 = Φ

(
x

y

)

.
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Let us remind, that an algebraic manifold defined by the equation F (x) = 0, where F (x) is the
function acting from Rn to R is invariant under the action of a one-parameter group Ga with IFG
X̂ = ξk ∂k if and only if X̂F (x) |F=0 = 0. Before turning to the application of inverse problem of
the group analysis to the scalar first-order ODEs, we need to formulate some facts concerning the
invariants of differential operators.

Definition 3.1.2. An arbitrary first integral ϕ(x) = c of the system

d x1

ξ1(x)
=

d x2

ξ2(x)
= ... =

d xn
ξn(x)

= d t, (3.1.9)

associated with the differential operator X̂ =
∑n
i=1 ξi(x) ∂

∂ xi
, is called the invariant (or character-

istics) of the operator X̂.

Lemma 3.1.1. If ϕ(x) = c is an invariant of X̂, then X̂ ϕ(x) = 0.

Proof Differentiating the expression ϕ(x) = c and taking advantage of (3.1.9), we obtain:

dϕ(x) =
∂ ϕ

∂ xi
d xi =

∂ ϕ

∂ xi
ξi d t = X̂ ϕ(x) d t = 0.

But this is possible if and only if X̂ ϕ(x) = 0.

Theorem 3.1.2. ([6], Ch. 5). Suppose that ϕ1(x) = c1, ϕ
1(x) = c1, ..., ϕ

n−1(x) = cn−1 is
the (complete) set of independent invariants of the operator X̂. Then the general solution of the
equation

X̂ z(x) =
n∑

i=1

ξi
∂

∂ xi
z(x) = 0

takes the form z = Φ
(
ϕ1(x), ϕ2(x), ..., ϕn−1(x)

)
, where Φ is an arbitrary smooth function.

Corollary 3.1.1. Suppose that the functions ϕ1(x, u, ux), ϕ2(x, u, ux) are two independent solu-
tions of the equation

X̂(1)ϕ(x, u, ux) = ξ(x, u)
∂ ϕ

∂ x
+ η(x, u)

∂ ϕ

∂ u
+ ζ1(x, u, ux)

∂ ϕ

∂ ux
= 0,

where X̂(1) is the first prolongation of the generator X̂ = ξ(x, u) ∂
∂ x+η(x, u) ∂

∂ u of the one-parameter
group of transformations Ga acting on R2. Then any scalar first order ODE

∆(x, u, ux) = 0

admits Ga if and only if there is an equivalent equation

∆̃(ϕ1, ϕ2) = 0

including only the independent invariants of the operator X̂(1).

Example 3.1.4. Let us find the general form of the scalar first order ODE admitting Ga with the
following IFG:

X̂ =
∂

∂ x
+
u

x

∂

∂ u
. (3.1.10)
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The first prolongation of the operator X̂ takes the form

X̂(1) = X̂ +
xux − u

x2

∂

∂ ux
.

Thus, in order to obtain the general outlook of equation admitting X̂(1), we should solve the system

d x

1
=
d u
u
x

=
d ux
xux−u
x2

.

Equating the first term to the second one, and solving the corresponding equation, we obtain the
first (zero-order) invariant ϕ1 = u/x. Equating the first term to the third term, using the zero-order
invariant, and then solving the corresponding equation, we obtain the second independent invariant

ϕ2 =
ux − u

x

x
.

These invariants cannot be functionally depepndend since only one of them depends on ux. So the
general scalar first order ODE admitting the operator (3.1.10) can be expressed in the form

ux =
u

x
+ xΦ

(
u

x

)

.

Example 3.1.5. Let us find the general form of the scalar first order ODE admitting Ga with the
following IFG:

X̂1 = u
∂

∂ x
. (3.1.11)

The first prolongation of the operator X̂1 takes the form

X̂
(1)
1 = X̂1 − u2

x

∂

∂ ux
.

In order to obtain the general outlook of equation admitting X̂
(1)
1 , we should solve the system

d x

u
=
d u

0
=
d ux
−u2

x

.

Equating the first term to the second term, and solving the corresponding equation, we obtain the
first (zero-order) invariant ϕ1 = u. Equating the first term to the third term, using the zero-order
invariant, and then solving the corresponding equation, we obtain the second independent invariant

ϕ2 =
x

u
− 1

ux
.

The general scalar first order ODE admitting the operator (3.1.11) can be presented in the form

ux =
u

x+ Φ(u)
.

