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Abstract. A model of nonlinear elastic medium with internal structure is considered.

The medium is assumed to contain cavities, microcracks or blotches of substances that

differ sharply in physical properties from the base material. To describe the wave

processes in such a medium, the averaged values of physical fields are used. This leads

to nonlinear evolutionary PDEs, differing from the classical balance equations. The

system under consideration possesses a family of invariant soliton-like solutions. These

solutions are shown to be spectrally stable under certain restrictions on the parameters.
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1 Introduction

Basing on [1], it was proposed in [2] the following model describing a nonlinear elastic medium
with internal inclusions, cavities or microcracks:

ut +
1

ν + 2
∂x
(
β + σ∂2

x

)
ρν+2 = 0, (1)

ρt + ρ2 ux = 0, (2)

where β > 0, σ 6= 0, ν > −1. In paper [2] a family of traveling wave (TW) solutions
satisfying the system (1)-(2) is investigated and conditions are formulated under which the
soliton-like TW solutions exist. Depending on the sign of the parameter σ, the soliton-
like solutions describe the waves of compression (when σ > 0) or the waves of rarefaction
(corresponding to σ < 0). Additionally, in paper [2] the stability of soliton-like solutions is
investigated, based on the numerical study of the Evans function [3–5]. Unfortunately, it is
impossible to trace the analytical relationship between stability and the parameters’ values,
using numerical studies. However, the possibility to get the analytical results appears in the
case when the model under investigation allows a Hamiltonian description. The rigorous
studies of stability properties of TW solutions to various nonlinear models have been carried
out in papers [6–12] in which some general results are formulated concerning the properties
of spectral operators, that make it possible to estimate a number of unstable modes. In some
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cases, it is possible to completely eliminate the presence of unstable modes by investigating
the function of the spectral parameter put forward by Evans [3,4] and bearing his name. In
the general case, this function can only be calculated numerically, but for our purposes it
is sufficient to study its asymptotic properties, as well as its behavior at the origin, which
can be done analytically. Following this way, we succeeded in obtaining restrictions on the
parameters which give the sufficient conditions for the spectral stability of soliton-like TW
solutions. The structure of this work is as follows. In Section 2 we pass from the system
(1)-(2) to the equivalent system, having nice a Hamiltonian representation, and state the
conditions assuring the existence of soliton-like TW solutions. In Section 3 we concentrate on
the analysis of the spectral stability. We study the linearized system obtained by varying the
soliton-like solution. Using the approach based on the Sturm-like theorems, we first estimate
the maximal number of unstable modes and then formulate the conditions, which guarantee
their absence. In this section, we use the technique based on a somewhat cumbersome
multisymplectic representation of the Hamiltonian system. So in order not to clutter the
main text, we provide some technical details in Appendices A and B. Finally, in Section 4
we summarize the results obtained and discuss further research.

2 Hamiltonian representation and soliton-like solutions

Let us consider the following substitution

u =
(
γ − κ∂2

x

)
w, η =

1

ρ
, (3)

where γ = β/(ν+2) > 0, κ = −σ/(ν+2) > 0. Inserting (3) into (1)-(2), we get the equations

− 1

η2

{
ηt −

(
γ − κ∂2

x

)
wx
}

= 0,(
γ − κ∂2

x

) {
wt + ∂x η

−(ν+2)
}

= 0.

Under the above assumptions the operator P = γ − κ∂2
x is invertible, so we can rewrite the

initial system in the following equivalent form

wt = −∂x η−(ν+2), (4)

ηt =
(
γ − κ∂2

x

)
wx. (5)

By direct verification, one can get convinced that the system (4)-(5) admits the Hamiltonian
representation

Ut = ∂x

(
0 1
1 0

)
δH = J · δH, (6)

where U = (w, η)tr ,

H =

∫ +∞

−∞

{
1

2

[
γ w2 + κw2

x

]
−
∫ η

η∞

[p(ξ)− p(η∞)] d ξ

}
d x,

0 < η∞ = lim
|x|→∞

η(t, x), p(ξ) = 1/ξν+2.
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In the sequel we will be interested in a family of the TW solutions w = ws(z), η = ηs(z),
where z = x − s t, so we rewrite the system (6) with the traveling wave coordinates t̄ =
t, z̄ = x− s t:

Ut̄ = ∂z̄

(
0 1
1 0

)
δ(H + sQ), (7)

where

Q =

∫ +∞

−∞
w(η − η∞) d z

is the generalized momentum (we omit bars over the independent variables in what follows).
Since in the new coordinates the TW solutions are stationary, they satisfy the system

∂z

(
0 1
1 0

)
δ(H + sQ)|ws(z), ηs(z) = 0. (8)

Now we are going to formulate the conditions which guarantee the existence of homoclinic
solutions representing the solitary waves. The system (8) can be rewritten as follows:

∂z
{
sws − η−(ν+2)

s + η−(ν+2)
∞

}
= 0, (9)

∂z
{(
γ − κ ∂2

z

)
ws + s (ηs − η∞)

}
= 0. (10)

Integrating these equations from −∞ to z and taking into account the asymptotics

lim
|z|→∞

ηs(z) = η∞, lim
|z|→∞

ws(z) = 0, (11)

we get the system
sws + η−(ν+2)

∞ − η−(ν+2)
s = 0, (12)(

γ − κ ∂2
z

)
ws + s (ηs − η∞) = 0. (13)

Using Eq. (12), we can eliminate the function ws from Eq. (13). Next, introducing a new

variable θ = η′s and using the integrating factor ϕ = η
−(ν+3)
s , we can rewrite Eq. (13) in the

form of a Hamiltonian system
d
d T
ηs = θκ (ν + 2)ϕ2 = Hθ,

d
d T
θ = ϕ

{
κ(ν + 2)(ν + 3)θ2 η

−(ν+4)
s −

−
[
s2 (ηs − η∞) + γ

(
1

ην+2
s
− 1

ην+2
∞

)]}
= −Hηs ,

(14)

where d
d T

= κ (ν + 2)ϕ2 d
d z
, H = Ek(ηs, θ) + V (ηs),

Ek(ηs, θ) =
κ

2
(ν + 2) η−2(ν+3)θ2

is the kinetic energy, while

V (ηs) = s2

[
η∞

(ν + 2)ην+2
s

− 1

(ν + 1)ην+1
s

]
+ γ

[
1

(ν + 2)(ηsη∞)ν+2
− 1

2 (ν + 2)η
2(ν+2)
s

]

is the potential energy.
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Using the well-known properties of two-dimensional Hamiltonian systems [13], we can
perform exhaustible qualitative analysis of the system (14). It is evident, that all stationary
points of this system are placed on the horizontal axis. The coordinate η of a stationary
points satisfies the equation

s2 (η∞ − η) = γ

(
1

ην+2
− 1

ην+2
∞

)
. (15)

