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1. Introduction

In this paper there are studied solutions to evolutionaryaégns, describing
wave patterns with compact support. Different kinds of waadterns play the key
role in natural processes. They occur in nonlinear transpleegnomena (see [1] and
references therein), serve as channels of informatiorsfiearin animate systems [2],
and very often assure stability of some dynamical procef3ed].

One of the most advanced mathematical theory dealing wiéh fttmation of
wave patterns and evolution is the soliton theory [5]. Thégior of this theory
goes back to Scott Russell's description of the solitary evamovement on the
surface of channel filled with water. It was the ability of tiave to move quite
a long distance without any change of shape which stroke riegination of the
first chronicler of this phenomenon. In 1895 Korteveg and d@&d/proposed their
famous equation

ut+/3uux+uxxxzoa (1)
describing evolution of long waves on shallow water. Thespoabbtained an analytical
solution to this equation, corresponding to the solitarweva

1242
u= Ta Secﬁ[a(x — 442 t)]. (2
Both the already mentioned report by Scott Russell as welhasmodel suggested
to explain his observation did not find a proper impact tik tmiddle of 60-ies of

the XX century when there was been established a number efamaling features of
Eg. (1) finally recognized aware as the consequences of itgplete integrability [5].

[381]
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In recent years there has been discovered another type itdrgalvaves referred
to as compactons[6]. These solutions inherit main features of solitons, difter
from them in one point: their supports are compact.

A big progress is actually observed in studying compactarstheir properties, yet
most papers dealing with this subject are concerned withpemtons as solutions
to either completely integrable equations, or those whichdpce a completely
integrable ones when reduced to a subset of traveling waw) @olutions [7, 8, 9].

In this paper the compacton-like solutions to the hydrodyieatype model taking
account of the effects of temporal nonlocality are studigeing of dissipative type,
this model is obviously non-Hamiltonian. As a consequerogpactons exist merely
for selected values of the parameters. In spite of suchictstr, the existence of
these solutions in significant for they appear in the presesfcrelaxing effects and
rather cannot exist in any local hydrodynamic model. Besidee compacton-like
solutions manifest attractive features and can be treatexbme universal mechanism
of the energy transfer in media with internal structuredieg to the given type of
the hydrodynamic-type modeling system.

The structure of the paper is as follows. In Section 2 we givgemmetric
insight into the soliton and compacton TW solutions, rewgglthe mechanism of
appearance of generalized solutions with compact supdartSection 3 we introduce
the modeling system and show that compacton-like solutdm®xist among the set
of TW solutions. In Section 4 we perform numerical invediigas of the modeling
system based on the Godunov method and show that the comgiketosolutions
manifest attractive features.

2. Solitons and compactons from the geometric viewpoint

Let us discuss how the solitary wave solution to (1) can beiobd. Since the
function u(-) in formula (2) depends on the specific combination of the fprethelent
variables, we can use for this purpose the angditz x) = U(§), with § =x -V ¢.
Inserting this ansatz into Eq. (1) we get, after one intégnatthe following system
of ODEs:

UE) =-W(), (3)
. B _2v
e ="ue (U@ g ) |
The system (3) is a Hamiltonian system described by the Hamilunction
_ } 2 E 3_ 2
H_Z(W +3U VU). (4)

So every solutions of (3) can be identified with some leveveud = C. As already
mentioned the solution (2) corresponds to the vaflie=- 0 and is represented by
the homoclinic trajectory shown in Fig. 1 (the only trajegtan the right half-plane
going through the origin). Since the origin is an equililbniupoint of (3) and
penetration of the homoclinic loop takes infinite “time”,eth the beginning of this
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Fig. 1. Level curves of the Hamiltonian (4), representingiguéc solutions and limiting to them homoclinic
solution

trajectory corresponds t§ = —oo while its end toé = +oo. This assertion is
equivalent to the statement that solution (2) is nonzerodrfinite values of the
argumenté.