Exercise 3.1.1. Find the general scalar first order ODE admitting Ga with the following IFG:

(a) X̂ = x2 ∂
∂ x + x y ∂

∂ y ;

(b) X̂ = x ∂
∂ y ;

(c) X̂ = x y ∂
∂ x .
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3.2 Higher-order ODEs: lowering order using symmetry

Let us consider the scalar n− th order ODE

F
(

x, u, ux, ..., u
(n)
)

= 0. (3.2.1)

The basic observation concerning Eq. (3.2.1) is following: If we know a one-parameter Lie group
admitted by (3.2.1), then we can reduce the order by one. It can be done, e.g., by straightening
vector field defined by the symmetry group generator

X̂ = ξ(x, u)
∂

∂ x
+ η(x, u)

∂

∂ u
.

This can be accomplished by passing to such variables (t, w) in which the operator takes on the
form

X̂|[t, w] =
∂

∂ w
.

The change of variables needed can be gained by solving the system

X̂(t) = 0, X̂(w) = 1.

After finding new variables, we express through them the old variables x, u(x), u′(x), .... u(n)(x) .
As a result, we obtain the ODE of the same order. We assume that it can be represented in the
form of solvable with respect to higher derivative:

dnw

d tn
= G

(

t, w,
dw

d t
, ...

dn−1w

d tn−1

)

. (3.2.2)

But in new variables X̂ = ∂
∂ w and, like any other operator with constant coefficients, it is non-

prolongable, i.e. X̂(n) = X̂ for all n. Using the main criterium of invariance we get:

X̂(n)
[

w(n) −G
(

t, w, dwd t , ...
dn−1 w
d tn−1

)]

|(3.2.2) =

= ∂
∂ w

[

w(n) −G
(

t, w, dwd t , ...
dn−1 w
d tn−1

)]

|(3.2.2) = −∂ G
∂ w = 0.

Hence G does not depend on w and, making change of variables z = w′, we obtain the equation of
order n− 1:

dn−1 z

d tn−1
= G

(

t, z
d z

d t
, ...

dn−2 z

d tn−2

)

.

Exercise 3.2.1. Consider equation

uxx + p(x)ux + q(x)u(x) = 0. (3.2.3)

As a linear homogeneous equation, (3.2.3) admits the scaling group

x̄ = x, ū = ea u

(show this). Pass to the corrdinates (t, w) in which the generator of the scaling group takes the form
X̂ |(t, w) = ∂ /∂ w and show then that the equation can be reduced by further change of dependent
variable z = wt to the Riccati-type first order ODE.
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Another way of employing symmetry in case of higher-order ODE is to take advantage of the
differential invariants.

Suppose we have a one-parameter group Ga

x̄ = f(x, u; a), ū = g(x, u; a)

with the IFG

X̂ = ξ(x, u)
∂

∂ x
+ η(x, u)

∂

∂ u
.

Definition 3.2.1. n − th order invariant of Ga is any smooth function Φ(x, u, u′, ...., u(n)) such
that

X̂(n)Φ = 0,

where X̂(n) is the n− th prolongation of the generator X̂.

Theorem 3.2.1. ([2],Ch.2). If t = f(x, u′, ...u(n)), w = g(x, u′, ...u(n)) are n− th order indepen-
dent invariants of Ga, then

dw

d t
=
Dxw

Dx t
(3.2.4)

is an invariant of n+ 1 − th order.

Remark 3.2.1. If t = f(x, u), w = g(x, u, u′) are independent zero-order and first-order invari-
ants, correspondingly, then

dw

d t
=
Dxw

Dx t

is the second-order (independent) invariant,

d2w

d t2
=
Dx

dw
dx

Dx t

is the third-order (independent) invariant, etc. Each subsequent invariant is independent, because
it contains the derivative higher than any previous invariant.

Now we formulate the assertion which is essential in employing the method of differential invari-
ants for lowering order of ODE.

Statement 3.2.1. If Ga is a one-parameter group of transformations, then any n− th order scalar
ODE having Ga as a symmetry group is equivalent to a (n− 1) − th order equation

∆̃

(

t, w,
dw

d t
, ....

dn−1w

d tn−1

)

involving the invariants t(x, u), w(x, u, u′) of the first prolongation G
(1)
a and their derivatives of

the order not higher than n− 1.

Example 3.2.1. Let us consider equation

x2 uxx + x (ux)2 − uux = 0. (3.2.5)

Let us verify if the equation (3.2.5) admits the scaling transformations

x̄ = ea x, ū = eb u.
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Inserting these transformations into the equation (3.2.5) written in new variables, we get:

ebux + e2 b−ax (ux)2 − e2b−2auux = 0.