Eq. (15) is fulfilled when η = η∞, so (η∞, 0) is the stationary point. We are looking for
soliton-like solutions satisfying the asymptotic conditions (11) and thus corresponding to
the phase trajectories bi-asymptotic to the stationary point (η∞, 0) which must be a saddle.
This is so if the eigenvalues of the Jacobi matrix

R|η=η∞, θ=0 =

(
0 ϕ(η∞)κ(ν + 2) η

−(ν+3)
∞

−ϕ(η∞)
[
s2 − γ (ν + 2) η

−(ν+3)
∞

]
0

)
, (16)

are real numbers of different signs, or, in other words, if the following inequality holds:

s2 < γ (ν + 2) η−(ν+3)
∞ . (17)

Figure 1: Graphical solution of Eq. (15).

The fulfillment of the condition (17) also implies the existence of a second solution of
Eq. (15), located to the right of η∞, see Fig. 1. The second solution, which we denote by
η1, satisfies the inequality

s2 > γ (ν + 2) η
−(ν+3)
1 .

Under the above condition, the eigenvalues of the Jacobi matrix R in the stationary point
(η1, 0) are pure imaginary, so it is a center.

An extra condition, which, together with (17), guarantees the existence of the homoclinic
loop is connected with the general features of two-dimensional Hamiltonian systems. As is
well-known [13], the Hamiltonian function remains constant on the phase trajectories of the
Hamiltonian system. The potential energy of the system (14) has exactly two local extrema,
namely, the local maximum at the point η∞ and the local minimum at the point η1. It is easy
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to check that lim
η→+∞

V (η) = 0 and, depending on the values of the parameters, two distinct

configurations occur. If V (η∞) ≥ 0, then the level line passing through the point of local
maximum unlimitedly extends to the right without intersecting the graph of the function
V (η) (see Fig. 2, left panel). In this case the stable and unstable saddle separatrices do not
form a closed loop, and the region of the phase plane (η, θ) bounded by these separatrices
is filled with the periodic trajectories spreading up to infinity. If V (η∞) < 0, then the level
line passing through the point of local maximum intersects the graph of the function V (η)
at a point η∗, η1 < η∗ <∞ (see Fig. 3).

Figure 2: Graph of potential energy V (η), case V (η∞) > 0 (left panel) and the corresponding
phase portrait (right panel). All the trajectories shown represent the periodic solutions.

Figure 3: Graph of potential energy V (η), case V (η∞) < 0 (left panel) and the corresponding
phase portrait (right panel). Dashed line corresponds to the homoclinic loop; solid lines
represent the periodic solutions.

The phase trajectory cannot have a coordinate η greater than η∗, so at the point (η∗, 0) the
outgoing trajectory of the saddle point (η∞, 0) is reflected from the horizontal axis. Since
the Hamiltonian function is not changed under the replacement θ by −θ, the straight and
reflected trajectories are symmetric with respect to the horizontal axis and form a single
homoclinic trajectory bi-asymptotic to the saddle. Condition V (η∞) < 0, together with the
condition which guarantees that the stationary point (η∞, 0) is a saddle, forms the pair of

5



inequalities
β(ν + 1)

2(ν + 2)ην+3
∞

< s2 <
β

η
(ν+3)
∞

(18)

assuring the presence of soliton-like regimes in the set of TW solutions.

Remark 1 If we introduce the parameter η0,∞ = s2/(ν+3) η∞, then the velocity s will be
eliminated from (18) which acquires the following form

β(ν + 1)

2(ν + 2)
< ην+3

0,∞ < β. (19)

In what follows we treat the parameter η0,∞ as independent of s.

To conclude, let us note that the conditions presented in (18) coincide with those obtained
in paper [2] after the performance of substitution R1 = η−1

∞ .

3 Spectral stability of the soliton-like solutions

3.1 Restrictions on the number of unstable modes

In order to study the stability of solitary wave solutions, the following set of perturbations
is considered: (

w(t, z)
η(t, z)

)
=

(
ws(z)
ηs(z)

)
+ ε eλ t

(
M(z)
N(z)

)
. (20)

Inserting (20) into (7), we get, up to O(ε2) the eigenvalue problem

λ

(
M(z)
N(z)

)
= J Ls

(
M(z)
N(z)

)
:= L

(
M(z)
N(z)

)
, (21)

where

Ls = δ2 (H + sQ) |ws, ηs =

(
γ − κ ∂2

z s
s (ν + 2)/ην+3

s (z)

)
. (22)

We denote the spectrum of the operator L by σ(L) and accept the following definition:

Definition 1 The soliton-like solution Us(z) = (ws(z), ηs(z))tr is said to be spectrally stable
if the intersection of σ(L) with the positive half-plane C+ of the complex plane is empty.

In this section the following statement will be proved:

Theorem 1 The set σ(L) ∩ C+ consists of at most one isolated point λ0. If σ(L) ∩ C+ is
nonempty, then λ0 is a real positive number.

The proof of this theorem is based on a number of auxiliary statements. Some of them
are sufficiently general and applicable to a wide class of spectral problems. To begin with,
let us localize the essential spectrum σess(L). In the case under consideration it coincides
with the spectrum of the limiting operator [5, 14]

L∞ = L±∞ = lim
|z|→∞

J · Ls = J ·
(
γ − κ ∂2

z s
s ν+2

ην+3
∞

)
.

6



The spectrum of the operator L∞, having the constant coefficients, coincides with the set

σess(L) =

{
λ ∈ C : det

(
−i ξ s− λ −i ξ(ν + 2)/ην+3

∞
−i ξ(γ + κξ2) −i ξ s− λ

)
= 0, ξ ∈ R

}
.

The set of possible values of the spectral parameter λ is given by the formula

λ = −iξs± i
√
ξ2(ν + 2) (γ + κξ2)/ην+3

∞ , ξ ∈ R.