Now let us discuss the geometric structure of compactons.titie purpose we
return to the original equation which is a nonlinear geneatéibn of the classical
Korteveg—de Vries equation [6],

u + o (um)x + B (u") =0. (5)

XXX

Like in the case of Eq. (1), we look for the TW solutionst, x) = U(§), where
& = x — V. Inserting this ansatz into (5) we obtain, after one intégna the
following dynamical system:

—— =—nBU" VW, 6
T ="nb (6)
dw
T = U [-VU+aU" +n(n—1)BU"*W?],
where d
4 y2n-n_=
ar ~ P dE
All the trajectories of this system are given by its first gr
Um+l \%
Ut ﬁU”*l W2+« — U?) = H = const (7)
2 m+n n+1

The phase portrait of system (6) shown in Fig. 2 is to somengxte similar to
that corresponding to system (3). Yet the critical polhit= W = 0 of the system
(6) lies on the line of singular point§/ = 0. And this implies that modulus of
the tangent vector field along the homoclinic trajectory @utded from below by
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Fig. 2. Level curves of the Hamiltonian (7). Dashed line iatls the set of singular points = 0.

a positive constant. Consequently the homaoclinic trajgcie penetrated in a finite
time and the corresponding generalized solution to theaalngystem (5) is the
compound of a function corresponding to the homoclinic Idagich now has a
compact support) and zero solution corresponding to thepemt U = W = 0. In
case whenm =2, 8 =1/2 andn = 2 such solution has the following analytical
representation [6]:

8V cog gs when |£| < .
"y = 3a 4 Ja (8)
0 when |&| > T

It is quite obvious that similar mechanism of creating thenpacton-like solutions
can be realized in case of non-Hamiltonian system as wetl, ibucontrast to the
Hamiltonian systems, the homoclinic solution is nho moreeetpd to form a one-
parameter family like this is the case with solution (8). brtf in the considered
modeling system the homoclinic solution appears as a re$atbifurcation following
the birth of the limit cycle and its further interaction withe nearby saddle point.

Let us note in conclusion that we do not distinguish solgidmaving the
compact supports and those which can be made so by propegetwnvariables.
In particular, the solutions we deal with in the followingctens, are realized as
compact perturbations evolving in a self-similar mode oe thackground of the
stationary inhomogeneous solution of the modeling systénPDEs.

3. Relaxing hydrodynamic-type model and its qualitative iwvestigations

It is of common practice to use the concept of continual m®dehen describing
the wave processes in various media. This concept is welifigcds when the
characteristic lengthh. of a wave packet is much larger than the characteristic size
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d of the constituents of media. Usually this is the case in puon&terials. But

the situation is completely different when the wave packetppgates in materials
possessing internal structure different from atomic ongl{se.g. as soils, rocks or
air-liquid mixtures). The description of intense pulse dway after action in such
media could not be based on formalism of continuum mechardtdeast in its

classical form. The model presented below corresponds d¢osttuation when the
ratio d/» is such that continuum description is still valid, but theeggnce of

internal structure should not be ignored. Asymptotic asialyshows [10] that the
balance equations for the mass and momentum in the long wawexmation do

not depend on the structure and retain their classical f@m.all the information

about the structure in this approximation should be coethiin the constitutive
equation which is necessary to make the system of the balaquations closed.
Such constitutive equation for a medium with one relaxingcpss in the elements
of structure was obtained in [11] by means of nonequilibrishermodynamics
methods. Together with the balance equations of momentumnnaass it forms the
following system:

U+ px =,
Vl_uX:O’ (9)
X K
Tpt"'ﬁuxzv_p'

Here u is mass velocity,V is specific volume,p is pressure,y is acceleration of
the external forcex and x/t are squares of the equilibrium and “frozen” sound
velocities, respectivelys is time, x is mass (Lagrangean) coordinate.

REMARK. Note that the last (constitutive) equation of the systerm f(@mally
can be obtained from the nonlocal “flow-force” relation

t
X =t 1 ’
= — — 0 e T V [,x dt
p TtV /_oo ( )

We perform the factorization [12] of the system (9) (or, ithext words, passage to
an ODE system describing TW solutions), using its symmetpperties summarized
in the following statement.