The above equation will be equivalent to the initial one if b = a, so (3.2.5) admits the scaling group
with the generator

X = x
∂

∂ x
+ u

∂

∂ u
.

Now we are going to lowering order of Eq. (3.2.5) using the method of differential invariants. It
is easily see, that X(1) = X. Indeed, X(1) = X + ζx

∂
∂ ux,

but

ζx = Dx(u) − uxDx(x) = 0.

So in order to obtain two independent first order invariants, it is necessary to solve the characteristic
system

d x

x
=
d u

u
=
d ux

0
,

having the independent invariants t = u/x, w = ux. On virtue of the theorem 3.2.1 and the
following remark, expression

dw

d t
=
Dxw

Dx t
=

x2 uxx
xux − u

defines the independent second-order invariant of the symmetry group. Expressing uxx from the
above forula, we obtain:

uxx =
w − t

x

dw

d t
.

Now we return to the equation (3.2.5) and try to express it in new variables. Thus, we have:

0 = x2 uxx + x (ux)2 − uux = x2 w−t
x

dw
d t + xw2 − x tw =

= x
{

x 1
x(w − t)dwd t + w2 − t w

}

= x (w − t)
[
dw
d t + w

]

.

Assuming that x 6= 0 we get the equation expressed in terms of invariants of the scaling group
operator:

(w − t)

[
dw

d t
+ w

]

= 0.

This equation has two families of solutions: [(a)] the singular solution w = t and [(b)] the solution
w = C1 e

−t. Returning to the initial variables, we obtain in the case [(a)] the solution u = k x.
In the case [(b)] we are to solve the equation

ux = C1 e
− u

x ,

which, when the standard substitution z = u/x is used, turns into the separable equation

x
d z

d x
= C1 e

−z − z,

which has the implicit solution

log x+ C2 =

∫
d z

C1 e−z − z
, z =

u

x
.
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Example 3.2.2. Let us consider the equation

u′′ + u′ − u

x
= 0.

We are going to show that this equation admits the operator X = x ∂
∂ u , lower its order using the

method of differential invariants, and find its general solution.

Solving the equation

X(1)Φ ≡ x
∂ Φ

∂ u
+
∂ Φ

∂ u′ = 0,

we can find out two independent first-order invariants

t = x, u′ − u

x
= w.

Using the theorem 3.2.1 and the remark 3.2.1, we calculate the second-order invariant

dw

d t
= u′′ − w

t

and get the separate variables equation

dw

d t
+

(
1

t
+ 1

)

w = 0.

Integrating we obtain

w =
C1

x
e−x.

Passing to the initial variables we obtain the first-order linear ODE

u′ − 1

x
u =

C1

x
e−x,

which is solved by means of the method of variation of constant:

u = C2 x+ C1 x

∫
d x

x2
e−x. (3.2.6)

Exercise 3.2.2. Show that Eq.

uxx = (x− u) (ux)3

• admits Ga generated by X = ∂
∂ x + ∂

∂ u ;

• lower the order of this equation using the method of differential invariants.

Exercise 3.2.3. Show that Eq.

uxx − u− x2 = 0

• admits Ga with the generator X = ex ∂
∂ u ;

• lower its order by passing to the coordinates (t, s) in which the symmetry generator takes
the form X|t,s = ∂

∂ s and solve the equation.
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3.3 Integrating the second order scalar ODEs

3.3.1 One instructive example

Naive assumption: if one symmetry is needed to reduce a second-order ODE to the first-order ODE,
then any second-order ODE possessing two symmetries is completely integrable. But the point is
that we don’t know if the reduced equation maintains the other symmetry operator as the local Lie
group generator! To confirm our doubts or get rid of them, let us consider the equation (cf. with
Example 3.2.2 ):

uxx + ux − u

x
= 0. (3.3.1)

Lemma 3.3.1. The equation (3.3.1) admits

(a) one-parameter Lie group

x̄ = x, ū = u+ a x

with the generator

X̂1 = x
∂

∂ u
(3.3.2)

(b) one-parameter Lie group

x̄ = x, ū = eb u

with the generator

X̂2 = u
∂

∂ u
(3.3.3)

We leave the proof of this lemma to the reader as an exercise.

Te first way of reduction: we use the symmetry operator (3.3.2) and construct with its help
the change of variables

t = x, w =
u

x

straightening the vector field. Indeed,

X̂1 |t, w = X̂1[t]
∂

∂ t
+ X̂1[w]

∂

∂ w
=

∂

∂ w
.

Let us calculate ux, uxx in terms of t, w and the derivatives of w:

ux = d
d xxw = w + x dw

d t
d t
d x = w + t wt;

uxx = d
d t(w + t wt)

d t
d x = 2wt + t wtt.