It coincides with the imaginary axis. Next, the following general statement is applied to our
problem (cf with [5]).

Lemma 2 The point spectrum σpt(L) is symmetric with respect to the coordinate axes, that
is, if λ ∈ σpt(L), then simultaneously −λ, and ±λ∗ belong to the point spectrum of the
operator L.

Proof. Suppose that λ ∈ σpt(L), ψ ∈ L2(R) is the eigenvector corresponding to λ. Then

(Lψ)∗ = Lψ∗ = λ∗ψ∗,

hence λ ∈ σpt(L) implies λ∗ ∈ σpt(L). Next, if Lψ = J · Ls ψ = λψ, then

(ψ|J · Lsψ) = (ψ|λψ) = λ (ψ|ψ) = (λ∗ ψ|ψ) .

On the other hand,

(ψ|J · Lsψ) = − (J ψ|Lsψ) = − (Ls · J ψ|ψ) ,

hence Ls · J ψ = −λ∗ ψ, which implies the equality L (J ψ) = −λ∗ (J ψ) . Thus, λ ∈ σpt(L)
implies −λ∗ ∈ σpt(L) and similarly λ∗ ∈ σpt(L) implies −λ ∈ σpt(L).

The next statement, borrowed from the paper [7] is the following.

Theorem 3 Suppose that J is a skew-symmetric operator while Ls is self-adjoint. Suppose
in addition that Ls has exactly k strictly negative eigenvalues, counting multiplicities and
k < ∞. Then L = J · Ls has at most k eigenvalues in the right half-plane of the complex
plane.

So, all the auxiliary assertions needed have been formulated, and we can now concentrate
on estimating the number of discrete eigenvalues of the operator Ls lying on the negative
semiaxis R−. Thus, we consider the spectral problem Ls (M, N)tr = µ (M, N)tr , which can
be presented as follows: 

(γ − κ∂2
z )M + sN = µM,

sM + ν+2
ην+3
s (z)

N = µN.
(23)

Note that if we put in (23) µ = 0 and make the replacement M = w′s, N = η′s then as a
result we get the system (13)-(12). Hence the following statement is true:

Lemma 4 U ′s = (w′s, η
′
s)
tr is the eigenvector of the operator Ls, corresponding to the eigen-

value µ = 0.

7



Now, using the second equation of the system (23), we can express the function N as
follows:

N = sM

(
µ− ν + 2

ην+3
s (z)

)−1

. (24)

Inserting (24) into the first equation of the system (23), we get the following generalized
eigenvalue problem:

κ
d2

d z2
M =

[
γ − µ+

s2

µ− ν+2
ην+3
s (z)

]
M. (25)

From lemma 4 we immediately obtain the following:

Corollary 5 Function M(z) = w′s(z) is the eigenvector of the generalized spectral problem
(25) corresponding to the eigenvalue µ = 0.

Now, let us consider the Wronskian

W (z) = M ′
1(z)M2(z)−M ′

2(z)M1(z), (26)

on a set (a, b) ∈ R (finite or infinite), where {Mi}2
i=1 are solutions of Eq. (25) corresponding

to the eigenvalues µi. Taking the derivative of (26) with respect to z and then integrating
the expression obtained we get

W (ξ) |ξ=zξ=a =

∫ z

a

W ′(ξ) d ξ,

which after some manipulation attains the form

W (z)−W (a) =
µ2 − µ1

κ

∫ z

a

M1(ξ)M2(ξ)Φ(ξ) d ξ, (27)

where

Φ(ξ) = 1 +
s2 η

2(ν+3)
s (ξ)

[(ν + 2)− µ1 ην+3
s (ξ)] [(ν + 2)− µ2 ην+3

s (ξ)]
.

Let us note, that Φ(ξ) > 0 when µi ≤ 0, i = 1, 2.

Lemma 6 Let us assume that µ1 < µ2 ≤ 0 are the eigenvalues while M1(z), M2(z) are the
corresponding eigenfunctions of the generalized spectral problem (25), c ∈ (a, b) and the
following conditions hold:

• lim
z→a+0

M1(z) = lim
z→a+0

M2(z) = 0;

• M2|(a,c) > 0; ∃ ε > 0 : M1|(a,a+ε) > 0.

Then M1 |(a,c) > 0. If in addition the conditions

• M2(c) = 0, M ′
2(c) < 0

are fulfilled, then M1(c) > 0.

8



Proof. The proof of the first statement: let there exists d ∈ (a, c) such that M1(d) = 0
and M ′

1(d) < 0 (we’ll assume that d is the first point at which M1(z) intersects the horizontal
axis). Then the function (27) is growing and non-negative on (a, d). On the other hand,
it appears from (26), that under the above assumption W (d) = M ′

1(d)M2(d) < 0. The
resulting contradiction eliminates this possibility. Now let us address the second statement.
It appears from (27) that W (c) > 0. Using the additional assumptions, we conclude from
(26) that W (c) = −M ′

2(c)M1(c). But this expression can be positive only if M1(c) > 0.

Lemma 7 We use the same assumptions as in the first part of the lemma 6. In addition,
we assume that

• M2(c) = 0; M ′
2(c) < 0; ∃ e > c : M2|(c, e) < 0;

• lim
z→e−0

M1(z) = lim
z→e−0

M2(z) = 0.

Then M1 |(c,e) > 0.

Proof. The lemma is proved by contradiction. Assume that M1(z) intersects the hori-
zontal axis OZ for the first time at some point f ∈ (c, e). Then M1(f) = 0, M ′

1(f) < 0,
hence W (f) = M ′

1(f)M2(f)−M ′
2(f)M1(f) > 0. Let us also make an additional assumption

that M1(z) does not have intersections with the horizontal axis on the segment (f, e). Then
we get

W (e) = W (f) +

∫ e

f

M1(ξ)M2(ξ) Φ(ξ) d ξ > 0.

On the other hand, M ′
1(e)M2(e)−M ′

2(e)M1(e) = 0, so we get the contradiction. Now let us
assume that there exists g ∈ (f, e) such that M1(g) = 0 and M ′

1(g) > 0. Then

W (g) = W (f) +

∫ g

f

M1(ξ)M2(ξ) Φ(ξ) d ξ > 0.