LEMMA 1. System(9) is invariant with respect to one-parameter groups of
transformations generated by infinitesimal operators

) .9
0= —>» 1=
ot 0x
PO BN (10)
2= P P IV

Proof: Invariance with respect to one parameter groups genelatdétle operators
Xo, X1 is a direct consequence of the fact that system (9) does mandeexplicitly
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on ¢ and x. The operatorX, is the generator of scaling transformation

/ /

u' =u, p =e*p, Vi=e @V, t' =t and x' =e%x.

Invariance of the system (9) with respect to this transfaionais easily verified by
direct substitution.

From the above symmetry generators one can take the foljpwambination:

A d ] a ad
Z:—+§|:(x—xo)——|—p——V—i|.
at X

It is obvious that the operataZ belongs to the Lie algebra of the symmetry group
of (9). Therefore expressing the old variables in terms afr fmdependent solutions
of equationZ J (¢, x) = 0, we gain the reduction of the initial system [12]. Solving
the equivalent characteristic system

dt_d(xo—x)_dp_dv du

1 &xo—x) Ep —EV 0’
we get the following ansatz, leading to the reduction:

u=U@), p=Mw E-x), V=R@)/(x0-x), o©=+log- a — (11)
0—
In fact, inserting (11) into the second equation of (9), weé the quadrature
U = &R + const (12)
and the following dynamical system:
EAR)R'=—R [oRIl —k + TtERy] = Fy, (13)

EAMRIT =& {§R(RT] —x) + x (Il +y)} = Py,

where () =d (-) /Jdo, A(R)=71(ER?—x, o=14+r1&.

In case wheny < 0, the system (13) has three stationary points in the right
half-plane. One of them, having the coordinatRg = 0, IIp = —y, lies in the
vertical coordinate axis. Another one having the coordis®; = —« /y, Il;=—y
is the only stationary point lying in the physical paramgteange. The last one
having the coordinates

—1éyYR
Ry — X ’ H2=K §y 2.
T2 oR;

lies on the line of singular points(§R)? — x = 0.

As was announced earlier, we are looking for the homoclinggettory arising
as a result of a limit cycle destruction. So in the first step steuld assure the
fulfilment of the Andronov—Hopf theorem statements in sostetionary point. Since
the only good candidate for this purpose is the pointR;, I11), we put the origin
into this point. Introducing new coordinateé = R — R,, Y =I1 — [1; we get the
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following system:

x\ —k, —R%o X Hy
EA(R) s = + : (14)

k&%, (ER)*+x& |\ Y H;
where
Hy, = — (M1 X? + 20 R1XY + o X?Y),
Hy = £2 (TI1X? + 2R1XY + X%Y).
A necessary condition for appearance of the limit cycle sead follows [13]:
SpM =0 & (ER)?+ x& =, (15)
detM > 0 & Q2 =kEA(Ry) > 0, (16)

where M is the linearization matrix of system (14). The inequality6) will be

fulfilled if &€ < 0 and the coordinateR; lies inside the set(0, /x/(t£2)). Note
that another option, i.e. whef > 0 and A > 0 is forbidden from physical reason
[14]. In view of that, the critical value of is expressed by the formula

X ++/x?% +4R?

=— 17

%.CI’ 2R]2_ ( )
REMARK. Note that as a by-product of inequalities (15), (16) we fet relations
-1<1£& <0 (18)

To accomplish the study of the Andronov-Hopf bifurcatione were going to
calculate the real part of the first Floquet ind€x [13]. For this purpose we use
the transformation 2

- X __ky_ ok, (19)
b ) Y2 %) o
enabling to pass from the system (14) to the canonical onéndpahe following

anti-diagonal linearization matrix
Mij = Q(8281) — 8162)).

For this the representation formulae from [13, 15] are diyeapplied and using
them we obtain the expression

16R?Q°Re C1 = —« {3k*+ (ER)? B—£1) —k (ERD* (6+718)}.
Employing (15), we get, after some algebraic manipulatibe, formula

Re C1= [2rer € RO? -7 (82R)" -3 (x 802}

K
16Q2 R?
Since for& = & < 0 the expression in braces is negative, the following staitgm
is true:
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LEMMA 2. If R1 < R, then in vicinity of the critical valuet = &, given by
formula (17) a stable limit cycle appears in the systgi).