Thus, we have:

0 = uxx + ux − u

x
= 2wt + t wtt+ = w + t wt − w = t wtt + (2 + t)wt.
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Making the substitution z = wt, we obtain the separable equation which after the integration gives
another separable equation

z =
dw

d t
= C1

e−t

t2
.

Performing the second integration, we finally obtain the general solution in the form of quadrature:

w = C2 + C1

∫
e−t

t2
d t.

After the passage to the initial variables, we obtain the solution (cf. with (3.2.6) ):

u = C2 x+ C1 x

∫
e−x

x2
d x.

Now let us calculate X̂2 in new variables:

X̂2 = u
∂

∂ u
= X̂2 (x)

∂

∂ t
+ X̂2

(
u

x

)
∂

∂ w
= w

∂

∂ w
.

So the second symmetry generator will survive as a Lie group generator after the change of variables
and we can use it to completely integrate the problem (yet it was not necessary in this particular
case).

Te second way of reduction: Let us take the operator X̂2 = u ∂
∂ u and use the method of

differential invariants. For this purpose we consider the characteristic equation

d x

0
=
d u

u
=
d ux
ux

,

corresponding to the first prolongation of the operator X̂2 :

X̂
(1)
2 = X̂2 + ux

∂

∂ ux
.

Equating the firs two terms, we obtain the invariant t = x. Equation the second term to third
term, we obtain the first order differential invariant w = ux/u. As the third independent invariant
we use the derivative

dw

d t
=
Dxw

Dx t
=
uuxx − u2

x

u2
(3.3.4)

Now let us return to the equation (3.3.1). Dividing it by u, we obtain:

uxx
u

+
ux
u

− 1

x
=
dw

d t
+ w(1 + w) − 1

t
= 0.

which is not separable equation. The question is: can we use the operator X̂1 in order to solve the
above equation? The passage (x, u) → (t = x, w = ux/x), leading to invariant variables involves
the derivative ux, so we should prolong X1 one time to be able to calculate it in new variables:

X̂
(1)
1 = X̂1 + [Dx(x) − uxDx(0)]

∂

∂ ux
= x

∂

∂ u
+

∂

∂ ux
.

Thus,

X
(1)
1 |t, w =

(

x
∂

∂ u
+

∂

∂ ux

)

[x]
∂

∂ t
+

(

x
∂

∂ u
+

∂

∂ ux

)[
ux
x

]
∂

∂ w
=

1

u
(1 − t w)

∂

∂ w
.
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Inverting the formula w = ∂ log u/∂ x, and taking into account that t = x, we can express the
above operator in the form

X
(1)
1 |t, w = C e−

∫
w(t) d t(1 − t w)

∂

∂ w
.

This operator does not have the form of the local Lie group generator! So not only the number
of symmetry generators admitted is important. In addition, one should pay attention to
the structure of the Lie algebra used.

3.3.2 Remarks concerning Lie algebras

Definition 3.3.1. Let AGr be n−dimensional Lie algebra, and let N be a linear subspace of AGn.

[(a) ] N is called a subalgebra if
[X, Y ] ∈ N ∀ X, Y ∈ N.

[(b) ] N is called an ideal if
[X, Y ] ∈ N

for any X ∈ N and ∀ Y ∈ AGn.

if N is an idela then the equivalence relation can be introduced in AGn, namely X is in relation
with Y if X − Y ∈ N. The set of all operators equivalent to a given operator X is called the coset
represented by X. Every element of this coset has the form Y = X + Z, where Z ∈ N.

The coset forms a Lie algebra called the quotient algebra of AGn with respect to the ideal N .
The quotient algebra is denoted by AGn/N.

Theorem 3.3.1. Suppose that a m− th-order equation

∆(x, u, u′, ..., u(m)) = 0 (3.3.5)

admits the algebra AGn of the symmetry generators and N ⊂ AGn (with dim(N) < dim(AGn))
is an ideal. If we reduce the order of (3.3.5) using the infinitesimal symmetry generator belonging
to N, then the lower-order ODE obtained this way admits the quotient-algebra AGn/N, and the
further symmetry reduction is possible

3.3.3 Classification of the second order scalar ODEs admitting two-dimensional

Lie algebra

Any second-order ODE admitting a pair X1, X2 of symmetry groups’ generators occurs to be
completely integrable. To begin with, let us formulate the following statement:

Statement 3.3.1. Suppose we have two-dimensional Lie algebra AG2 with the generators X1, X2.
Then it is possible, using the linear transformation