On the other hand, W (g) = M ′
1(g)M2(g) −M ′

2(g)M1(g) < 0. The contradiction obtained
ends the proof.

Lemma 8 Suppose that the spectral problem (25) has three discrete eigenvalues µ0 < µ1 <
µ2 ≤ 0, and the corresponding eigenfunctions M0(z), M1(z), M2(z) are defined on (a, b).
We assume in addition that

• lim
z→a+0

Mi(z) = lim
z→b−0

Mi(z) = 0, i = 0, 1, 2;

• there exists c ∈ (a, b) such that M2(c) = 0, M ′
2(c) < 0, and M2(z) does not have

another points of intersection with the horizontal axis on the segment (a, b).

Then there does not exist the eigenfunction M0(z), not identically equal to zero, corresponding
to the eigenvalue µ0.

Proof. Without loss of generality, we can assume that M1 |(a, b) > 0 and M2|(a, c) > 0 (by
virtue of lemmae 6, 7 M1(z) does not intersect the horizontal axis on (a, b)). Now assume
that M0(z) is not identically zero on (a, b). Then, in accordance with the lemma 6, M0(z)
does not intersect the horizontal axis on this segment (we compare M0 with the function

9



M2) and we can assume in addition that M0|(a,b) > 0. On virtue of the above assumptions,
the function

W (z) =
µ1 − µ0

κ

∫ z

a

M0(ξ)M1(ξ)Φ(ξ) d ξ

is growing and non-negative on the segment (a, b), hence W (b) > 0. But on the other hand,
W (b) = M ′

0(b)M1(b)−M ′
1(b)M0(b) = 0, so we get a contradiction.

Corollary 9 The following assertions are true:

• The eigenvalue problem (25) has at most one discrete eigenvalue µ < 0, corresponding
to the nonzero eigenfunction M(z).

• If such an eigenvalue does exist, then it is simultaneously the discrete eigenvalue of the
operator Ls, corresponding to the eigenfunction{

M(z), sM(z)

(
µ− ν + 2

ηs(z)ν+3

)−1
}tr

.

• The operator L = J · Ls has at most one discrete eigenvalue lying in C+.

• If such an eigenvalue does exist, then it belongs to R+.

3.2 The Evans function and spectral stability

3.2.1 Introductory remarks

We are going to formulate the conditions excluding the existence of the discrete eigenvalues
of the operator L belonging to C+. For this purpose, we use a technique based on some
properties of the Evans function [3–5], an analytic function of the spectral parameter λ ∈
C+, that nullifies on those values of the parameter λ which belong to the set σpt(L) ∩ C+.
Usually, E(λ) is defined as a Wronskian constructed on the solutions of a dynamical system
equivalent to the corresponding spectral problem. The Evans function most often is studied
numerically, but some of its asymptotic properties (essentially used in this paper) can be
analyzed analytically.

To begin with, let us remind that, on virtue of lemma 4, 0 ∈ σpt(L). Next, we observe,
that the variational equation

δ (H + sQ) |Us = 0, (28)

where Us = (ws(z), ηs(z))tr, is equivalent to the traveling wave ODEs (12)-(13). Differenti-
ating (28) with respect to s, we get:

Ls ∂ Us/∂ s = −
(

0 1
1 0

)
Us.

Multiplying both sides of this equality by J from the left, we obtain:

L (∂ Us/∂ s) = −Us′.

10



From this we conclude that span{Us′, ∂ Us/∂ s}⊂ gker(L), which, in turn, implies the equal-
ity E ′(0) = 0. If we were able to estimate the signE ′′(0), and also signE(+∞) (the latter
can be done by several standard methods), then from the equality

signE(+∞) · signE ′′(0) = +1, (29)

it would follow that the number of intersections of the graph of the function E(λ), λ ∈ R+

with the horizontal axis Re(λ) should be even. However, since this contradicts the results
obtained above (see the corollary at the end of the previous subsection), then there would be
no intersections in this case at all. On the contrary, the negativity of the product appearing
in the formula (29) indicates the existence of an unstable mode.

3.2.2 The multi-symplectic representation

In the evaluation of the sign of E ′′(0) we follow the papers [8, 9]. From there, most of the
designations are borrowed. The main formula is based on the theory of multi-symplectic
systems. We will not fully cover this rather cumbersome theory here, but only concentrate
on those fragments that are necessary for deriving the basic formula. Thus, first of all, the
Hamiltonian system must be written in the equivalent multi-symplectic form

M̂ Zt + K̂ Zx = ∇S(Z), (30)

where Z ∈ R2n, M̂, K̂ are 2n × 2n skew-symmetric constant matrices, S(Z) is a smooth
function and ∇ is the gradient in R2n. The matrices M̂, K̂ generate in R2n × R2n two-forms

ω(ζ1, ζ2) =
(
M̂ζ1, ζ2

)
, k(ζ1, ζ2) =

(
K̂ζ1, ζ2

)
and

Ω(ζ1, ζ2) =
(
Ĵsζ1, ζ2

)
,

where Ĵs = K̂−s M̂. It is assumed that det Ĵs 6= 0 and hence the form Ω is not degenerate. In
the multi-symplectic approach the function Z̃(z; a, b, s) is considered, describing the shape
of a multiparameter family of solitary waves and satisfying the dynamical system

ĴsZ̃
′ = ∇V (Z̃),

where V (·) is S(·) plus additional features arising from symmetry (we will give the precise
definition of them when addressing the system (4)-(5)). The linearization U(z) about the
solitary wave solutions satisfies the dynamical system

U ′(z) = A(z, λ, a, b, s)U(z), U ∈ C2n,

where λ ∈ C is the spectral parameter,

A(z, λ, a, b, s) = Ĵ−1
s

{
D2V

(
Z̃(z; a, b, s

)
− λ M̂

}
.

It can be shown that the shape function Z̃(z; a, b, s) satisfies the variational equation

δ

δ Z̃

(
H(Z̃)− s I(Z̃)

)
= 0,

11



where

H(Z̃) =
1

2

∫ +∞

−∞

[
k(Z̃, Z̃ ′) + 2V (Z̃)

]
d z

is the Hamiltonian function, while

I(Z̃) =
1

2

∫ +∞

−∞
ω(Z̃, Z̃ ′) d z (31)

is the generalized momentum. In this notation the sign of E ′′(0) is expressed as follows:

sgnE ′′(0) = ζ−00

[
d I

d s
−B(s)

]
, (32)

where ζ−00 and B(s) are expressed in terms of the combination of the vectors Z−0 ( a, b, s) =
lim

z→−∞
Z̃(z; a, b, s) and Z+

0 ( a, b, s) = lim
z→+∞

Z̃(z; a, b, s). The multi-symplectic formalism is

described below with reference to the system under study.