We have formulated conditions assuring the appearance rddie orbit in the
vivinity of stationary pointA(Ry, IT;1). Yet, in order that the required homoclinic
bifurcation would ever take place, another condition stidug fulfilled, namely that,
with the same restrictions upon the parameters, the dripoint B(R, I1,) is a
saddle. Besides, it is necessary to pose the conditions erpdnameters assuring
that the stationary pointB(R,, I1,) lies in the first quadrant of the phase plane.
Otherwise the corresponding stationary solution which éeded to compose the
compacton would not have any physical interpretation. Belwe formulate the
statement addressing both of these questions.

LEMMA 3. The stationary pointB(R,, II) is a saddle lying in the first quadrant
for any & > & if the following inequalities hold:

—‘L’gcr R2 < Rl < Rz. (20)

Proof: First we are going to show that the eigenvalugs of the Jacobi matrix
of (13)

K 7X

-0 (Fy, Fy) _ ’ Tg?

M= (R, T 127 | €2[c(c =2 +2y Ra(c — 1] D)
o ’ T

are real and have different signs. Since the eigenvalue® aire expressed by the
formula

spMﬂ:\/[spM]z—4 detM

A2 =

2 b
it is sufficient to show that .
detM < O. (22)
In fact, we have
detl = — 27X _ X6 —2)+2y Ro(o — 1)
T T

K
=—§2V75(;+R2) =2x&y (R1— Ry < 0.
To finish the proof, we must show that the stationary pdiR,, I1,) lies in the
first quadrant. This is equivalent to the statement that
Kk —T&ry Ry > 0.

Dividing the inequality obtained by < 0 and moving the first term into the RHS,
we get the inequality—t & R, < Ri. The latter implies inequalities-t & R, <
Ry < Ry which are valid for any¢ > &;. This ends the proof.
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Fig. 3. Changes of the phase portrait of system (13):AéR1, I11) is the stable focus; (bA(R1, I1) is
surrounded by the stable limit cycle; (é)(R1, IT7) is surrounded by the homoclinic loop; (&)(R1, I1y) is
the unstable focus;

Numerical studies of the behavior of (13) reveal the follogvichanges of regimes
(cf. Fig. 3). Whené < &, A(Ry, I1;1) is a stable focus; above the critical value a
stable limit cycle softly appears. Its radius grows with gprewth of the parameter
& until it gains the second critical valugy, > & for which the homoclinic loop
appears in place of the periodic trajectory. The homoclinigectory is based upon
the stationary pointB(Ry, I1y) lying on the line of singular pointsA(R) = 0, so
it corresponds to the generalized compacton-like solutmrsystem (9). We obtain
this solution sewing up the TW solution corresponding to bolinic loop with
stationary inhomogeneous solution

u=0, p = Iy (xo — x), V = Ry/(xg — x), (23)

corresponding to critical poinB(R3, I15). So, strictly speaking it is different from
the “true” compacton, which is defined as a solution with caotpsupport. Note
that we can pass to the compactly supported function by tHewimg change of
variables:

w(t, x) = p(t,x) — Iz (xg — x), v(t, x) = V(t,x) — Ra/(x0 — x).

4. Numerical investigations of system(9)
4.1. Construction and verification of the numerical scheme.

We construct the numerical scheme basing on the S. K. Godomatlkiod [16, 17].
Let us consider the calculating cellbcd (see Fig. 4) lying betweem — th and
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Fig. 4. Scheme of calculating cells

(n+1) —th temporal layers of the uniform rectangular mesh. It is easpde that
system (9) can be presented in the following vector form,

oF n 0G
at dx
with F =@, V, p—x/V)", G=(p, —u, O and H = (y, 0, k/V — p)" where
()" stands for the operation of transposition. From (24) aritfes equality of

integrals
// — +— dxdt:// Hdx dt,
ot 0x Q

where @ is identified with the rectangletbcd. Due to the Gauss—Ostrogradsky
theorem, integral in the LHS of the above equation can beepted in the form

F
// (8_ +—>dxdt:¢ Gdt—Fdx. (25)
ot dx aQ

Let us denote the distance between therh and (i +1) —th nodes of theO X axis
by A x while the corresponding distance between the temporakdalge A ¢. Then,
up to O (laxI?, |At[%), we get from equations (24), (25) the following difference
scheme,

—H, (24)

(Fin+1 _ Fln) Ax + (Gn+i. - G"

i+5 l—%

) At=H'AxAx, (26)

where G”*i, G"+1 are the values of the vector functiai on the segmentsé ¢ and

17_

ad, correépondmgly In the Godunov method these values afimede by solving
the Riemann problem. Below we describe the procedure of ttedculation.

