next up previous
Next: Zagadnienie odwrotne problemu spektralnego Up: Problem Sturma-Liouville'a na Previous: Problem spektralny dla równania

Klasa funkcji cylindrycznych

Funkcje Hankela pierwszego rodzaju:

$\displaystyle {H_{\nu}}^{(1)}(x)=\frac{i}{\sin \pi \nu}\big[ J_{\nu}(x) e^{-i
\pi \nu}- J_{-\nu}(x)\big], \quad \nu \neq n,
$

$\displaystyle {H_{n}}^{(1)}(x)=J_{n}(x)+\frac{i}{\pi}\bigg[\frac{\partial
J_{\...
... \nu} +{(-1)}^{n+1} \frac{\partial
J_{-\nu}(x)}{\partial \nu}\bigg]_{\nu=n};
$

Funkcje Hankela drugiego rodzaju:

$\displaystyle {H_{\nu}}^{(2)}(x)=\frac{1}{i \sin \pi \nu}\big[ J_{\nu}(x) e^{i
\pi \nu}- J_{-\nu}(x)\big], \quad \nu \neq n,
$

$\displaystyle {H_{n}}^{(2)}(x)=J_{n}(x)-\frac{i}{\pi}\bigg[\frac{\partial
J_{\...
... \nu} +{(-1)}^{n+1} \frac{\partial
J_{-\nu}(x)}{\partial \nu}\bigg]_{\nu=n};
$

Funkcje Neumanna

$\displaystyle N_{\nu}(x)=\frac{1}{\sin \pi \nu}\big[ J_{\nu}(x) \cos \pi \nu-
J_{-\nu}(x)\big], \quad \nu \neq n,
$

$\displaystyle N_{n}(x)=\frac{1}{\pi}\bigg[\frac{\partial J_{\nu}(x)}{\partial
\nu} +{(-1)}^{n+1} \frac{\partial J_{-\nu}(x)}{\partial
\nu}\bigg]_{\nu=n};
$

Funkcje argumentu urojonego

$\displaystyle I_{\nu}(x)= e^{-\frac{\pi \nu i}{2}}J_{\nu}(ix), \quad
K_{\nu}(x)=\frac{\pi i}{2} e^{\frac{\pi \nu
i}{2}}{H_{\nu}}^{(1)}(ix),
$

tj.

$\displaystyle {H_{\nu}}^{(1)}(x)=J_{\nu}(x) + i N_{\nu}(x),
$

$\displaystyle {H_{\nu}}^{(2)}(x)=J_{\nu}(x) - i N_{\nu}(x),
$

Przy $ x \to \infty$ zachodzą wzory asymptotyczne:

$\displaystyle {H_{\nu}}^{(1)}(x)\simeq \sqrt{\frac{2}{\pi x}} e^{i(x
-\frac{\pi}{2}\nu - \frac{\pi}{4})}+O\big({x}^{-\frac{3}{2}}\big),
$

$\displaystyle {H_{\nu}}^{(2)}(x)\simeq \sqrt{\frac{2}{\pi x}} e^{-i(x
-\frac{\pi}{2}\nu - \frac{\pi}{4})}+O\big({x}^{-\frac{3}{2}}\big),
$

$\displaystyle N_{\nu}(x)\simeq \sqrt{\frac{2}{\pi x}} \sin{\big(x
-\frac{\pi}{2}\nu -
\frac{\pi}{4}\big)}+O\big({x}^{-\frac{3}{2}}\big),
$

$\displaystyle I_{\nu}(x) \simeq \frac{e^{x}}{\sqrt{2 \pi x}}
\Big[1+O\big({x}^{-1} \big) \Big],
$

$\displaystyle K_{\nu}(x) \simeq \sqrt{\frac{\pi}{2 x}} e^{-x}
\Big[1+O\big({x}^{-1} \big) \Big],
$

$\displaystyle {H_{0}}^{(1)}(x)\simeq -\frac{2i}{\pi}\ln\frac{1}{x} + \ldots,
\quad {H_{0}}^{(2)}(x)\simeq \frac{2i}{\pi}\ln\frac{1}{x} +
\ldots,
$

$\displaystyle N_{0}(x)\simeq -\frac{2}{\pi}\ln\frac{1}{x} + \ldots,\quad
K_{0}(x)\simeq \ln\frac{1}{x} + \ldots,
$

Ćwiczenie 13.2   Wykazać, że w sensie uogólnionym

$\displaystyle \textrm{a) }e^{\frac{x}{2}(t-\frac{1}{t})}= \sum_{n \in
 \mathbb{Z}}J_{n}(x)t^{n};$ (13.36)

$\displaystyle \textrm{b) } J_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}e^{i(n \nu
 - x \sin \nu)} \mathrm{d}\nu$ (13.37)



Andrzej Janus Szef 2001-12-05