3.2.3 Multi-symplectic representation of the system (4)-(5) and evaluation of
the signE ′′(0)

In order to take advantage of the formalism proposed in [8, 9], we should write down the
initial system in the multi-symplectic form. Introducing new functions

q = η−(ν+2), Φx = q−
1
ν+2 , v = wx, rx = w − C0, p = −Φt + γ w − κ vx,

we can rewrite (4)-(5) as the first-order system

− Φt − κvx = p− γ w, (33)

Φx = q
−1
ν+2 , (34)

wx = v, (35)

wt + qx = 0, (36)

px = 0, (37)

rx = w − C0. (38)

The multi-symplectic form of the system (33)-(38) is then as follows

M̂ Zt + K̂ Zx = ∇S, (39)

where Z = (w, q, v, Φ, r, p)tr ,

M̂ =


0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , K̂ =


0 0 −κ 0 0 0
0 0 0 −1 0 0
κ 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

 ,

12



S = p(w − C0)− γ

2
w2 − 1

α
qα +

κ

2
v2, α =

ν + 1

ν + 2
.

The next step will be the use of symmetry properties for the purpose of constructing a
manifold at infinity M(a, b), [8, 9]. The system (39) is evidently invariant with respect to
the translation group Z → Z + ε(0, 0, 0, 1, 0, 0)tr, ε ∈ R having the generator X̂ = ∂/∂Φ.
To this symmetry corresponds a pair of functions [8,9] P = −w, Q = −q with the properties

M̂ X̂(Z) = ∇P (Z), K̂ X̂(Z) = ∇Q(Z).

In addition, the symmetry of the initial system will be used, which allows one to extend the
homoclinic solution to a two-parameter family of analogous solutions. A direct verification
shows that the following assertion holds

Lemma 10 The system (4)-(5) is invariant with respect to the family of transformations:

t̄ = eµ t, x̄ = x, w̄ = e−
ν+1
ν+3

µw + A, η̄ = e
2
ν+3

µη, (40)

where µ, A ∈ R are arbitrary parameters.

The above symmetry induces the following group of invariance of the system (9)-(10)
describing the TW solutions:

w̃(z) = e−
ν+1
ν+3

µws(z) + A, η̃(z) = e
2
ν+3

µηs(z), η̃∞ = e
2
ν+3

µη∞, z̃ = z, s̃ = e−µ s. (41)

Combining the translational symmetry of (39) with the symmetry of the system (9)-(10)
which makes it possible to extend the set of homoclinic solutions to a multiparametric fam-
ily, we can eventually construct a non-degenerate manifold M(a, b), which is necessary for

analyzing formula (32) in our particular case. The vector-function Z̃ =
(
w̃, q̃, ṽ, Φ̃, r̃, p̃

)tr
satisfies the following variational equation (cf with [9]):(

K̂ − s̃ M̂
)
Z̃ ′ = ∇S(Z̃)− a∇P (Z̃)− b∇Q(Z̃), (42)

which, when written out componentwise, looks as follows

s̃ Φ̃z − κṽz = p̃+ a− γ w̃, (43)

− Φ̃z = b− q̃
−1
ν+2 , (44)

κ w̃z = κ ṽ, (45)

− s̃ w̃z + q̃z = 0, (46)

− p̃z = 0, (47)

r̃z = w̃ − C0. (48)

Integrating Eq. (44) over the segment (−∞, z) and using the requirement that the function
Φ̃(z) should be bounded, we obtain the condition

eµ =

(
b

η∞

) ν+3
2

.
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Integrating (44) and taking into account the above formula, we get

Φ̃(z) =
b

η∞

∫ z

−∞
[ηs(ξ)− η∞] d ξ + C1. (49)

The requirement of the boundedness of the function r̃(z) leads to the condition C0 = A.
Taking them into account, we get the expression

r̃(z) =
(η∞
b

) ν+1
2

∫ z

−∞
ws(ξ) d ξ + C2. (50)

The remaining functions are expressed as follows:
w̃ =

(
η∞
b

) ν+1
2 ws(z) + a(1 + γ−1),

q̃ =
(
b ηs(z)
η∞

)−(ν+2)

,

ṽ =
(
η∞
b

) ν+1
2 w′s(z),

p̃ = γ a,

(51)

and, thus, the vector-valued functions Z̃, Z̃ ′ are represented in the form

Z̃ =
((η∞

b

) ν+1
2
ws(z) + a(1 + γ−1),

(
b ηs(z)

η∞

)−(ν+2)

,
(η∞
b

) ν+1
2
ws(z)′,

θ(z) + C1, ϕ(z) + C2, γ a
)tr
,

(52)

Z̃ ′ =
((η∞

b

) ν+1
2
ws(z)′, −(ν + 2)

ην+2
∞ ηs(z)′

bν+2ην+3
s

,
(η∞
b

) ν+1
2
ws(z)′′,

b

η∞
[ηs(z)− η∞] ,

(η∞
b

) ν+1
2
ws(z), 0

)tr
,

(53)

where

θ(z) =
b

η∞

∫ z

−∞
[η(ξ)− η∞] d ξ, ϕ(z) =

(
b

η∞

)− ν+1
2
∫ z

−∞
ws(ξ) d ξ. (54)

From the formula (52) we calculate the vectors Z±0 , which are as follows:

Z−0 = lim
z→−∞

Z̃(z) =
(
a(1 + γ−1), b−(ν+2), 0, C1, C2, γ a

)tr
, (55)

Z+
0 = lim

z→+∞
Z̃(z) =

(
a(1 + γ−1), b−(ν+2), 0, θ∞ + C1, ϕ∞ + C2, γ a

)tr
, (56)

where θ∞ = lim
z→+∞

θ(z), ϕ∞ = lim
z→+∞

ϕ(z).