X̃1 = α11X1 + α12X2,

X̃2 = α21X1 + α22X2,

to choose the basis in such a way that one of the following commutation relations holds: either

[X̃1, X̃2] = 0, (3.3.6)

or

[X̃1, X̃2] = X̃1. (3.3.7)

51



Proof If the two dimension algebra is commutative, then (3.3.6) takes place regardless of a
choice of the basic elements. So only non-commutative case is nontrivial. Let us assume that

[X1, X2] = α1X1 + α2X2.

and α1 6= 0 (if α1 = 0, then α2 6= 0, and our assumption will be fulfilled after renaming the
operators X1 → X2 X2 → X1 and constants α1 → α2, α2 → α1). Under such a supposition, we
introduce the new basis as follows:







X̃1 = α1X1 + α2X2,

X̃2 = 1
α1
X2.

Calculating the commutator, we get:

[X̃1, X̃2] = [α1X1 + α2X2,
1
α1
X2] = α1X1 + α2X2 = X̃1.

Thus, any two-dimensional Lie algebra AG2 is either commutative or contains the one-dimensional
ideal. In view of this remark, it becomes clear why in the example from the section 3.3.1 the re-
duction ends with success when we first use the operator X1 = x ∂

∂ u rather than X2 = u ∂
∂ u .

Indeed,

[X1, X2] = X1

and therefore it is the operator X1 that forms the ideal in the algebra span{X1, X2.}

Another essential characteristic of AG2, along with the commutation relations, is the pseu-
doscalar product.

Definition 3.3.2. For the generators

X1 = ξ1
∂
∂ x + η1

∂
∂ u ,

X2 = ξ2
∂
∂ x + η2

∂
∂ u

the pseudoscalar product is the map given by the following formula:

X1 ∨ X1 = ξ1 η2 − ξ2 η1 = det

[

ξ1, η1

ξ2, η2

]

. (3.3.8)

Lemma 3.3.2. Consider a non-degenerate change of variables

t = t(x, u), w = w(x, u). (3.3.9)

1. The pseudoscalar product (3.3.8) transforms under the change of variables (3.3.9) as follows:

X1 ∨ X2 |(t, w) =
∂(t, w)

∂(x, u)
·X1 ∨ X2 |(x, u);

2. the commutation relations remain the same.
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Proof Let us begin with the proof of the first statement: Suppose that

X̂k = ξk(x, u)
∂

∂ x
+ ηk(x, u)

∂

∂ u
, k = 1, 2,

so that X1 ∨ X2|x, u = ξ1(x, u) η2(x, u)−ξ2(x, u) η1(x, u) (we denote it for brevity as ξ1 η2 −ξ2 η1).
In accordance with (1.4.3), the same operators in the new coordinates can be written as follows:

Xk |(t, u) = Xk[t]
∂

∂ t
+Xk[w]

∂

∂ w
:= ξ̃k

∂

∂ t
+ η̃k

∂

∂ w
k = 1, 2.

So in new coordinates

X1 ∨X2 |(t,w) = ξ̃1 η̃2 − ξ̃2 η̃1 = X1[t]X2[w] −X2[t]X1[w] =

=
(

ξ1
∂ t
∂ x + η1

∂ t
∂ u

) (

ξ2
∂ w
∂ x + η2

∂ w
∂ u

)

−
(

ξ2
∂ t
∂ x + η2

∂ t
∂ u

) (

ξ1
∂ w
∂ x + η1

∂ w
∂ u

)

=

= ξ1 η2

(
∂ t
∂ x

∂ w
∂ u − ∂ t

∂ u
∂ w
∂ x

)

+ ξ2 η1

(
∂ t
∂ u

∂ w
∂ x − ∂ t

∂ x
∂ w
∂ u

)

+

+ξ1 ξ2

(
∂ t
∂ x

∂ w
∂ x − ∂ t

∂ x
∂ w
∂ x

)

+ η1 η2

(
∂ t
∂ u

∂ w
∂ u − ∂ t

∂ u
∂ w
∂ u

)

=

= (ξ1 η2 − ξ2 η1) ∂ (t, w)
∂ (x, u) = ∂(t, w)

∂(x, u) ·X1 ∨ X2 |(x, u).

Now let us address the second statement. We give the proof for more general situation when we
have a set of operators






Xk =

n∑

j=1

ξjk
∂

∂ xj







s

k=1

acting in n-dimensional space and forming the Lie algebra with the commutation relations

[Xk, Xm] = CrkmXr. (3.3.10)

From the definition of the Lie bracket, we can write down the LHS of the formula (3.3.10) in explicit
form as follows:

[Xk, Xm] =
n∑

i=1

{

Xk

[

ξim

]

−Xm

[

ξik

]} ∂

∂ xi
.