According to the common practice [18], instead of dealinghwhe initial system
(9), we look for the solution of the Riemann problefm;, Vi1, p1) at x <0 and
(u2, V2, p2) at x > 0 to the corresponding homogeneous system

ut+px:07
V—ux=0 27)
P+ —5Vi=0.

V2
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Fig. 5. Scheme of solving the Riemann problem.

It is easy to see that linearisation of the system (27) hagethcharacteristic

velocities: Co = 0 and C. = £C = + /-5, where Vg = %2, The Riemann
T

invariants corresponding to them are as follows (we cateuthem in the acoustic
approximation):

ro=p— I’i=p:|:CM.

X
TV’
The characteristics = +C ¢ and x = 0 divide the half-plang > 0 into four sectors

(see Fig. 5) and the problem is to find the values of the paemnéh sectors Il

and lll, basing on the value8:;, Vi, p1) and (uz, Vo, p2) which are assumed to be
defined. The scheme of calculating the valdés, P;; is based on the property of
the Riemann invariants to retain their values along theespwnding characteristics.
From this we get the system of algebraic equations (cf. with B):

p1+Cui=P+CUpy,

p2—Cuz=P; —CUyy.
The system of determining equations fo%,;, P;;; occurs to be the same, so the
values of the parameters, P in the sector—Ct < x < Ct, C =,/x/(xV@) are

given by the formulae:
_uitup Pz p

U 28
2 2C (28)
p1+ p2 U — Uz

P = C .

2 + 2

Expression for the functiofy is omitted since it does not take part in the construction
of the scheme of this stage.
With some additional assumption the Riemann problem can dbeed without
resorting to the acoustic approximation. Let us assume that
X

p="r (29)
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As is easily seen, this relation is the particular integrbthe third equation of the
system (27). Employing this formula, we can write down thstfiwo equations as
the following closed system:

_ 2
(2 +Ai) (”) =0, where A= ( 0 1/ @V )) . (30)
at ax \% -1, 0

Solving the eigenvalue problem det — AI|| = 0, we find that the characteristic
velocities satisfy the equation

W2=C2 = x/@V).
Now we look for the Riemann invariants in the form of infiniteries

00
r{+ = \%4 E Aviu”
v=0

It is not difficult to verify by direct inspection that the folving relations hold:

ad a
DLV = (— + CLoo_> V=u+CroV, = 04, (31)
ot 0x
Diu=+CrQx. (32)
Using (32) and (32), we find the recurrent formula
Ag
Ay = FD'———.
n!(Vx /)"
and finally obtain the expression for Riemann invariants:
r* = AoV exp (Fu/y/x/1). (33)
So under the assumption that= %>, the system (27) can be rewritten in the form
Di}"i =0. (34)

Using (29) and (34) we get the solution of the Riemann probienthe sector
,/X/(rvf)t <x < ,/X/(tvzz)t:

U=x/tIn Z, (35)
P = pa+/x/tCalZ exp(—uz/y/x/7) — 11,

Z = (E +0)/(2C2/x /7).
E = exp(uz//x/T){p1— p2+/x/T(C2 — C)},
Q = E? + 4y /tC1Coexpl(u1 + u2)/y/x /7],
Ci=x/t/Vi = Cie(Vi), i =12

where
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Note that (35) is reduced to (28) whep; — po| << 1, |u1 —uo| << 1.
Thus, the difference scheme for (9) takes the following form