Now that almost all the necessary tools have been laid out, we can proceed to an analysis
of the sign of the second derivative of the Evans function, which, according to [9], is expressed
by the relation

E ′′(0) = χ−00

(
d

d s
I(Z̃)− ω(Z+

0 , ∂sZ
+
0 )

)
. (57)
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The coefficient χ−00 is obtained from the condition for normalizing the eigenvectors of the
matrix A∞ = lim

z→∞
A(z; a, b, s) and the eigenvectors of the adjoining matrix A∗∞. The

computations of this quantity are rather cumbersome, so they are moved to Appendix A, in
which the following formula is derived:

χ−00 =
(s ην+3

∞ )
2

2 C̃2D3/2 κ (ν + 2)2
, D =

β − s2 ην+3
∞

κ (ν + 2)
> 0, (58)

C̃ is a constant.
Thus, we proceed to calculate the remaining terms appearing in formula (57). Since we

are not interested in the whole extended family (40), but only in the special case of solutions
of system (9)-(10) satisfying the asymptotic conditions (11), we carry out calculations for
a = 0 and b = η∞. The generalized impulse is calculated on the basis of formula (31):

I(Z̃)|b=η∞ =

∫ +∞

−∞
ws(z) [ηs(z)− η∞] d z. (59)

In order to calculate the derivative of the functional I(Z̃) with respect to the variable s,
we need to obtain the explicit dependence of ws(z) and ηs(z) on the velocity. This can be
done if we exclude the speed from the system (12)-(13) using the scaling ws(z) = sαw0(z),
ηs(z) = sδη0(z). Indeed, if we put α = (ν + 1)/(ν + 3), δ = −2/(ν + 3), then we obtain the
system

w0 − η−(ν+2)
0 + η

−(ν+2)
0,∞ = 0, (60)(

γ − κ ∂2
z

)
w0 + η0 − η0,∞ = 0, (61)

which does not contain the parameter s. Thus we have:

d

d s
I(Z̃)|b=η∞ = s−4/(ν+3) ν − 1

ν + 3

∫ +∞

−∞
w0(z) [η0(z)− η0,∞] d z. (62)

Since the homoclinic loop representing the solitary wave solution lies to the right from the
saddle point (η∞, 0) then ηs(z)− η∞ > 0, and this implies the inequality η0(z)− η0,∞ > 0.
The inequality w0(z) < 0, in turn, appears directly from Eq. (60). So the integral in the
formula (62) is negative and the whole expression is positive if ν ∈ (−3, 1).

We must also calculate the expression ω(Z+
0 , ∂sZ

+
0 ), which appears in formula (57). Tak-

ing the derivative of (56) with respect to s, we get:

∂s Z
+
0 =

(
0, 0, 0, − 2

ν + 3
s−

ν+5
ν+3

∫ +∞

−∞
[η0(z)− η0,∞] d z,

ν + 1

ν + 3
s−

2
ν+3

∫ +∞

−∞
w0(z) d z, 0

)
.

Thus,

ω(Z+
0 , ∂sZ

+
0 ) = − 2

ν + 3
a
(
1 + γ−1

)
s−

ν+5
ν+3

∫ +∞

−∞
[η0(z)− η0,∞] d z,

which is zero when a = 0. Combining (62) with (19) and taking into account that the
homoclinic loop exists when ν > −1, we can formulate the following assertion:
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Theorem 11 The solitary wave solution of the system (4)-(5) moving with velocity s > 0

and having the asymptotics lim
|x|→+∞

w(t, x) = 0, lim
|x|→+∞

η(t, x) = s−
2
ν+3 η0,∞ > 0 is spectrally

stable if ν ∈ (−1, 1), and the inequality (19) holds.

Thus, we’ve established that under the above conditions the operator of the spectral
problem (21) does not have eigenvalues belonging to C+. In connection with this, the question
arises: can the result obtained be used to formulate the conditions for the stability of soliton-
like TW solutions of the system (1)-(2)? As it was mentioned before, the stability of soliton-
like solutions supported by this system was investigated in [2] using the numerical methods
which do not give the possibility to obtain any qualitative result. In order to formulate the
spectral problem, let us consider the system (1)-(2) written in TW coordinates t, z = x−s t:

ut = s uz − ∂z
(
γ − κ∂2

z

)
ρν+2, (63)

ρt = s ρz − ρ2 uz, (64)

where we assume, as before, that γ = β/(ν+2) > 0, κ = −σ/(ν+2) > 0. In accordance with
[2], we denote the soliton solutions of the system (4) by the symbols u = us(z), ρ = Rs(z).
Inserting the perturbations of the form

u(t, z) = us(z) + ε eλ t Û(z), ρ(t, z) = Rs(z) + ε eλ t ρ̂(z)

into (63)-(64) and dropping out the terms of the order O(ε2), we get the following spectral
problem: 

λ Û = ∂z

[
s Û − (γ − κ∂2

z ) (ν + 2)Rν+1
s ρ̂

]
,

λ ρ̂ = s ∂zρ̂− 2Rs u
′
sρ̂−R2

s∂zÛ .

(65)

Below we’ll show that the following assertion holds:

Theorem 12 The point spectra of the problems (65) and (21) are identical.

Proof. In analysing the connection between the two spectral problems, we will use the
following easily verifiable identities:

Rs(z) = η−1
s (z), us(z) = (γ − κ∂2

z ) ws(z),

ρ̂(z) = − 1
η2s(z)

N(z), Û(z) = (γ − κ∂2
z ) M(z).

(66)

Taking into account the invertibility of the operator (γ − κ∂2
z ) and using the relations (66),

we can rewrite the first equation of the system (21) in the form

λ
(
γ − κ∂2

z

)−1
Û =

(
γ − κ∂2

z

)−1
∂z
[
sU −

(
γ − κ∂2

z

)
(ν + 2)Rν+1

s ρ̂
]
,

which is identical with the first equation of the system (65). The second equation of the
system (21) can be converted in the following way:

λN = ∂z
[(
γ − κ∂2

z

)
M + sN

]
16



implies

−λη2
s ρ̂ = ∂z

[
Û − s η2

s ρ̂
]
,

or

λρ̂ = R2
s∂z

[
s

1

R2
s

ρ̂− Û
]
,

or

λρ̂ = R2
s

[
s

(
1

R2
s

∂zρ̂−
2

R3
s

R′sρ̂

)
− ∂zÛ

]
= s ∂zρ̂−R2

s∂zÛ − 2 s
R′s
Rs

ρ̂,

which is identical with the second equation of the system (65) on virtue of the identity
sR′s = R2

s u
′
s.