Now suppose that y = F (x) is a diffeomorphic function mapping an open set U ⊂ Rn into Rn,
and we wish to calculate the commutation relations in new coordinates. We again take advantage
of (1.4.3) and obtain:

∑n
i,j=1

{
Xk

[
ξim
]

−Xm
[
ξik
]} ∂ yj

∂ xi
∂
∂ yj = [Xk, Xm] |(y) =

=
∑s
r=1

∑n
q,j=1 C

r
km ξ

q
r
∂ yj

∂ xq
∂
∂ yj =

∑s
r=1

∑n
j=1 C

r
kmXr

[
yj
]

∂
∂ yj =

∑s
r=1 C

r
kmXr |(y).

There remains to check if Xk |yXm |y −Xm |yXk |y coincides with the already obtained formula for
[Xk, Xm]|y. Thus we have:

Xk |yXm |y = ξik
∂ yj

∂ xi
∂
∂ yj ξ

r
m
∂ yp

∂ xr
∂
∂ yp =

= ξik

[
∂ yj

∂ xi

(
∂
∂ yj ξ

r
m

)
∂ yp

∂ xr + ∂ yj

∂ xi ξ
r
m

∂
∂ yj

∂ yp

∂ xr

]
∂
∂ yp =

= ξik

[(
∂
∂ xi ξ

r
m

)
∂ yp

∂ xr + ξrm
∂2 yp

∂ xi∂ xr + ξrm
∂ yj

∂ xi
∂ yp

∂ xr
∂
∂ yj

]
∂
∂ yp =

= (Xk ξ
r
m) ∂ yp

∂ xr
∂
∂ yp + ξik ξ

r
m

[
∂2 yp

∂ xi∂ xr + ∂ yj

∂ xi
∂ yp

∂ xr
∂
∂ yj

]
∂
∂ yp .
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In a completely analogous way we obtain the formula for the inverse sequence of the operators:

Xm |yXk |y = (Xm ξ
r
k)

∂ yp

∂ xr
∂

∂ yp
+ ξim ξ

r
k

[

∂2 yp

∂ xi∂ xr
+
∂ yj

∂ xi
∂ yp

∂ xr
∂

∂ yj

]

∂

∂ yp
.

Subtracting the second equality from the first one, changing the summation indices in the second
and third terms and taking into account the equality of the mixed derivatives, we obtain

Xk |yXm |y −Xm |yXk |y = [(Xk ξ
r
m) − (Xm ξ

r
k)]

∂ yp

∂ xr
∂
∂ yp = [Xk, Xm] |y.

Exercise 3.3.1. Consider the operators

X1 =
∂

∂ x1
, X2 = x1 ∂

∂ x1
+ x2 ∂

∂ x2
.

• Calculate the commutator of these operators and make sure that they form a Lie algebra.

• Write down the operators in the coordinates z1 =
(
x1
)3
, z2 = x1 x2 and calculate their

commutator in new representation.

• Compare the results obtained and verify the second statement of the lemma 3.3.2.

In order to perform classification, we need and extra statements. Let us return to the change of
basic elements. Suppose that we’ve made a change of basis







X ′
1 = α1X1 + α2X2,

X ′
2 = β1X1 + β2X2.

Lemma 3.3.3. In ordr that X ′
1, X

′
2 be linearly independent, it is necessary and sufficient that

∆ = α1 β2 − α2 β1 6= 0. (3.3.11)

The proof is based on the general statements of the linear algebra.

Lemma 3.3.4. The following formulae take place

[X ′
1, X

′
2] = ∆ [X1, X2]. (3.3.12)

X ′
1 ∨ X ′

2 = ∆ (X1 ∨ X2) . (3.3.13)

Proof The proof is left it to the reader as an easy homework exercise

Corollary 3.3.1. The relations X1 ∨ X2 = 0 (X1 ∨ X2 6= 0) remain the same both under the
change of the basic elements and the invertible change of variables (x, u) ⇋ (t, w).

Following statement summarizes the above results:

Theorem 3.3.2. Any two-dimensional Lie algebra AG2 acting on R2 can be reduced by choosing
appropriate basis X1, X2 to one of the four distinct types:

1.

[X1, X2] = 0, X1 ∨ X2 6= 0; (3.3.14)
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2.

[X1, X2] = 0, X1 ∨ X2 = 0; (3.3.15)

3.

[X1, X2] = X1, X1 ∨ X2 = 0; (3.3.16)

4.