(uf —ui ™ Ax — (Pli1j2 — Pim1jp) At = —y AtAx,
(‘/in - ‘/in-‘rl)Ax + (u7+1/2 - M:l_l/z)At = O,

n X n+1 X _
(Pi - rV,-")Ax - (pi - rVi"H)Ax = —fAtAx,

where (uj_y,, pl_q12) and (uj,q,, piiq1,) are solutions of Riemann prqblems
Vily wi_g, pizg)y V' ui, p!) (Vs pi), (Vi wihg, i), correspondingly,
K

f=1wiVh =5

L

k is equal to eithem or n+ 1. The choicek = n leads to the explicit Godunov
scheme

k
- Dis

At
”?H =u; + Ax (P?—l/z - P?+1/2) + y At,

Vn+1_vn ﬂ n _n
P = i+Ax(ui+l/2 Ui_1/2)s (36)

pitt=pi + %(

1
v W) + f(pi, V)AL

The scheme (36) was tested on invariant TV solutions of threnfo
u=U(w), p = P(w), V =V(w), w = x — Dt. (37)

Inserting (37) into first two equations of system (9), one cdmain the following
first integrals:

U=ui+DWVi—-V),

(38)
P = p1+ D3(Vy — V),

whereV; = lim,_.» V(w). Let us assume in addition thag = 0, while p; = «/ V3.
With this assumption the constan{s;, pi, V1) satisfy the initial system.
Inserting U and P into the third equation of (9) we get

dv._ [DVE—SV +«]

do tD[C:_—(DV)Y]

where Cro = /X /7, S = p1+ D?Vy. Eq. (39) has three critical points:
V=V=0, V =V, V =V, =«/(V1D?).

If the inequality Vo = «/(ViD? < Vi holds and the linex/t — (DV)? =0 is
outside the intervalV,, V;), then the constants
(DV1)? — k

Uooo =Up = —p— > 0, P-0o = P2 =K/ V2, Voo = V2,
1

F(V), (39)
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Fig. 6. Temporal evolution of Cauchy data defined by solutiohsEq. (39) and the first integrals (38).
The following values of the parameters were chosen duringamical simulationixk = 0.5, x = 0.25, t =
0.1, v1 =05 D =31

deliver the second stationary solution to the initial sgstand solution of equation
(39) corresponds to a smooth compressive wave connectaigpredry pointsV,
and V;.

Results of numerical solution of the Cauchy problem basedtren Godunov
scheme (36) are shown in Fig. 6. As the Cauchy data we tooknitueth self-similar
solution obtained by numerical solution of Eq. (39) and tlse of the first integrals
(38). So we see that the numerical scheme describes quite theelself-similar
evolution of the initial data.

4.2. Numerical investigations of the temporal evolution and attractive features of
compactons.

Below we present the results of numerical solution of the dBgiuproblem
for system (9). In numerical experiments we used the valueshe parameters
taken in accordance with the preliminary results of queli¢a investigations and
corresponding to the homoclinic loop appearance in syst&8). (As the Cauchy
data we got the generalized solution describing the coropaeind obtained by
the preliminary solurion of (13) and using the formulae (1@3). Results of the
numerical simulation are shown in Fig. 7. It is seen that cachgn evolves for a
long time in a stable self-similar mode.

Additionally the numerical experiments revealed that trevevpackets are created
by sufficiently wide family of initial data tend, under cartaconditions, to the
compacton solution. The following family of initial pertumtions have been considered
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0 50 X

Fig. 7. Numerical solution of the system (9) in case when thariant homoclinic solution is taken as the
Cauchy data.

in the numerical experiments:
polxo — x) when x € (0,a) U (a +1, xo)
P =13 (po+p)xo—x)+wx—a)+h whenx e (a,a+l), (40)
u=0, V=«/p.