Moving in the opposite direction, we can rewrite the equation

λ Û = ∂z

[
s Û −

(
γ − κ∂2

z

)
(ν + 2)Rν+1

s ρ̂
]
,

as

λ
(
γ − κ∂2

z

)
M = ∂z

(
γ − κ∂2

z

) [
sM +

ν + 2

ην+3
s

N

]
,

which is equivalent to the first equation of the system (21).
The equation

λ ρ̂ = s ∂zρ̂− 2Rs u
′
sρ̂−R2

s∂zÛ

is equivalent to

−λN
η2
s

= −s ∂z
(
N

η2
s

)
+ 2Rs u

′
s

(
N

η2
s

)
−R2

s∂z
(
γ − κ∂2

z

)
M,

or

λ
N

η2
s

= s ∂z

(
N

η2
s

)
− 2Rs u

′
s

(
N

η2
s

)
+

1

η2
s

∂z
(
γ − κ∂2

z

)
M,

or

λN = η2
s

{
s

[
1

η2
s

∂zN − 2
N

η3
s

∂zηs

]
+ 2 sN

η′s
η3
s

+
1

η2
s

(
γ − κ∂2

z

)
M

}
,

which is equivalent to the second equation of the system (21). To obtain the last equality,
we took advantage of the identity u′s = −s η′s.

Since earlier in [2] it was shown that the essential spectrum of the operator appearing
in formula (65) coincides with the imaginary axis, then on the basis of the results obtained
above it is possible to formulate

Corollary 13 Under the assumptions of the theorem 11, the soliton-like TW solutions of
the system (1)-(2) are spectrally stable.

4 Discussion

Thus, we have shown that fulfillment of the inequality ν ∈ (−1, 1) assures that the soliton-
like TW solutions to the system (1)-(2) describing the wave of rarefaction are spectally
stable. The result obtained in this work is in agreement with that obtained numerically in
paper [2]. In conclusion, we would like to note that the presence of higher derivatives in
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the first equation of the system (1)-(2) is related to the spatial nonlocality in the lowest
approximation. In this connection it is of interest to consider the problem in the following
approximation and to trace how the inclusion of additional terms affects the dynamics and
stability of soliton-like solutions.

Appendix A

In order to trace the behavior of the vectors Z̃, Z̃ ′ for large values of the arguments, we
consider the linearization of the dynamical system

d
d z
ηs = η̇s,

d
d z
η̇s = ην+3

s

κ(ν+2)

[
κ(ν + 2)(ν + 3)η̇2

s/η
ν+4
s − s2(ηs − η∞) + γ η

ν+2
s −ην+2

∞
(ηs η∞)ν+2

]
,

(67)

which is equivalent to (14). The linear part of the system (67) in variables x = ηs−η∞, y =
η̇s will have the following form:(

x
y

)′
=

(
0 1
D 0

) (
x
y

)
, (68)

where D = 1
κ(ν+2)

[β − s2 ην+3
∞ ] > 0. Thus, for |z| � 1 we obtain the asymptotics

x = ηs − η∞ ∼=


C̃e
√
D z, z � −1,

C̃e−
√
D z, z � 1.

Constants at the exponential functions are the same because of the symmetry of the homo-
clinic trajectory with respect to the horizontal axis. Using the first equation of the system
(12), we get the asymptotics for another component of the homoclinic solution:

ws ∼= −
ν + 2

s ην+3
∞


C̃e
√
D z, z � −1,

C̃e−
√
D z, z � 1.

From this we get the asymptotics (cf with [9]):

Ψ± = lim
z→±∞

e±
√
DzZ̃ ′ = C̃

√
D
[
±
(η∞
b

) ν+1
2 ν + 2

s ηη+3
∞

; ±
(η∞
b

)ν+2 ν + 2

ηη+3
∞

; −
√
D
(η∞
b

) ν+1
2 ν + 2

s ηη+3
∞

;

b

η∞
√
D

; −
(η∞
b

)2 ν + 2

s ηη+3
∞
√
D

; 0

]
.

The coefficient χ−00 is obtained from the normalization condition

1 =
(
Ĵs η

−
1 , Ψ+

)
,

where η−1 = χ−00Ψ−, Ĵs = K̂ − s M̂ (see [9], section 3). In the general case, the above
formula is very cumbersome, but in the case we are interested in, i.e., when b = η∞, a more
straightforward expression emerges:

1 = χ−00

(
ĴsΨ

−
)tr

Ψ+ =
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= C̃2D χ−00

[
κ(ν + 2)D + s2ην+3

∞

sην+3
∞
√
D

;− 1√
D

;−κ(ν + 2)

sην+3
∞

; 0; 0;− ν + 2

s
√
Dην+3
∞

]
∗

∗

[
ν + 2

sην+3
∞

;
ν + 2

ην+3
∞

;−
√
D(ν + 2)

sην+3
∞

;
1√
D

;− ν + 2

sην+3
∞
√
D

; 0

]tr
=

2χ−00C̃
2D3/2 κ (ν + 2)2

(s ην+3
∞ )2 .

Hence

χ−00 =
(s ην+3

∞ )
2

2 C̃2D3/2 (ν + 2)2κ
> 0.

Appendix B

Here we analyze the fulfillment of the hypotheses from [9], which guarantee the existence of
the normalization of the Evans function, under which lim

λ→+∞
E(λ) = 1. Substituting into Eq.

(39) a perturbation of the form Z(t, z) = Z(z)+ε eλ t U(z), performing elementary algebraic
transformations, and dropping the higher-order terms in ε, we get the linear dynamical
system:

U ′ = Â(z; λ)U(z), U ∈ R2n, (69)

where

Â(z; λ) = Ĵ−1
s

(
B̂(z)− λ M̂

)
=


0 0 1 0 0 0
−λ 0 s 0 0 0
γ/κ −sR(z)/κ 0 −λ/κ 0 −1/κ

0 −R(z) 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

 ,

B̂(z) = D2S(Z), R(z) = ην+3
s (z)/(ν+ 2). The matrix Â(z; λ) is related to a pair of constant

matrices
Â±(λ) = lim

z→±∞
Â(z; λ).