[X1, X2] = X1, X1 ∨ X2 6= 0. (3.3.17)

The structure relations (1)-(4) are invariant under the change of variables (3.3.9).

The above theorem serves as the basis for classifying all two-dimensional Lie algebras, as is
summarized below:

Theorem 3.3.3. (canonical representations of the Lie algebras AG2)

1. If [X1, X2] = 0 and X1 ∨ X2 6= 0 then there exists a change of variables (x, u) → (t, w) such
that

X1 =
∂

∂ w
, X2 =

∂

∂ t
. (3.3.18)

2. If [X1, X2] = 0 and X1 ∨ X2 = 0 then there exists a change of variables (x, u) → (t, w) such
that

X1 =
∂

∂ w
, X2 = t

∂

∂ w
. (3.3.19)

3. If [X1, X2] = X1 and X1 ∨ X2 = 0 then there exists a change of variables (x, u) → (t, w)
such that

X1 =
∂

∂ w
, X2 = w

∂

∂ w
. (3.3.20)

4. If [X1, X2] = X1 and X1 ∨ X2 6= 0 then there exists a change of variables (x, u) → (t, w)
such that

X1 =
∂

∂ s
, X2 = t

∂

∂ t
+ w

∂

∂ w
. (3.3.21)

Proof
We begin the classification with the two-dimensional commutative algebras. Making the change

of variables (x, u) → (τ, s), straightening X1, we get the representation

X1 =
∂

∂ s
, X2 = a(τ, s)

∂

∂ w
+ b(τ, w)

∂

∂ τ
.

Using the commutative relation [X1, X2] = 0, we conclude that as = bs = 0, in other words,

X2 = a(τ)
∂

∂ s
+ b(τ)

∂

∂ τ
.
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Next we perform the change of variables w = s+h(τ), t = t(τ) which leads to the representation

X1 |(t, w) = ∂
∂ w ,

X2 |(t, w) = a(τ) ∂
∂ w + b(τ)

[

h′(τ) ∂
∂ w + t′(τ) ∂∂ t

]

= [a(τ) + b(τ)h′(τ)] ∂
∂ w + b(τ) t′(τ) ∂

∂ t .

If b(τ) = 0, then putting t = a, we obtain the operators

X1 =
∂

∂ w
, X2 = t

∂

∂ w
. (3.3.22)

If, in turn, b 6= 0, then we put t′ = 1/b, h′ = −a/b and obtain the representation

X1 =
∂

∂ w
, X2 =

∂

∂ t
. (3.3.23)

Now let us address the non-commutative case [X1, X2] = X1. We again use the change of
coordinates (x, u) → (τ, s) "straightening" the operator X1, such that

X1 |(τ, s) =
∂

∂ s
, X2 |(τ, s) = a(τ, s)

∂

∂ τ
+ b(τ, s)

∂

∂ s
.

From the commutating relations we have:

[X1, X2] = as
∂

∂ τ
+ bs

∂

∂ s
=

∂

∂ s
.

Hence, a = a(τ), while b = s+β(τ). First we consider the case X1 ∨X2 = −a = 0. Let us make the
change of coordinates t = τ, w = b = s+ β(τ). In new coordinates the generators are expressed as
follows:

X1 =
∂

∂ s
[t]
∂

∂ t
+

∂

∂ s
[w]

∂

∂ w
=

∂

∂ w
,

X2 = [s+ β(τ)] ∂∂ s [t]
∂
∂ t + [s+ β(τ)] ∂∂ s [w] ∂

∂ w = w ∂
∂ w ,

so our goal is achieved and the result is true for any function β(τ), which it is convenient to set
equal to zero.

Let us consider now the case X1 ∨ X2 = −a 6= 0. We are going to find the change of variables
t = t(τ), w = w(τ, s) such that the generators take the form (3.3.21). Calculating the first generator
in new variables we have:

X1 = ∂
∂ s [w(τ, s)] ∂

∂ w = ∂
∂ w .

From this we conclude that w = s+ γ(τ). Calculating the second generator and equating it to the
RHS of Eq. (3.3.21), we obtain:

X2 = [a(τ) ∂
∂ τ + (s+ β(τ)) ∂

∂ s ][t(τ)] ∂∂ t + +[a(τ) ∂
∂ τ + (s+ β(τ)) ∂

∂ s ][s+ γ(τ)] ∂
∂ w = t ∂∂ t + w ∂

∂ w =

= t(τ) ∂∂ t + [s+ γ(τ)] ∂
∂ w .