Here a, I, p1, w, h are parameters of the perturbation defined on the background
of the inhomogeneous stationary solution (23). Note thalefines the width of
the initial perturbation. Varying broadly parameters ok tiitial perturbation, in
numerical experiments we observed that, when fixing e.g. villee of /, it was
possible to fit in many ways the rest of parameters such that ainthe wave
packs created by the perturbation (namely that one whicls ridownwards” in

the direction of diminishing pressure) in the long run apgles the compacton
solution. Whether the wave pack would approach the compastmution or not
depends on that part of energy of the initial perturbationictvhis carried out
“downwards”. Assuming that the energy is divided betweep twave packs created
more or less in half, we can use for the rough estimation ovemency the total
energy of the initial perturbation, consisting of the imt@r energy Ejr; and the
potential energyE gt

E = Eint + Epot = / [Eint + epot] dx,

where giny, and eper are local densities of the corresponding terms
The functionepe is connected with forces acting in the system by means of the
evident relation 19p

v _;Bxe o 0X,

_ 9epot

El
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where x, is the physical (Eulerian) coordinate connected with thessnagrangean

coordinatex as
X :fV_ldxe.

From this we extract the expression

Xe
0
Epot = /gpotdx =/|:/ (Vap —)/) dx;]V_ldxe,
Xe
Q

‘1

where Q is the support of initial perturbation.Employing in the abointegral the
relation V ap/dx, = dp/ox, we obtain

Kkl 1+k
Epot: m [(T) In(1 +k) — 1] )

wherek =[P (a +1)—P (a)]/P (a), P(@)=az+pB, a=w—(po+p), B =
(p1+ po)xo — aw.

For x =15, « =10, y = —0.04, T = 0.07, xo = 120, convergency was observed
when E,,; was close to 45 (see Figures below).

The function gj; is obtained from the second low of thermodynamics written
for the adiabatic case(dein/0V)s = —p = —«/V. From this we get

ent=c —kInV.

To obtain the energy of perturbation itself, we should saditfrom this value the
energy density of stationary inhomogeneous solutich « In Vp, so finally we get

Eint = /(Sint - S%t)vildxe =K / InVo/Vdx;.
Q Q

Using the formula (40),we finally obtain

o P(a +1)  P(a) ol Po(a) _pal
E.m_fc!lln Po(a—l—l)+ " In[l+P(a)}+ . In[l Po(a)i|}’

where Py(z) = po(xo — 2).

Numerical experiment shows that the energy norm serves figiestly good
criterion of convergency. Aty = 15, « = 10, y = —0.04, = = 0.07, xo = 120
convergency was observed whdn € (43,47). The patterns of evolution of the
wave perturbations are shown in Fig 8. For comparison we sienv the temporal
evolution of the wave packs created by the perturbationswbich E ¢ (43, 47)
(Fig. 9).

Thus there is observed some correlation between the enérigntial perturbation
and convergency of the created wave packets to the compaciation.
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T
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Fig. 9. Evolution of the wave patterns created by the locatupeations which do not satisfy the energy
criterion.

5. Conclusions and discussion

In this work we have discussed the origin of generalized TWutems called
compactons and have shown the existence of such solutidghgwhe hydrodynamic-
type model of relaxing media. The main results concerning gubject can be
summarized as follows:

e The family of TW solutions to (9), given by the formula (11)pcludes a
compacton incase when an external force is present (more precisely, when
y < 0).

e Compacton solution to system (9) occurs merely at selectddes of the
parametersfor fixed «, y and x there is a unique compacton-like solution,
corresponding to the valug¢ = &,.

Qualitative numerical analysis of the corresponding ODEteayn describing
the TW solutions to the initial system served us as a starognt in nu-
merical investigations of compactons, based on the Godumethod. Numerical
investigations reveal that compacton encountered in tligiqular model form a
stable wave pattern evolving in a self-similar mode. It wdso aobtained a nu-
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merical evidence of attracting features of this structume:wide class of initial

perturbations creates wave packs tending to compactonve@gemcy only weakly
depends on the shape of initial perturbation and is mainlysed by fulfilment

of the energy criterion. Unfortunately, this criterion isotnenough precise. In
fact, it is not sensible to the form of initial perturbatiomhich, in turn, in-

fluences the part of the total energy getting away by the wasek pmoving

“downwards”. Besides, the Godunov scheme does not enablebt@in more strict
gquantitative measure of convergency. But in spite of theserebancies the effect
of convergency is evidently observed and this will be theidopf our further

study to develop more strict criteria of convergency as vadl to try to realize
whether the compacton solution serves as true or interdeedit®, 20] asymp-
totics.
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