In our case

A+(λ) = A−(λ) = A∞(λ) =


0 0 1 0 0 0
−λ 0 s 0 0 0
γ/κ −sR∞/κ 0 −λ/κ 0 −1/κ

0 −R∞ 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

 ,

where R∞ = ην+3
∞ /(ν + 2). The spectral problem for the matrix A∞(λ) can be written as

follows:
det [A∞(λ)− µ I] = µ2

[
κµ4 − γµ2 +R∞(λ− sµ)2

]
= 0. (70)

We prove the following assertions necessary for applying the results of [9] to the investigation
of the asymptotics of the Evans function at infinity.
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Lemma 14 The spectrum of the matrix A∞(0) contains a pair of real eigenvalues ±ζ 6= 0;
whereas the remaining eigenvalues nullify.

If λ ∈ C+, then the spectrum of A∞(λ) contains a pair of eigenvalues µ−1 , µ
−
2 with negative

real parts, while the remaining eigenvalues have non-negative real parts.

Proof. The first assertion is obvious, since for λ = 0 it is not difficult to calculate the
eigenvalues from the formula (70):

µ1, 2 = ±

√
β − s2 ην+3

∞
κ(ν + 2)

= ±ζ,

while µ3,...6 = 0. To prove the second assertion, we apply the method of asymptotic expan-
sions, representing the eigenvalues in the form of a series µ = a0 +a1 λ+ .... Substituting this
expression in (70) and equating the coefficients of the corresponding powers of λ to zero, we
obtain a system of algebraic equations. In view of the awkwardness of the computations,
we used the Mathematica package for deriving these equations. Thus, nullifying zero-order
coefficients, we get the equation

a2
0

[
a2

0κ+
(
s2R∞ − γ

)]
= 0, (71)

having the pair of nonzero solutions

a±0 = ±

√
β − s2 ην+3

∞
κ(ν + 2)

= ±ζ.

Equating to zero the coefficient of λ1, we get:

2 a0

[
a1

(
s2R∞ − γ

)
+ 2 a2

0 a1κ− sR∞
]

= 0. (72)

For a0 6= 0 Eq. (72) gives the expression

a1 |a±0 =
sην+3
∞

β − s2ην+3
∞

.

So for 0 < λ << 1, we have the following pair of roots:

µ−1 = −ζ + a1 λ+O(λ2) < 0

and
µ+

1 = ζ + a1 λ+O(λ2) > 0.

The second pair of roots, corresponding to a0 = 0, is obtained from the following approx-
imation. Putting the coefficient of λ2 to be equal to zero, we obtain the equation

R∞(sa1 − 1)2 − a2
1 γ = 0, (73)

whose solutions are expressed as follows:

a11 =
sR∞ −

√
γR∞

s2R∞ − γ
> 0,
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a12 =
sR∞ +

√
γR∞

s2R∞ − γ
< 0.

Using these solutions, we obtain the second pair of the roots:

µ−2 = a12 λ+O(λ2) < 0,

µ+
2 = a11 λ+O(λ2) > 0.

Since the characteristic Eq. (70) always has a pair of zero solutions, the above construction
exhausts all possible cases corresponding to small values of the parameter λ > 0. And this is
enough to complete the proof of the second point because of the fact that, as can easily be
seen, Re(µi) change signs only when the parameter λ belongs to the imaginary axis. Thus,
Eq. (70) will have exactly two solutions with negative real part for any λ with positive real
part.

Acknowledgements

The authors gratefully acknowledge Maxim Pavlov for paying attention at the transformation
leading to the Hamiltonian representation of the source system. We are also greatly indebted
to Sergij Kuzhel for valuable discussions during the preparation of this manuscript. One of
the authors (VV) acknowledges support from the Polish Ministry of Science and Higher
Education.

References

[1] Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM. A critical comparison
of nonlocal and gradient-enhanced softening continua, Int J of Solids and Structure
2001;38:7723–46.

[2] Vladimirov V, Maczka Cz, Sergyeyev A, Skurativskyi S. Stability and dynamical fea-
tures of solitary wave solutions for a hydrodynamic-type system taking into account
nonlocal effects, Commun Nonlinear Sci Numer Simulat 2014;19(6):1770–82.

[3] Evans J. Nerve axon equations. III: stability of the nerve impulse, Indiana Univ Math
Journ 1972;22:577–93.

[4] Evans J. Nerve axon impulse IV: the stable and unstable impulse, Indiana Univ Math
Journ 1975;24:1169–90.

[5] Kapitula T, Promislov K. Spectral and dynamical stability of nonlinear waves. Berlin
and New York: Springer; 2013.

[6] Benjamin TB. Stability of solitary waves, Proc R Soc A 1972;328(1573):153–83.

[7] Pego R, Weinstein M. Eigenvalues and instability of solitary waves, Phyl Trans: Phys
Sciences and Engineering 1992;340(1656):47–94.

[8] Bridges TJ, Derks G. Unstable eigenvalues and the linearization about solitary waves
and fronts with symmetry, Proc R Soc A 1999;455:2427–69.

21



[9] Bridges TJ, Derks G. The symplectic Evans matrix and the instability of solitary waves
and fronts, Arch Rational Mech Anal 2001;156:1–87.

[10] Alexander J, Sacha R. Linear instability of solitary waves for Boussinesq-type equation.
A computer assisted computation, Nonl. World 1995;2:471–507.

[11] Zumburn K. A sharp stability criterion for soliton-type propagation phase boundaries
in Korteveg’s model, J Anal and Its Appl 2008;27:11–30.

[12] Redhu P, Gupta AK. Delayed-feedback control in a Lattice hydrodynamic model, Com-
munications in Nonlinear Science and Numerical Simulation 2015; 27: 263–270.

[13] Andronov AA, Chajkin CE. Theory of oscillations, Princeton: Princeton Univ. Press,
1949.

[14] Henry D. Geometric theory of semilinear parabolic equations, Berlin: Springer-Verlag,
1981.

22


	1 Introduction
	2 Hamiltonian representation and soliton-like solutions
	3 Spectral stability of the soliton-like solutions
	3.1 Restrictions on the number of unstable modes
	3.2 The Evans function and spectral stability
	3.2.1 Introductory remarks
	3.2.2 The multi-symplectic representation
	3.2.3 Multi-symplectic representation of the system (??)-(??) and evaluation of the signE(0)


	4 Discussion