Equating the coefficients of ∂/∂ t we get the equation

a ṫ(τ) = t(τ),

having the solution

t = C1 exp

{∫
dτ

a(τ)

}

.
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Equating the coefficients of ∂/∂ w we obtain the equation

a γ′ − γ = −β,

In accordance with the method of variation of constant, we are looking first for the solution of the
associated homogeneous equation

a γ̃′ − γ̃ = 0,

which is satisfied by the function

γ̃ = Ce
∫

d τ
a(τ) .

Now looking for the solution to the inhomogeneous equation in the form

γ = C(τ)e
∫

d τ
a(τ) ,

we obtain the following equation for C(τ):

C ′(τ) = −β(τ)

a(τ)
e

−
∫

d τ
a(τ)

This equation has the solution

C(τ) = C2 −
∫
β(τ)

a(τ)
e

−
∫

d τ
a(τ) d τ,

so finally we obtain:

γ = exp
{∫ d τ

a(τ)

} [

C2 −
∫ {β(τ)

a(τ) exp
(

−
∫ d τ
a(τ)

)}

d τ
]

.

Thus,

t = C1 exp
{∫ dτ

a(τ)

}

, C1 6= 0,

w = s+ exp
{∫ d τ

a(τ)

} [

C2 −
∫ {β(τ)

a(τ) exp
(

−
∫ d τ
a(τ)

)}

d τ
]

and with this substitution we achieve our goal.
Now we are ready to classify all the second-order ODEs admitting the two-dimensional Lie

algebras.

Theorem 3.3.4. The following statements hold true:

1. The most general scalar second-order ODE admitting the Lie algebra X1 = ∂
∂ w , X2 = ∂

∂ t
has the form

w′′ = F (w′). (3.3.24)

2. The most general scalar second-order ODE admitting the Lie algebra X1 = ∂
∂ w , X2 = t ∂

∂ w ,
has the form

w′′ = G(t). (3.3.25)
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3. The most general scalar second-order ODE admitting the Lie algebra X1 = ∂
∂ w , X2 = w ∂

∂ w ,
has the form

w′′ = w′ L(t). (3.3.26)

4. The most general scalar second-order ODE admitting the Lie algebra X1 = ∂
∂ s , X2 = t ∂

∂ t +

w ∂
∂ w , has the form

w′′ =
H(w′)
t

. (3.3.27)

Proof We begin our proof by remarking that a general second-order equation that is solvable
with respect to the second derivative can be written in the form

w′′ − F
(
t, w, w′) = 0.

Since in all of the cases the second-order ODE is assumed to admits the non-prolongable operator
X1 = ∂/∂ w, then the following equation holds:

∂

∂ w

[
w′′ − F

(
t, w, w′)] = −Fw

(
t, w, w′) = 0.

From this we conclude that the most general second-order ODE admitting X1 = ∂/∂ w takes the
form

w′′ − F
(
t, w′) = 0. (3.3.28)

In the first case the second-order ODE admits in addition a non-prolongable operator X2 = ∂
∂ t ,

hence

∂

∂ t

[
w′′ − F

(
t, w′)] = −Ft

(
t, w′) = 0.

So the most general equation admitting both the operator ∂ w and ∂ t has the form (3.3.24).
In the second case the equation admits in addition the operator X2 = t ∂

∂ w . Acting with two
times prolonged operator on the equation, we have:

[
∂

∂ w
+

∂

∂ wt

]
[
w′′ − F

(
t, w′)] = −Fwt

(
t, w′) = 0.

So the most general equation admitting both the operator ∂ w and t ∂ w has the form (3.3.25).
In the third case the equation admits in addition the operator X2 = w ∂

∂ w . Acting with two
times prolonged operator on the equation, we have:

[

w
∂

∂ w
+ wt

∂

∂ wt
+ wtt

∂

∂ wtt

]
[
w′′ − F

(
t, w′)] |(3.3.28) = F − wt Fwt = 0.

Solving the rightmost equation, we obtain that F = wtL(t) and the most general equation admitting
both of the operators has the form (3.3.26).

In the last case the equation admits in addition the operator X2 = t ∂
∂ t +w ∂

∂ w . Acting with two

times prolonged operator X
(2)
2 on the equation, we have:

[

t
∂

∂ t
+ w

∂

∂ w
− wtt

∂

∂ wtt

]
[
w′′ − F

(
t, w′)] |(3.3.28) = −F − t Ft = 0

Solving the rightmost equation, we obtain that F = 1
tH(w′) and the most general equation admit-

ting both of the operators has the form (3.3.27).

Remark 3.3.1. In all the cases enumerated in the above theorem there exist strategies enabling
to find the general solutions to corresponding equations in the form of quadratures (see e.g. [4]).
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